70 research outputs found

    The Coronation

    Get PDF
    A photo depicting the traditional coronation of a little Asain boy

    Hikaru

    Get PDF
    A phot depicting an Asain food stand at night, with two lantern in the forefront

    The Mediation of Perfectionism and Rumination on Mindfulness and Burnout in Collegiate Athletes

    Get PDF
    Several positive and negative sport-related experiences can occur throughout an athlete’s career, which can affect the continuation or termination of said career. Although research has associated sport participation with positive outcomes (e.g., increases in motivation, autonomy), there are also negative sport-related outcomes such as burnout (Akhrem & Gazdowska, 2016; Garcia, 2015). Specifically, burnout has been identified as a multidimensional construct that includes three dimensions. Furthermore, mindfulness has been studied to minimize the risk of experiencing burnout (Kabat-Zinn, 2003). While several studies have examined mediators between mindfulness and burnout, there has been a dearth of research on perfectionism and rumination as mediators. Perfectionism and rumination can be considered multidimensional traits with adaptive and maladaptive qualities that remain stable across situations. It was hypothesized that perfectionism and rumination would significantly mediate the relationship between mindfulness and burnout in collegiate athletes. Results found that depressive rumination and doubts about actions significantly mediate the relationship between mindfulness and subscales of burnout. If athletes specifically exhibit a higher susceptibility to burnout, monitoring depressive rumination and doubts about actions while improving mindfulness can reduce the risk of burnout. Practical implications and future directions are also discussed

    Maternal Obesity and the Early Origins of Childhood Obesity: Weighing Up the Benefits and Costs of Maternal Weight Loss in the Periconceptional Period for the Offspring

    Get PDF
    There is a need to understand the separate or interdependent contributions of maternal prepregnancy BMI, gestational weight gain, glycaemic control, and macronutrient intake on the metabolic outcomes for the offspring. Experimental studies highlight that there may be separate influences of maternal obesity during the periconceptional period and late gestation on the adiposity of the offspring. While a period of dietary restriction in obese mothers may ablate the programming of obesity, it is associated with an activation of the stress axis in the offspring. Thus, maternal obesity may result in epigenetic changes which predict the need for efficient fat storage in postnatal life, while maternal weight loss may lead to epigenetic changes which predict later adversity. Thus, development of dietary interventions for obese mothers during the periconceptional period requires a greater evidence base which allows the effective weighing up of the metabolic benefits and costs for the offspring

    Impact of maternal overnutrition on gluconeogenic factors and methylation of the phosphoenolpyruvate carboxykinase promoter in the fetal and postnatal liver

    Get PDF
    Advance online publication 22 January 2014BACKGROUND: Exposure to maternal obesity or hyperglycemia increases the risk of obesity and poor glucose tolerance in the offspring. We hypothesized that maternal overnutrition in late pregnancy would result in (i) lower methylation in the promoter region of the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK-C; PCK1) and (ii) higher expression of hepatic gluconeogenic factors in the fetal and postnatal lamb. METHODS: Ewes were fed 100% (n = 18) or ~155% (n = 17) of energy requirements from 115 d gestation, and livers were collected at ~140 d gestation or 30 d postnatal age. RESULTS: Maternal overnutrition resulted in a decrease in hepatic expression of the mitochondrial form of PEPCK (PEPCK-M; PCK2) but not of PEPCK-C or glucose-6-phosphatase (G6PHOS) before and after birth. Hepatic expression of peroxisome proliferator-activated receptor Îł coactivator 1 (PGC-1), peroxisome proliferator-activated receptor α (PPARα), PEPCK-C, G6PHOS, and 11ÎČ hydroxysteroid dehydrogenase type 1 (11ÎČHSD1), but not PEPCK-M, was higher in the postnatal lamb compared with that in the fetal lamb. The level of PCK1 methylation was paradoxically approximately twofold higher in the postnatal liver compared with that in the fetal liver. CONCLUSION: Maternal overnutrition programs a decrease in hepatic PEPCK-M in the offspring and as ~50% of total hepatic PEPCK is PEPCK-M, the longer-term consequences of this decrease may be significant.Leewen Rattanatray, Beverly S. Muhlhausler, Lisa M. Nicholas, Janna L. Morrison and I. Caroline McMille

    Differential effects of exposure to maternal obesity or maternal weight loss during the periconceptional period in the sheep on insulin signalling molecules in skeletal muscle of the offspring at 4 months of age.

    Get PDF
    Exposure to maternal obesity before and/or throughout pregnancy may increase the risk of obesity and insulin resistance in the offspring in childhood and adult life, therefore, resulting in its transmission into subsequent generations. We have previously shown that exposure to maternal obesity around the time of conception alone resulted in increased adiposity in female lambs. Changes in the abundance of insulin signalling molecules in skeletal muscle and adipose tissue precede the development of insulin resistance and type 2 diabetes. It is not clear, however, whether exposure to maternal obesity results in insulin resistance in her offspring as a consequence of the impact of increased adiposity on skeletal muscle or as a consequence of the programming of specific changes in the abundance of insulin signalling molecules in this tissue. We have used an embryo transfer model in the sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for one week after conception on the expression and abundance of insulin signalling molecules in muscle in the offspring. We found that exposure to maternal obesity resulted in lower muscle GLUT-4 and Ser 9 phospho-GSK3α and higher muscle GSK3α abundance in lambs when compared to lambs conceived in normally nourished ewes. Exposure to maternal weight loss in normal or obese mothers, however, resulted in lower muscle IRS1, PI3K, p110ÎČ, aPKCζ, Thr 642 phospho-AS160 and GLUT-4 abundance in the offspring. In conclusion, maternal obesity or weight loss around conception have each programmed specific changes on subsets of molecules in the insulin signalling, glucose transport and glycogen synthesis pathways in offspring. There is a need for a stronger evidence base to ensure that weight loss regimes in obese women seeking to become pregnant minimize the metabolic costs for the next generation

    Gene expression allelic imbalance in ovine brown adipose tissue impacts energy homeostasis

    Get PDF
    Heritable trait variation within a population of organisms is largely governed by DNA variations that impact gene transcription and protein function. Identifying genetic variants that affect complex functional traits is a primary aim of population genetics studies, especially in the context of human disease and agricultural production traits. The identification of alleles directly altering mRNA expression and thereby biological function is challenging due to difficulty in isolating direct effects of cis-acting genetic variations from indirect trans-acting genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI) occurring at heterozygous loci provides an opportunity to identify genes directly impacted by cis-acting genetic variants as indirect trans-acting effects equally impact the expression of both alleles. However, the identification of genes showing AI in the context of the expression of all genes remains a challenge due to a variety of technical and statistical issues. The current study focuses on the discovery of genes showing AI using single nucleotide polymorphisms as allelic reporters. By developing a computational and statistical process that addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was extensive, representing approximately 25% of the tested genes. Genes associated with AI were enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial function and the extracellular matrix. These functions suggest that cis-acting genetic variations causing AI in the population are preferentially impacting genes involved in energy homeostasis and tissue remodelling. These functions may contribute to production traits likely to be under genetic selection in the population.Shila Ghazanfar, Tony Vuocolo, Janna L. Morrison, Lisa M. Nicholas, Isabella C. McMillen, Jean Y. H. Yang, ... et al

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
    • 

    corecore