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Abstract

Heritable trait variation within a population of organisms is largely governed by DNA varia-

tions that impact gene transcription and protein function. Identifying genetic variants that

affect complex functional traits is a primary aim of population genetics studies, especially in

the context of human disease and agricultural production traits. The identification of alleles

directly altering mRNA expression and thereby biological function is challenging due to diffi-

culty in isolating direct effects of cis-acting genetic variations from indirect trans-acting

genetic effects. Allele specific gene expression or allelic imbalance in gene expression (AI)

occurring at heterozygous loci provides an opportunity to identify genes directly impacted by

cis-acting genetic variants as indirect trans-acting effects equally impact the expression of

both alleles. However, the identification of genes showing AI in the context of the expression

of all genes remains a challenge due to a variety of technical and statistical issues. The cur-

rent study focuses on the discovery of genes showing AI using single nucleotide polymor-

phisms as allelic reporters. By developing a computational and statistical process that

addressed multiple analytical challenges, we ranked 5,809 genes for evidence of AI using

RNA-Seq data derived from brown adipose tissue samples from a cohort of late gestation

fetal lambs and then identified a conservative subgroup of 1,293 genes. Thus, AI was exten-

sive, representing approximately 25% of the tested genes. Genes associated with AI were

enriched for multiple Gene Ontology (GO) terms relating to lipid metabolism, mitochondrial

function and the extracellular matrix. These functions suggest that cis-acting genetic varia-

tions causing AI in the population are preferentially impacting genes involved in energy

homeostasis and tissue remodelling. These functions may contribute to production traits

likely to be under genetic selection in the population.
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Introduction

A major aim of population genetics is the identification of genetic variants and their biological

effects that lead to complex trait variation within individuals. Genetic variants are also important

for understanding the molecular relationship between gene function and phenotype. In agricul-

ture, natural genetic variants are exploited for predicting and improving desirable production

traits through DNA marker assisted selective breeding practices. In human health, genetic variants

affecting gene function can be used to predict disease risk in human populations and this poten-

tially can be coupled with targeted preclinical intervention strategies to minimise disease impact.

Genetic variation can directly alter the amino acid sequence of the protein encoded by a

gene and thereby affect protein function or it can modify the level of mRNA expression. In the

latter case the variant can lie within the coding or noncoding regions of a gene and thereby

alter its transcriptional or mRNA turnover rates. Alternatively, the variant can lie outside the

gene in gene promoters or distal regulatory elements such as enhancers. In particular, genetic

variants contributing to complex traits within a population are often enriched in gene regula-

tory elements [1]. Collectively, these effects are termed cis effects as the causal genetic variant

lies close to or within the affected gene as compared to trans effects caused by genetic influ-

ences arising from elsewhere in the genome that indirectly alter gene expression. The latter

case is exemplified by a genetic variant altering the level of a transcription factor that then acts

to regulate the expression of another gene located elsewhere in the genome. Allelic imbalance

in gene expression (AI) results from a genetic variant acting in cis that preferentially alters the

mRNA expression level of one allele. For a small group of genes, AI can also result from allele-

specific epigenetic modifications. Genomic imprinting exemplifies the latter where parent of

origin specific epigenetic modifications cause AI in approximately 100–300 genes in mammals

[2–6]. Another cause of AI in a minor number of genes is clonally stable monoallelic expres-

sion arising from epigenetic changes [7].

Next generation sequencing technologies such as RNA-Seq simultaneously provide infor-

mation on gene expression and genetic variation [8]. Single nucleotide polymorphisms (SNPs)

identified in mRNAs can be used as convenient markers of the expression of each allele for

individuals in a genetically diverse population. At heterozygous marker loci, AI can therefore

be quantified. The causal genetic variant acting in cis on target gene expression is likely to be

undefined but located in the vicinity of the impacted gene. Importantly, trans-acting effects of

genetic variation equally alter the expression of both alleles of a gene. Thus, AI at a heterozy-

gous marker locus is a definitive signature of a cis-acting genetic variant, genomic imprinting

or clonally stable monoallelic expression.

Several analytical challenges are associated with the identification of genes with AI. (i) Most

studies have been performed using species with ‘complete’ genome sequences. The draft

genome assemblies for nonmodel animal species do not have complete representation of

all genes, and all exons within genes, and they retain some assembly errors that collectively

lead to incomplete AI information. (ii) An RNA-Seq sequence read originating from the non-

reference (alternate) allele is less likely to successfully map to the correct genomic location.

Consequently, selecting parameters in the read-mapping algorithm that better tolerate mis-

matches is therefore desirable [9]. This bias can be ameliorated by the use of longer, paired end

reads. Alternatively, genomic sequence information from the same individuals can be used to

correct for this intrinsic mapping bias, although this is only practical for an individual or very

small populations. (iii) Following read mapping to the reference genome, SNP markers are

identified at heterozygous positions. The efficiency of SNP discovery is related to the extent of

genetic variation in the population and hence outbred populations are more informative. The

efficiency is also dependent on the read depth of coverage. Thus, there is strong acquisition
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bias in the SNP discovery process for more highly expressed genes. (iv) A number of statistical

issues are associated with multiple comparison corrections when there is combination of

results from multiple SNPs to the level of a gene in the presence of correlations among the

SNPs associated with the gene. This issue is also compounded by the variable number of infor-

mative SNPs per gene.

Previous studies have developed procedures for addressing aspects of the aforementioned

challenges [9–14]. However, none of these individual approaches comprehensively addressed

the multiple analytical challenges when using RNA-Seq data in the absence of genomic

sequence information for the identification of loci showing AI in a population of outbred ani-

mals. In the current investigation, we used RNA-Seq data from ovine brown adipose samples

from 18 individuals to identify genes showing AI. The analysis addressed multiple analytical

biases and has revealed that genes showing AI are common and they are enriched for functions

associated with mitochondria and lipid metabolism, as well as the extracellular matrix. These

functions are particularly relevant to livestock growth related production traits.

Materials and methods

Animals and biological samples

All procedures involving animals were carried out with approval from the University of Ade-

laide Animal Ethics Committee. Pregnant ewes (n = 18) were maintained on a diet that pro-

vided 100% of their maintenance energy requirements [15] and the ewes were individually

housed from 110 days post conception (dpc) in pens for two weeks before sampling. The preg-

nant ewes were humanely euthanased with an intravenous overdose of sodium pentovarbitone

(8.2 g Lethobarb, Virbac Pty, ltd, Peakhurst, NSW, Australia) and foetuses removed and

weighed at 132 ± 1 dpc (term is at 150 dpc). All efforts were made to minimize animal suffer-

ing. Samples of perirenal adipose tissue (PRAT) were collected from 18 singleton fetuses (16

female and 2 male) and then frozen in liquid nitrogen. The fetuses had a common sire and the

ewes were unrelated. As RNA was prepared from tissue taken from relatively large tissue slices

(~ 3 g) it is unlikely that clonal cell patches of allelic imbalance were sampled. Similarly, X-

chromosome inactivation would be masked by equal contributions of both active X chromo-

some alleles in different cells within the tissue sample.

RNA extraction and RNA-Seq library preparation

Total RNA was extracted from each PRAT sample (1 g), as previously described [16]. RNA

quantity and integrity were assessed using the Bioanalyzer 2100 (RIN scores > 9; Agilent,

Santa Clara, USA). RNA (5 μg) from each sample was used for library preparation (TruSeq

RNA Sample Preparation kit v2; Illumina, San Diego, USA) and sequencing (paired end, 100

bp reads) was performed using a standard protocol for the HiSeq 2000 platform (Illumina, San

Diego, USA). The 18 RNA-Seq libraries were randomly assigned to three sequencing lanes

with six-fold multiplex sequencing per lane. After removal of sequencing adaptors, the reads

for each sample were subjected to quality control assessments and filtering, as recommended

by the manufacturer of the HiSeq 2000. The quality of the raw sequence reads was assessed

using FastQC. The RNA-Seq library sizes (mean of 26,189,148 uniquely mapped paired end

reads/ sample) were consistent with ENCODE recommendations [17].

Sequence read alignment

Paired end 100 bp sequence reads were mapped to the ovine reference genome Oar v3.1

(http://www.livestockgenomics.csiro.au/sheep/) [18] using the STAR RNA-Seq aligner [19].
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Parameters in the read-mapping software were adjusted to allow for mismatches representa-

tive of rates of allelic variation known to be present in the sheep population. Specifically, the

maximum mismatch threshold was set to 10 and only reads aligning to unique genomic posi-

tions were used.

SNP discovery

SNPs were identified from the mapped RNA-Seq reads using the UnifiedGenotyper tool in the

Genome Analysis Toolkit [20]. Default parameters were used, with the exception of the mini-

mum phred-scale confidence threshold (“stand_emit_conf"), which was set to 10. The best

practice protocol used was “Germline SNP and indel discovery in whole genome and exome

sequences”. The output variant call format file contained the genomic coordinates, reference

and alternate allele nucleotides, and for each sample, read depths for both alleles and inferred

genotypes at each informative locus. The reference allele was the nucleotide agreeing with the

Oar v3.1 reference genome. A total of 7,631,907 potential SNPs were identified using the

mapped sequence data [21].

The SNP coordinates in the ovine genome were then intersected with annotated genomic

features including repeats and genes using the Galaxy intersection function [22]. SNPs were

removed if present in known repeat regions, as described by the UCSC Simple Repeats track

[23] and if they were not located within an ENSEMBL gene region [24]. SNPs were then

retained if at least 5 of the 18 samples had 10 or more reads for both the reference and alternate

alleles at heterozygous loci. This conservative approach ensured that SNPs were called using a

minimum read depth, which directly reflected a minimum level of gene expression. The rigor-

ous, progressive filtering reduced the number of informative SNPs to 24,355 (filtered SNPs).

SNP filtering was undertaken using the filterVcf function within the VariantAnnotation R

package (version 1.18.6). We considered how varying the minimal coverage threshold per

locus impacted the number of filtered SNPs obtained, the number of genes tested for AI and

the proportion of filtered SNPs that were also present in dbSNP (version 143). Minimum cov-

erage thresholds of 5, 10, 20, 30, 50 and 100 reads for at least 5 of the 18 individuals were used.

The selected minimum coverage threshold of 10 was less stringent than the value of 30 used in

a recent human post-mortem population analysis of 28 tissue samples [25]. The rank orders of

genes showing allelic imbalance for the different minimum coverage thresholds were highly

correlated. Using this information, it was demonstrated that the minimum coverage threshold

of 10 was optimum as it mitigated between loss of information due to an overly stringent fil-

tered SNP discovery process and having sufficient reads to enable prediction of allelic imbal-

ance in gene expression.

The unretained SNPs were not useful for a variety of reasons. (i) SNPs within reads that

uniquely mapped to repeat regions in the genome may be compromised by incorrect mapping.

(ii) SNPs in reads mapping outside of ENSEMBL genes due to incomplete gene annotation

were not used to allow focus on well annotated genes. (iii) SNPs derived from low read depths

(i.e. low gene expression abundance) were removed as they had poor statistical power to detect

AI. (iv) SNPs with low representation in the population or low representation at heterozygous

loci in the population were removed as they also had poor statistical power to detect AI.

Identification of SNPs reporting allelic imbalance in gene expression

All sequence reads covering each SNP were considered and the number of reads NA and Na

matching the reference (A) and alternate (a) alleles, respectively, were then identified. Minor

reads with another alternative nucleotide at the SNP location (due to either an additional allele

within the population at the same position or read sequencing and mapping errors) were
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ignored. For each of the 18 sheep, a genotype call of AA, aa or Aa was made at each of the

24,355 filtered SNPs. Testing for AI was restricted to samples that were heterozygous at the

particular marker SNP position. Using the read count data from these latter samples, a likeli-

hood ratio test (LRT) based on a Poisson model was used to test for AI. Specifically, it is

assumed that NA and Na were independently Poisson distributed with means:

EðNAÞ ¼ lþ d

EðNaÞ ¼ l � d

for some λ> δ� 0. The null hypothesis of no AI corresponds to a zero-delta parameter, δ = 0.

Defining XA = Sj XjA and Xa = Sj Xja as the sum of read counts over sample j for alleles A and

a respectively, the corresponding LRT statistic is:

X2 ¼ XA þ Xað Þ log
XA þ Xa

2

� �

� XA logXA � Xa logXa

and its asymptotic distribution is χ2 with one degree of freedom, thus allowing direct calcula-

tion of a P-value for each of the alternative SNP at a heterozygous locus. Often multiple SNP

were tested in a single gene.

The P-values for multiple SNPs showing AI within an ENSEMBL gene were not indepen-

dent and therefore traditional methods of correcting for multiple comparisons such as Benja-

mini-Hochberg false discovery rate (FDR) correction, while potentially useful, may be overly

stringent [26]. This issue may be further confounded as (i) some genes contained more infor-

mative SNPs than others, (ii) longer genes may contain more SNPs than shorter genes and,

(iii) some genes are more constrained in their functional tolerance for genetic variation. Con-

sequently, SNPs were then combined at the gene level by taking the minimum of the unad-

justed P-values over all SNPs within a gene. The minimum P-value for multiple SNPs within a

gene may not be suitable to maintain valid interpretation of the P-values as there is also an

underlying bias in gene expression. Therefore, genes were ranked for AI using down-sampling

analysis (next section) to control for gene expression bias.

Down-sampling to reduce bias in the identification of genes with AI

Genes that are more highly expressed lead to increased statistical power to detect AI as the

increased read counts for each allele increase the ability to discern smaller levels of AI. As a

strategy for addressing this issue, a down-sampling approach was used to induce equal statisti-

cal power for detecting AI by taking random subsamples of the data to the same read coverage

level. Down-sampling at each SNP was undertaken by randomly sampling reads without

replacement to a read depth D, and repeating this process k times. D was selected by compar-

ing the estimated overall bias and overall variance for differing read depths. The latter corre-

sponded to 5%, 10%, 15%, . . ., 100% quantiles of the overall expression. SNP rankings were

computed after replication by calculating AI scores and hence ranks for each replicate, and

combining ranks via the geometric mean over the k replicates. For most subsequent analyses,

the top 1,500 ranked genes after down-sampling analysis were additionally filtered to only

include genes with P< 1.5E-5 (gene based Bonferroni corrected P<0.05) after the original like-

lihood ratio test.

Identification of SNPs impacting encoded protein function

The ENSEMBL Variant Effect Predictor (VEP) tool was used to identify the potential func-

tional impacts of each identified SNP [27]. VEP provided information pertaining to amino
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acid changes arising from changes in DNA sequence, including synonymous and non-synony-

mous variants. The latter included changes at stop codon positions and frameshifts as well as

the position of SNP relative to the coding sequences of transcripts.

Functional enrichment analyses

Functional enrichment analyses were performed using two strategies. (i) Functional enrich-

ment analyses were performed with the ranked list of genes (after down-sampling) using a

Wilcoxon rank sum test implemented with the GOseq R package on 4,168 Gene Ontology

(GO) terms each containing between 10 and 500 genes [28]. This enrichment test evaluated

the likelihood that the ranking of genes associated with a particular ontology term was drawn

randomly from the overall distribution of values. Use of the Wilcoxon rank sum test for identi-

fication of enriched GO terms was appropriate for these data as rankings of genes were reliably

determined. (ii) The top ranked 1,500 genes showing AI in the down-sampled ranked list

were then additionally filtered to include only genes with P<1.7E-5 (gene based Bonferroni

P<0.05) from the original analysis prior to the down-sampling. This conservative process gen-

erated a list of 1,293 genes to test for functional enrichments. The background gene list for this

GO enrichment analysis used the unique set of 5,810 genes identified from the filtered 24,355

SNPs that were tested for AI. Functional enrichment analysis for GO terms was then per-

formed using GOrilla [29]. A q-value less than 0.05 (Benjamini and Hochberg method) was

employed for selection of significantly enriched GO terms. The functional enrichment analyses

described above were additionally performed using genes showing AI identified by using a

minimum read coverage of 30 instead of 10.

The promoters of the 1,293 gene list (minimum read coverage of 10) were examined for

enriched transcription factor binding sites using DAVID (q<0.05) [30]. The same gene list

used in GSEA identified enriched experimental datasets from the Hallmark database (q< 0.05)

[31, 32].

Intersection of genes showing AI with imprinted genes, murine genes

with monoallelic expression and ovine quantitative trait loci

Ovine imprinted genes were identified from the GeneImprint database [6]. This gene list was

filtered to include only genes expressed in the brown adipose tissue samples as determined

from the RNA-Seq data (� 5 samples each with> 10 reads/gene). The putative ovine im-

printed gene list was then intersected with the ranked genes showing AI with P<1.7E-5 (i.e.

Bonferroni P<0.05). In addition, the list of all putative mammalian imprinted genes from the

GeneImprint database that were also expressed in the brown adipose tissue samples were inter-

sected with ovine genes showing AI. The latter corresponded to the 1,293 genes resulting from

the top ranked 1,500 genes after the downsizing analysis, which were then filtered to only

include genes with a Bonferroni-corrected P<0.05 for the most significant SNP per gene in the

original AI analysis.

The dbMAE database was used to intersect ovine genes showing AI with murine genes

predicted to show monoallelic expression [33]. The predictions were based on a decision

tree primarily involving the co-occurrence of the chromatin modifications H3K27me3 and

H3K36me3 over the gene body [34]. The murine gene list was selected rather than human as the

former has a more extensive list of genes due to the use of crosses of highly informative mouse

genetic lines and it contains expression data for an extensive range of 23 cell lines and primary

cell cultures. None of these murine samples were adipocytes or preadipocytes. Consequently, the

myocyte C2C12 and C2C12_EqS cell lines were selected as brown adipocytes and skeletal muscle

cells share a common progenitor cell [35, 36]. It was estimated that approximately 15% of mouse
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genes were monoallelically expressed [34]. The input for the intersection analysis was the 1,293

ovine genes resulting from the top ranked 1,500 genes after downsizing that were additionally

filtered to only include genes with a Bonferroni-corrected P<0.05 for the most significant SNP

per gene from the original analysis of AI. A hypergeometric statistical test was used to assess the

significance of the list of orthologous genes overlapping both the ovine AI gene list and the

murine monoallelic expression list. A P-value less than 0.05 was considered significant.

The Animal QTLdb database was used to intersect ovine genes showing AI with ovine

quantitative trait loci (QTL) [37]. The input for the analysis was the 1,293 ovine genes resulting

from the top ranked 1,500 genes after the downsizing analysis that were additionally filtered to

only include genes with a Bonferroni-corrected P<0.05 for the most significant SNP per gene

from the original analysis of AI. A total of 402 QTL for production, growth, meat and carcass

traits, including traits associated with internal fat deposition were used in the analysis. The

intersection analysis used the genome coordinates for the QTL and the most significant SNP

for the genes showing AI, and was performed using the UCSC Table intersection function for

the ovine genome [23].

Software

As well as the software already mentioned in the Methods section, R was used for most of the

analyses [38]. We also used the R package VariantAnnotation [39]. All scripts are available

upon request.

Results

SNP discovery

S1 Fig shows box plots for the RNA-Seq data for each of the 18 perirenal adipose tissue (PRAT)

samples while S1 Table summarises the corresponding RNA-Seq library statistics. A total of

~681 million paired end reads were generated from the 18 samples. The mean library size was

37,821,376 paired end reads and a mean of 69.25% of the paired sequence reads (range 66.73–

72.41%) were uniquely mapped to the ovine genome (both reads of a pair were required to

uniquely map). Initially, 7,631,907 potential SNPs were identified of which 38.5% were also

independently present in dbSNP [40]. Fig 1 shows a schematic representation of the process

used to identify SNPs and genes showing AI at heterozygous loci. SNP filtering involved several

steps including the selection of SNPs that were present in ENSEMBL genes and within these,

genomic loci that were heterozygous in at least 5 of the 18 individuals. This process led to the

identification of 24,355 filtered SNPs (S2 Table). To validate the filtered SNP, they were inter-

sected with ovine SNPs independently listed in dbSNP, which were derived from different ani-

mals using different discovery technologies [40]. A large percentage (88.4%) of the filtered SNPs

were independently present in dbSNP compared to 38.5% for the unfiltered SNPs. Progressively

increasing the minimum read coverage threshold from 5 to 100 at heterozygous loci for at least

5 of the 18 individuals (a minimum read coverage of 10 was used above) markedly reduced the

number of filtered SNPs (33,747 to 2,719) and the number of genes tested for AI (7,033 to 931)

but had minor effect on the percentage of the filtered SNPs also present in dbSNP (85.4 to

92.4%) (S2 Fig). Moreover, the rank orders of genes for AI (see below) with the different mini-

mum coverage thresholds were highly correlated e.g. R2 = 0.94 for gene rankings using mini-

mum coverage thresholds of 10 and 30. Thus, the selected minimum read coverage threshold of

10 mitigated between excessive stringency in SNP discovery with consequent loss of informa-

tion and the need for sufficient reads to enable reliable identification of genes showing AI.

Using the minimum coverage threshold of 10 resulted in the identification of 24,355 heterozy-

gous loci (in at least 5 of 18 samples) that were present within 5,810 genes.
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Among the 24,355 marker SNPs identified at heterozygous loci, 13,881 were synonymous

variants and of the remaining 10,474 SNPs, 4,831 and 3,470 were missense variants and 3’

untranslated region variants, respectively (Table 1). Notably, there were 18 stop codon gains

and 6 stop codon losses as well as 8 variants that affected splice sites, which collectively have

potential for substantial functional impacts. The “upstream” and “downstream” variants,

together representing only 2.5% of the SNPs, were due to small differences in ENSEMBL gene

annotation versions used for SNP filtering (ENSEMBL Genebuild December 2013) and SNP

functional impact assessments (ENSEMBL Genebuild Update May 2015), particularly the

updating of a minor number of genes with previously unannotated exons.

Identification of heterozygous loci showing allelic imbalance in gene

expression

Using the set of 24,355 filtered SNPs present in 5,810 genes, the Poisson-based likelihood

ratio test (LRT) was applied resulting in 10,892 significant SNPs (unadjusted P-value <0.05)

Fig 1. Schematic diagram of the process used for identification of marker SNPs and genes showing

allelic imbalance in expression. Reads were mapped to the reference genome and potential SNPs

identified. For each SNP and sample, a genotype was determined and heterozygous loci were then selected.

Read counts for each genotype in these samples were then used in a Poisson model to test for AI at

heterozygous loci. Genes showing AI were identified by combining multiple SNP results to the gene level via a

minimum P-value. In addition, down-sampling and ranking of genes for AI was used to compensate for gene

expression level bias in the discovery process. A conservative list of 1,293 genes was then identified that

consisted of the top ranked 1,500 genes identified by down-sizing analysis, which was filtered to include

genes with a Bonferroni P-value <0.05 for AI.

https://doi.org/10.1371/journal.pone.0180378.g001
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showing AI in at least 5 of the 18 samples (S3 Table). There was an average of 4.2 tested SNPs

per gene over all of the data and hence there was a lack of independence of many of the tested

SNPs. Consequently, SNPs were combined at the gene level by taking the minimum of the

unadjusted P-values over all SNPs within a gene. Using these gene-level P-values, a total of

3,824 genes were identified at P<0.05 of which 1,580 genes were significant at P<2E-6 (gene

based Bonferroni P<0.05). For the top ranked 30 genes, 25 had more than one informative

SNP and of these there was an overall mean AI concordance of 80.3% for the multiple SNPs

representative of each of these genes.

Down-sampling to reduce bias in the identification of genes with AI

The majority of genes ranking high for AI were also highly expressed (Fig 2A). This result is

attributed to the increased statistical power for detecting AI in genes with higher expression

due to their increased read counts for each allele and thereby an increased ability to discern

smaller levels of AI. Thus, there is an ascertainment bias in the discovery process. We ad-

dressed this inherent bias via a down-sampling approach. Down-sampling was carried out at

each SNP by randomly sampling reads without replacement to a read depth D, and repeating

this k times. The coverage level, D, was chosen by comparing the estimated overall bias and

estimated overall variance for differing read depths (Fig 2B). The read depths chosen corre-

sponded to the 5%, 10%, 15%,. . ., 100% quantiles of the overall expression, displayed as num-

bers on the curve in Fig 2B. Using this approach, the most suitable down-sampling read depth

was with D = 50 reads as it mitigated between the overall bias and overall variance (Fig 2B).

The stability of the results of the down-sampling method was also determined as the method is

a non-deterministic method relying on random selection. Fig 2C shows the stability of the

down-sampling analysis with D = 50 and k = 20, compared to random selection. There were

154 SNPs in the top ranked 200 SNPs for every down-sampling iteration, indicating that the

down-sampling method was highly stable compared to random selection of SNPs. Following

the implementation of the down-sampling procedure (with D = 50 and k = 20) there was no

Table 1. SNP categories.

SNP type1 SNP number

synonymous variant 13,881

missense variant 4,831

3 prime UTR variant 3,470

5 prime UTR variant 314

intron variant 70

stop gained 18

stop lost 6

stop retained variant 7

splice acceptor variant 5

splice donor variant 3

upstream gene variant 189

downstream gene variant 423

other 1,138

Total 24,355

1 The ENSEMBL Variant Effect Predictor (VEP) tool was used to identify the potential functional impacts of

the identified SNPs in transcripts. UTR, untranslated region; other, SNPs with multiple annotations

potentially impacting mRNA/ protein structure or function.

https://doi.org/10.1371/journal.pone.0180378.t001
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Fig 2. SNPs in highly expressed genes are ranked more highly for significant AI in the absence of down-sampling. A. The proportion of SNPs that are

in highly expressed genes (top 5%) within the top-ranked SNPs showing AI versus size of top ranked SNP list (TopSNPs). Results without down-sampling are

shown by blue triangles; results with down-sampling (D = 50, k = 20) are shown by orange circles. SNPs were considered to be highly expressed if they were

greater than the 95% quantile of the overall gene expression associated with the filtered SNPs. It is expected that overall approximately 5% of the top-ranking

SNPs for AI should be associated with highly expressed transcripts. B. Overall bias and variance for different values of D are shown. Overall bias was

estimated by the absolute Spearman rank correlation between AI P-values (negative log-transformed) and gene expression over all samples. Overall variance

was measured as the median over SNPs of the variance for k = 10 repetitions of down-sampling. Different values of D are shown on the figure panel. C. The

stability of down-sampling compared to a random selection of SNPs is shown. For each number of top ranked SNPs, the number of common SNPs among

k = 20 random samples is graphed. The observed SNP rank data are shown as orange solid lines and the random SNP rank data are shown as blue dashed
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correlation between highly expressed SNPs, (i.e. with high read coverage) and AI SNP ranking

(Figs 2A and 3).

The top-ranked 20 genes showing AI after down-sampling are listed in Table 2 and repre-

sentative scatterplots of read depths for the reference and alternative alleles of these top-ranked

genes from informative animals are shown in Fig 4. The complete list of ranked genes showing

evidence for AI using the down-sampling method is presented in S4 Table. The table also high-

lights a subset of 1,293 genes in the top ranked 1,500 genes after down-sampling that were also

significant in the primary analysis with P<1.7E-5 (i.e. gene based Bonferroni corrected

P<0.05).

Enrichment for imprinted genes

Of the 16 experimentally documented ovine imprinted genes in the GeneImprint database [6],

eight were expressed in PRAT and four of these were in the list of 1,293 genes showing AI (i.e.

genes in the top ranked 1,500 genes after down-sampling and with Bonferroni P<0.05). These

four imprinted genes corresponded to the archetypal multispecies imprinted genes IGF2 (min-

imum SNP uncorrected P-value = 1.6E-35; Allelic Imbalance ratio (AI) = 0.34, i.e. ratio of SNP

reads to reference genome reads) and IGF2R (minimum SNP P-value = 5.1E-121; AI = 0.12) as

well as GNAS (minimum SNP P-value = 3.7E-171; AI = 0.56) and GRB10 (minimum SNP P-

value = 1.2E-80; AI = 0.78). Interestingly, three of four of these genes are reported to be mater-

nally expressed, the exception being IGF2, which is paternally expressed. The ovine genes

showing AI (top ranked 1,500 genes after down-sampling and additionally filtered for genes

with Bonferroni P<0.05) were also intersected with all known mammalian imprinted genes

whose orthologs were expressed in ovine PRAT, revealing 20 genes (bolded in S4 Table). The

identification of known ovine and mammalian imprinted genes in the list of genes showing AI

in ovine PRAT was consistent with the process used to identify genes more broadly showing

AI.

Enrichment for genes showing AI with murine orthologous genes

associated with monoallelic expression

The dbMAE database was used to intersect ovine genes showing AI with murine genes with

predicted monoallelic expression as determined by genome-wide chromatin modification

analyses [33]. The murine myocyte C2C12 and C2C12_EqS cell lines were used for the analysis

as the database contained no adipocyte samples and brown adipocytes and skeletal muscle

cells share a common cell precursor [35, 36]. The input for the analysis was the list of 1,293

ovine genes resulting from the top ranked 1,500 genes for AI after the downsizing analysis that

were additionally filtered to only include genes with a Bonferroni-corrected P<0.05 for the

most significant SNP per gene in the original analysis. The intersection of the two orthologous

gene lists revealed a significant 315 gene overlap (P = 7.2E-20; hypergeometric test).

Functional enrichments for genes showing allelic imbalance in gene

expression

Two general approaches were used to examine the functional enrichments associated with the

genes showing AI. In the first approach, functional enrichment analysis was performed with

the ranked list of genes (after down-sampling) using a Wilcoxon rank sum test implemented

lines. The inset shows an enlargement of the original plot for all 24,355 tested SNP, showing that eventually all SNPs are included in the list using either

method.

https://doi.org/10.1371/journal.pone.0180378.g002

Gene expression allelic imbalance in brown adipose tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0180378 June 30, 2017 11 / 22

https://doi.org/10.1371/journal.pone.0180378.g002
https://doi.org/10.1371/journal.pone.0180378


Fig 3. Down-sampling leads to more informative results. The three panels show the relationship between

the chi-squared statistic for AI as a function of the proportion of expression of the reference allele. Black

Gene expression allelic imbalance in brown adipose tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0180378 June 30, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0180378


with the GOseq R package (FDR<0.05) [28] (Fig 5A). There were three functional themes,

lipid metabolism, amino acid metabolism and the extracellular matrix, with each theme repre-

sented by multiple enriched GO terms. The first and second themes primarily reflected mito-

chondrial function. The second approach used the top ranked 1,500 genes showing AI after

the down-sampling analysis which were filtered to only include genes that were significant for

AI in the original analysis (P<1.7E-5 i.e. Bonferroni corrected P<0.05). This resulted in a list

of 1,293 genes that was tested for enriched functional GO terms using GOrilla [29] with a

background gene list of all genes tested for AI (q<0.05) (Fig 5B). In terms of biological themes,

this analysis generated similar results to the first method i.e. multiple enriched terms for fatty

acid/ lipid metabolism (mitochondrial function) and the extracellular matrix. Functional

enrichments were also performed with genes showing AI that were independently identified

in a similar manner except using a more stringent minimum read count of 30 instead of 10

(i.e. 3,094 down-sampled ranked genes of which 992 were significant at Bonferroni P<0.05)

(S5 Table). The enriched GO terms (q<0.05) were similar to the those identified with genes

discovered using the minimum read count threshold of 10 (Fig 5). This result reiterated the

enrichment for the major biological themes of lipid metabolism, amino acid metabolism and

the extracellular matrix. It also demonstrated that the functional enrichment analyses identi-

fied similar GO terms at a more stringent threshold for minimum read count for AI gene dis-

covery, thereby further justifying the use of a minimum read count threshold of 10.

triangles represent SNPs associated with highly expressed genes and red circles represent SNPs that are not

associated with highly expressed genes. A. No down-sampling. The plot shows that when using the original

analysis framework many highly significant SNPs for AI were also highly expressed, indicating an intrinsic

bias towards SNPs with higher expression. Highly expressed SNPs were defined as those with overall

expression in the top 5% of the entire set of SNPs and are represented by red triangles. B. One round of

down-sampling. C. The panel shows the mean test statistics over twenty repetitions of down-sampling and

displays stability associated with the down-sampling method by comparison with panel B.

https://doi.org/10.1371/journal.pone.0180378.g003

Table 2. Top ranked 20 genes showing AI after incorporation of the down-sampling approach.

Ranking Gene SNP coordinate Ref Alt

1 HSPG2 chr2:243838658 G A

2 AHNAK chr21:40277642 T C

3 PLIN4 chr5:17196981 G C

4 ZNF414 chr5:14800007 G A

5 THUMPD3 chr19:17140258 C T

6 OAS2 chr17:61041703 G A

7 GSTP1 chr21:44692878 C T

8 TALDO1 chr21:49363664 T G

9 ELN chr24:33210385 G C

10 OTUD5 chrX:52870722 C G

11 CLEC3B chr19:54064225 C T

12 KLHL24 chr1:201672375 C T

13 TUBB2A chr20:49441713 A G

14 CBY1 chr3:214283417 A T

15 JMJD8 chr24:521806 G T

16 SRRM2 chr24:2267068 T G

17 AKT2 chr14:48772353 C T

18 RTN3 chr21:41355521 C G

19 AADAT chr2:109981601 A G

20 CCBL1 chr3:7504789 C G

https://doi.org/10.1371/journal.pone.0180378.t002
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Fig 4. Scatterplots of highest ranked genes. For the 20 top ranked genes for AI, scatterplots of read depths for the

reference (abscissa) and alternate (ordinate) alleles are graphed for the highest ranking SNP for that gene. Read depths

are transformed into log2 (1 + read counts). Also shown for each gene is the gene symbol, genome coordinate and the

reference and alternative alleles. Data for all animals are shown, including some that are homozygous at the locus. Blue

circles denote individuals with heterozygous marker genotypes. Red circles represent those individuals classified as

homozygous and thus were not included in the AI testing. Dashed lines represent minimum expression thresholds. The

diagonal line represents allelic balance in gene expression.

https://doi.org/10.1371/journal.pone.0180378.g004
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The promoters of the 1,293 genes showing AI (minimum coverage threshold of 10) were

then examined for enriched (q<0.05) transcription factor binding sites using DAVID [30]

(Table 3). Three of the top ranked ten transcription factors (YY1, PPARA and XBP1) have

Fig 5. Enriched gene ontology terms for genes showing AI. A. Functional enrichments for gene ontology (GO) terms associated with the down-sampled

ranked list of genes showing AI. Only the top ranked 20 terms are shown. Functional enrichments were performed using a Wicoxon rank sum test

implemented using GOseq [28]. q values less than 0.05 were considered significant. The GO term categories included Biological Process (black), Cell

Component (blue) and Molecular Function (green). B. The top ranked 1,500 genes with AI after the down-sampling analysis were filtered to only include

genes that showed significant AI (q<0.05) in the primary analysis. These 1,293 genes were examined for GO term functional enrichments using GOrilla [29]

with a background gene list of all of the down-sampled ranked genes(q< 0.05). There were no term enrichments for the Molecular Function category. In both

panels the q value for enrichment was -log10 transformed. Both analyses used a minimum read count threshold of 10.

https://doi.org/10.1371/journal.pone.0180378.g005

Table 3. Transcription factor binding site enrichments1 for the top ranked genes showing AI.

Category Transcription factor FDR

UCSC_TFBS YY1 5.57E-18

UCSC_TFBS PPARA 1.09E-12

UCSC_TFBS PAX5 1.91E-12

UCSC_TFBS SRF 1.23E-11

UCSC_TFBS PAX4 8.41E-11

UCSC_TFBS HMX1 9.34E-11

UCSC_TFBS XBP1 1.15E-10

UCSC_TFBS AP4 3.52E-10

UCSC_TFBS ATF6 5.05E-10

UCSC_TFBS NFY 5.45E-10

1 The top ranked 1500 genes showing AI after down-sampling were filtered for genes showing AI in the

original analysis at P<1.7E-5 (Bonferroni P<0.05). The promoters of these genes were then examined for

transcription factor binding site enrichments using DAVID. Only the top tanked ten transcription factors are

listed.

https://doi.org/10.1371/journal.pone.0180378.t003
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been specifically implicated in the regulation of the transcription of genes involved in core

aspects of brown adipose tissue function [41–43]. Moreover, using the Hallmark experimental

gene expression datasets in GSEA [31, 32] with the 1,293 AI genes as input, there was enrich-

ment for adipogenesis, fatty acid metabolism and oxidative phosphorylation themes (q = 1.1E-

25, 4.6E-15, 5.1E-11, respectively), as well as myogenesis (q = 9.9E-10) in the top ranked ten

datasets. Thus, many of the identified genes showing AI in ovine brown adipose tissue are

implicated in mitochondrial function, more broadly energetics, and are also expressed in skel-

etal muscle.

Identification of ovine QTL associated with genes showing AI

The ovine genes showing AI were intersected with 402 QTL for a variety of lamb production

traits relating to fat deposition, muscling and growth derived from the Animal QTLdb data-

base [37]. The input for the analysis was the 1,293 ovine genes resulting from the top ranked

1,500 genes after the downsizing analysis that were additionally filtered to only include genes

with a Bonferroni P<0.05 for the most significant SNP per gene in the original analysis. A

total of 795 genes (61%) showing AI were present within QTL for 61 traits. Table 4 summarises

the traits with the greatest number of QTL (�6) containing genes showing AI. QTL for two

growth related traits, body weight at various ages and average daily weight gain were highly

represented. The table also contains a number of muscling related traits and four traits linked

to internal fat deposition.

Discussion

The current investigation used RNA-Seq data from perirenal adipose tissue taken from 18 late

gestation fetal lambs to identify genes showing allelic imbalance in gene expression by making

use of informative SNP markers at heterozygous loci. Initially, a total of 7,631,907 potential

SNPs was identified. This number is consistent with SNP discovery rates in outbred sheep pop-

ulations [21]. A filtered list of 24,355 SNPs at heterozygous loci within ENSEMBL genes was

tested for evidence of AI. The process addressed a number of inherent analytical issues and sta-

tistical biases to identify AI rankings for 5,810 genes, from which a conservative subset of

1,293 genes (25.6%) was identified (genes in the top ranked 1,500 genes after downsizing and

filtered for Bonferroni P<0.05).

The stringent initial SNP filtering process reduced the number of SNPs from 7,631,907 to

24,355 informative (filtered) SNPs located only at heterozygous loci. The confirmation that

Table 4. Traits with the greatest number of QTL containing genes showing AI.

Trait Number of QTL

Body weight at various ages 17

Average daily weight gain 16

Muscle weight in carcass 12

Body weight at slaughter 11

Hot carcass weight 11

Longissimus muscle area 11

Lean meat yield percentage 10

Fat weight in carcass 8

Carcass fat percentage 7

Muscle density 7

Internal fat amount 6

Total fat area 6

https://doi.org/10.1371/journal.pone.0180378.t004
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88.4% of the filtered SNPs were also independently present in the dbSNP database indicated

that the SNP identification and filtering process was highly robust. A Poisson statistical model

was then used to produce a likelihood ratio test for AI associated with each of the filtered SNP.

It was demonstrated that SNPs associated with abundant transcripts were more likely to reveal

AI due to their increased read depths and hence greater statistical power to detect small differ-

ences in allele specific expression. The analysis then controlled for this data acquisition bias by

down sampling and ranking of the genes for AI.

The process used for identification of genes showing AI has limitations as its efficiency is

dependent on the population genetic structure, its genetic diversity and a minimum level of

gene expression. Hence, some genes with AI may not have been assessed. However, based on

the tested genes it is concluded that cryptic cis-acting genetic variation and to a much lesser

extent genomic imprinting and clonally stable monoallelic epigenetic gene silencing have

broad impact on allelic imbalance 1,293 genes. Thus, approximately 25% of the tested

expressed genes in PRAT showed AI and these may therefore have potential to impact pheno-

type. This percentage of genes showing AI is consistent with data for a range of bovine tissues

from a single individual [44] and indicates that AI is widespread throughout the genome.

Cis-acting genetic variation is likely to be the principal cause of most AI in the genome

although for a small number of genes AI may result from nongenetic mechanisms such as

genomic imprinting [2–6]. Examination of the genes showing evidence for AI in the current

analysis identified four genes known to be imprinted in ovine tissues and also 20 genes that are

imprinted in other mammalian species. Hence, the identification of these genes provides inde-

pendent support for the more general process used for the discovery of genes showing AI by

all mechanisms. While comprehensive studies using humans and mice have identified 246 and

149 imprinted genes, respectively, far fewer have been identified for sheep and cattle (16 and

31, respectively) [2–6]. The ruminant imprinted gene list may be an underestimate due to the

lack of comprehensive investigations. In addition, some imprinted genes are difficult to iden-

tify as they show tissue and developmental imprinting specificities and others are characterised

by polymorphic imprinting within a population [45]. Thus, the genes showing AI in the cur-

rent analysis may also include unidentified imprinted genes. The formal proof of the imprint-

ing status of these genes requires additional investigation.

There was also significant overlap of ovine genes showing AI with murine orthologous

genes predicted to be monoallelically expressed in two myoblast cell lines through epigenetic

mechanisms. The predictions were based on the co-occurrence of two chromatin modifica-

tions, H3K27me3 and H3K36me3, in the gene body [33, 34]. The gene overlap between these

two different analyses in different species suggests that there is some conservation of genes

showing AI, which has also been demonstrated by comparisons between human and murine

genes [34]. The gene overlap in the current investigation may reflect conservation of epigeneti-

cally driven AI in the absence of causal genetic variations. Alternatively, the overlap between

these datasets may indicate the identification of orthologous genes that are particularly suscep-

tible to genetic variation causing gene expression AI. The latter possibility could arise if there

was a high number of regulatory elements affecting the expression of each gene and hence a

greater chance of somatic and meiotically stable genetic variations in these regions altering

gene expression. It is also possible that genetic variation within and near gene regulatory

regions for these genes directly alters the extent of chromatin modifications and thereby gene

expression.

The enriched mitochondrial and lipid catabolism functions associated with genes showing

AI suggest that genetic variants affecting energy use are impacting perirenal adipose tissue

function and possibly more broadly other tissues with strong energy demands e.g. skeletal

muscle and white adipose tissue. Indeed, many of the genes showing AI in brown adipose
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tissue were also expressed in skeletal muscle and both tissues are known to be derived from the

same progenitor cells [35, 36]. Perirenal adipose tissue, a brown adipose tissue depot at birth,

is particularly energy intensive in the neonatal lamb as it protects the new born lamb from

hypothermia by decoupling mitochondrial oxidative phosphorylation from electron transfer

resulting in the dissipation of the mitochondrial proton-motive force and release of heat (non-

shivering thermogenesis) [35, 36, 46]. Although only representing a minor percentage of total

body weight, activated brown adipose tissue has the capacity to produce 300 fold more heat/

weight of tissue than any other tissue [47]. Accentuating the risk of hypothermia in neonatal

lambs is their limited energy reserves and high surface area to volume ratio. Moreover, the

rapid growth rate of lambs is also subject to high energy demands.

Genes showing AI may show tissue specific patterning and hence the importance of the

genes discovered in brown adipose tissue to production traits involving other tissues is unclear

[44]. However, energy intensive production traits such as lamb survival and growth rate may

have strong direct contributions from brown adipose and skeletal muscle tissues. These traits

are likely subject to strong artificial selection in domestic livestock populations due to their

commercial relevance. Hence, genetic variants that impact on these traits may be under selec-

tion in genetically diverse sheep populations. The enriched extracellular matrix terms for the

genes showing AI indicate that genetic variants in genes contributing to the matrix are present

in the population and these may potentially alter cell-cell and cell-matrix interactions. There-

fore the capacity for tissue hypertrophy and remodelling during growth may be affected. This

potential impact is particularly relevant for hypertrophic cellular responses in adipose tissue

and skeletal muscle occurring during rapid postnatal lamb growth.

Many genes showing AI in late gestational fetal brown adipose tissue were positioned

within multiple genomic regions associated with QTL for traits associated with lamb growth,

muscling and internal fat deposition. Lambs retain small quantities of brown adipose tissue in

various anatomical locations that could directly contribute to the internal fat deposition traits

and indirectly other traits through its strong metabolic activities [46, 48]. Moreover, brown

adipose tissue cells and skeletal muscle cells share a common progenitor cell origin [35, 36]

and both have related gene expression programs as demonstrated by functional enrichment

analysis (Hallmark experimental datasets in GSEA). Thus, there may be direct impact of the

discovered AI genes in skeletal muscle as well as brown adipose tissue. There are some limita-

tions associated with the QTL and AI gene intersection analysis as the collective genomic cov-

erage of the investigated QTL was substantial (19.3% of the genome). Hence, finer resolution

of the identified QTL is required to narrow the number of candidate genes showing AI that

may underlie the identified QTL.

Genetic variation in gene regulatory elements is a major contributor to variation in com-

plex traits [49, 50]. More specifically, genetic variation in regulatory elements located distally

of genes and within gene promoters can modulate gene expression [51]. Thus, genetic varia-

tion in gene promoter regulatory regions that alters gene expression may contribute to varia-

tion in complex traits within outbred populations. The genes showing AI were associated with

a number of QTL for a variety of production traits likely impacted by brown adipose tissue

and skeletal muscle deposition and function. There was also enrichment for specific transcrip-

tion factor binding sites in the promoters of genes showing AI, particularly transcription fac-

tors known to impact brown adipose tissue function and energy homeostasis. This result hints

that regulatory regions associated with these transcription factor binding sites may be priori-

ties for future investigations to potentially identify causal genetic variants contributing to gene

expression AI in the brown adipose tissue samples from the investigated sheep population and

more widely their potential contribution to production trait QTL.
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Conclusions

Genetic variation in a population of sheep is responsible for considerable allele specific gene

expression imbalance, which may be associated with energy intensive production traits, such

as neonatal survival and growth, and traits involving strong postnatal tissue remodelling and

cellular hypertrophy e.g. adipose and skeletal muscle deposition. The marker SNPs associated

with AI may therefore have value for DNA marker-assisted selective breeding in the sheep

industry. The identification of the causal cis-acting SNPs, whilst in the vicinity of genes show-

ing AI, requires further investigation. It is possible that some of the causal SNPs are repre-

sented in the SNP markers used to measure AI.
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7. Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoalle-

lic gene expression in mammalian cells. Science. 2014; 343(6167):193–6. https://doi.org/10.1126/

science.1245316 PMID: 24408435

8. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian tran-

scriptomes by RNA-Seq. Nat Methods. 2008; 5(7):621–8. https://doi.org/10.1038/nmeth.1226 PMID:

18516045

9. Stevenson KR, Coolon JD, Wittkopp PJ. Sources of bias in measures of allele-specific expression

derived from RNA-sequence data aligned to a single reference genome. BMC Genomics. 2013;

14:536. https://doi.org/10.1186/1471-2164-14-536 PMID: 23919664

10. Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM. A powerful and flexible statistical framework

for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res. 2011; 21

(10):1728–37. https://doi.org/10.1101/gr.119784.110 PMID: 21873452

11. Serre D, Gurd S, Ge B, Sladek R, Sinnett D, Harmsen E, et al. Differential allelic expression in the

human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating

gene expression. PLoS Genet. 2008; 4(2):e1000006. https://doi.org/10.1371/journal.pgen.1000006

PMID: 18454203

12. Pandey RV, Franssen SU, Futschik A, Schlötterer C. Allelic imbalance metre (Allim), a new tool for

measuring allele-specific gene expression with RNA-seq data. Mol Ecol Resour. 2013; 13(4):740–5.

https://doi.org/10.1111/1755-0998.12110 PMID: 23615333

13. Bell GD, Kane NC, Rieseberg LH, Adams KL. RNA-seq analysis of allele-specific expression, hybrid

effects, and regulatory divergence in hybrids compared with their parents from natural populations.

Genome Biol Evol. 2013; 5(7):1309–23. https://doi.org/10.1093/gbe/evt072 PMID: 23677938

Gene expression allelic imbalance in brown adipose tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0180378 June 30, 2017 20 / 22

https://doi.org/10.1126/science.1222794
https://doi.org/10.1126/science.1222794
http://www.ncbi.nlm.nih.gov/pubmed/22955828
https://doi.org/10.1038/nrg3032
http://www.ncbi.nlm.nih.gov/pubmed/21765458
https://doi.org/10.1101/gr.1055303
http://www.ncbi.nlm.nih.gov/pubmed/12819139
https://doi.org/10.1101/gr.6584707
https://doi.org/10.1101/gr.6584707
http://www.ncbi.nlm.nih.gov/pubmed/18055845
https://doi.org/10.1186/1471-2148-10-116
http://www.ncbi.nlm.nih.gov/pubmed/20429903
http://www.geneimprint.com/
https://doi.org/10.1126/science.1245316
https://doi.org/10.1126/science.1245316
http://www.ncbi.nlm.nih.gov/pubmed/24408435
https://doi.org/10.1038/nmeth.1226
http://www.ncbi.nlm.nih.gov/pubmed/18516045
https://doi.org/10.1186/1471-2164-14-536
http://www.ncbi.nlm.nih.gov/pubmed/23919664
https://doi.org/10.1101/gr.119784.110
http://www.ncbi.nlm.nih.gov/pubmed/21873452
https://doi.org/10.1371/journal.pgen.1000006
http://www.ncbi.nlm.nih.gov/pubmed/18454203
https://doi.org/10.1111/1755-0998.12110
http://www.ncbi.nlm.nih.gov/pubmed/23615333
https://doi.org/10.1093/gbe/evt072
http://www.ncbi.nlm.nih.gov/pubmed/23677938
https://doi.org/10.1371/journal.pone.0180378


14. Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, et al. Effect of read-mapping biases on

detecting allele-specific expression from RNA-sequencing data. Bioinformatics. 2009; 25(24):3207–12.

https://doi.org/10.1093/bioinformatics/btp579 PMID: 19808877

15. Aldermann G, Morgan D, Harvard A, Edwards R, Todd J. Energy allowances and feeding systems for

ruminants. Ministry of Agriculture, Fisheries and Food Technical Bulletin. 1975;33.

16. Byrne K, Vuocolo T, Gondro C, White JD, Cockett NE, Hadfield T, et al. A gene network switch

enhances the oxidative capacity of ovine skeletal muscle during late fetal development. BMC Geno-

mics. 2010; 11:378. https://doi.org/10.1186/1471-2164-11-378 PMID: 20546621

17. ENCODE. Guidelines for experiments. [Available from: https://genome.ucsc.edu/ENCODE/

experiment_guidelines.html].

18. Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, et al. The sheep genome illuminates biology of

the rumen and lipid metabolism. Science. 2014; 344(6188):1168–73. https://doi.org/10.1126/science.

1252806 PMID: 24904168

19. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-

seq aligner. Bioinformatics. 2013; 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635 PMID:

23104886

20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation dis-

covery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011; 43(5):491–8.

https://doi.org/10.1038/ng.806 PMID: 21478889

21. Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, McGrath A, et al. A genome wide survey

of SNP variation reveals the genetic structure of sheep breeds. PLoS One. 2009; 4(3):e4668. https://

doi.org/10.1371/journal.pone.0004668 PMID: 19270757

22. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The Galaxy platform for

accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;

44(W1):W3–W10. https://doi.org/10.1093/nar/gkw343 PMID: 27137889

23. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC

Table Browser data retrieval tool. Nucleic Acids Res. 2004; 32:D493–6. https://doi.org/10.1093/nar/

gkh103 PMID: 14681465

24. Cunningham F, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2015. Nucleic Acids Res.

2015; 43:D662–9. https://doi.org/10.1093/nar/gku1010 PMID: 25352552

25. Consortium G. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue

gene regulation in humans. Science. 2015; 348(6235):648–60. https://doi.org/10.1126/science.

1262110 PMID: 25954001

26. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to mul-

tiple testing. Journal of the Royal Statistical Society Series B, Statistical Methodology. 1995; 57(1):289–

300.

27. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of geno-

mic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010; 26(16):2069–70.

https://doi.org/10.1093/bioinformatics/btq330 PMID: 20562413

28. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for

selection bias. Genome Biol. 2010; 11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14 PMID:

20132535

29. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of

enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009; 10:48. https://doi.org/10.1186/

1471-2105-10-48 PMID: 19192299

30. Huang dW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using

DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44–57. https://doi.org/10.1038/nprot.2008.211

PMID: 19131956

31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment

analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl

Acad Sci U S A. 2005; 102(43):15545–50. https://doi.org/10.1073/pnas.0506580102 PMID: 16199517

32. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-respon-

sive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.

Nat Genet. 2003; 34(3):267–73. https://doi.org/10.1038/ng1180 PMID: 12808457

33. Savova V, Patsenker J, Vigneau S, Gimelbrant AA. dbMAE: the database of autosomal monoallelic

expression. Nucleic Acids Res. 2016; 44(D1):D753–6. https://doi.org/10.1093/nar/gkv1106 PMID:

26503248

34. Nag A, Vigneau S, Savova V, Zwemer LM, Gimelbrant AA. Chromatin Signature Identifies Monoallelic

Gene Expression Across Mammalian Cell Types. G3 (Bethesda). 2015; 5(8):1713–20.

Gene expression allelic imbalance in brown adipose tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0180378 June 30, 2017 21 / 22

https://doi.org/10.1093/bioinformatics/btp579
http://www.ncbi.nlm.nih.gov/pubmed/19808877
https://doi.org/10.1186/1471-2164-11-378
http://www.ncbi.nlm.nih.gov/pubmed/20546621
https://genome.ucsc.edu/ENCODE/experiment_guidelines.html
https://genome.ucsc.edu/ENCODE/experiment_guidelines.html
https://doi.org/10.1126/science.1252806
https://doi.org/10.1126/science.1252806
http://www.ncbi.nlm.nih.gov/pubmed/24904168
https://doi.org/10.1093/bioinformatics/bts635
http://www.ncbi.nlm.nih.gov/pubmed/23104886
https://doi.org/10.1038/ng.806
http://www.ncbi.nlm.nih.gov/pubmed/21478889
https://doi.org/10.1371/journal.pone.0004668
https://doi.org/10.1371/journal.pone.0004668
http://www.ncbi.nlm.nih.gov/pubmed/19270757
https://doi.org/10.1093/nar/gkw343
http://www.ncbi.nlm.nih.gov/pubmed/27137889
https://doi.org/10.1093/nar/gkh103
https://doi.org/10.1093/nar/gkh103
http://www.ncbi.nlm.nih.gov/pubmed/14681465
https://doi.org/10.1093/nar/gku1010
http://www.ncbi.nlm.nih.gov/pubmed/25352552
https://doi.org/10.1126/science.1262110
https://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
https://doi.org/10.1093/bioinformatics/btq330
http://www.ncbi.nlm.nih.gov/pubmed/20562413
https://doi.org/10.1186/gb-2010-11-2-r14
http://www.ncbi.nlm.nih.gov/pubmed/20132535
https://doi.org/10.1186/1471-2105-10-48
https://doi.org/10.1186/1471-2105-10-48
http://www.ncbi.nlm.nih.gov/pubmed/19192299
https://doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
https://doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
https://doi.org/10.1038/ng1180
http://www.ncbi.nlm.nih.gov/pubmed/12808457
https://doi.org/10.1093/nar/gkv1106
http://www.ncbi.nlm.nih.gov/pubmed/26503248
https://doi.org/10.1371/journal.pone.0180378


35. Schulz TJ, Tseng YH. Brown adipose tissue: development, metabolism and beyond. Biochem J. 2013;

453(2):167–78. https://doi.org/10.1042/BJ20130457 PMID: 23805974

36. Yao X, Shan S, Zhang Y, Ying H. Recent progress in the study of brown adipose tissue. Cell Biosci.

2011; 1:35. https://doi.org/10.1186/2045-3701-1-35 PMID: 22035495

37. Hu ZL, Park CA, Reecy JM. Developmental progress and current status of the Animal QTLdb. Nucleic

Acids Res. 2016; 44(D1):D827–33. https://doi.org/10.1093/nar/gkv1233 PMID: 26602686

38. R Development Core Team. R: a language and environment for statistical computing 2011 [Available

from: http://www.R.project.org/].

39. Obenchain V, Lawrence M, Carey V, Gogarten S, Shannon P, Morgan M. VariantAnnotation: a Biocon-

ductor package for exploration and annotation of genetic variants. Bioinformatics. 2014; 30(14):2076–8.

https://doi.org/10.1093/bioinformatics/btu168 PMID: 24681907

40. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of

genetic variation. Nucleic Acids Res. 2001; 29(1):308–11. PMID: 11125122

41. Verdeguer F, Soustek MS, Hatting M, Blättler SM, McDonald D, Barrow JJ, et al. Brown Adipose YY1

Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-

Induced Obesity. Mol Cell Biol. 2015; 36(1):184–96. https://doi.org/10.1128/MCB.00722-15 PMID:

26503783

42. Iizuka K, Wu W, Horikawa Y, Saito M, Takeda J. Feedback looping between ChREBP and PPARα in

the regulation of lipid metabolism in brown adipose tissues. Endocr J. 2013; 60(10):1145–53. PMID:

23831548

43. Asada R, Kanemoto S, Matsuhisa K, Hino K, Cui M, Cui X, et al. IRE1α-XBP1 is a novel branch in the

transcriptional regulation of Ucp1 in brown adipocytes. Sci Rep. 2015; 5:16580. https://doi.org/10.1038/

srep16580 PMID: 26568450

44. Chamberlain AJ, Vander Jagt CJ, Hayes BJ, Khansefid M, Marett LC, Millen CA, et al. Extensive varia-

tion between tissues in allele specific expression in an outbred mammal. BMC Genomics. 2015;

16:993. https://doi.org/10.1186/s12864-015-2174-0 PMID: 26596891

45. Bartolomei MS, Ferguson-Smith AC. Mammalian genomic imprinting. Cold Spring Harb Perspect Biol.

2011; 3(7).

46. Symonds ME, Pope M, Budge H. Adipose tissue development during early life: novel insights into

energy balance from small and large mammals. Proc Nutr Soc. 2012; 71(3):363–70. https://doi.org/10.

1017/S0029665112000584 PMID: 22704581

47. Symonds ME. Brown adipose tissue growth and development. Scientifica (Cairo). 2013; 2013:305763.

48. Symonds ME, Budge H, Perkins AC, Lomax MA. Adipose tissue development—impact of the early life

environment. Prog Biophys Mol Biol. 2011; 106(1):300–6. https://doi.org/10.1016/j.pbiomolbio.2010.11.

008 PMID: 21163289

49. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M. Linking disease associations with regulatory

information in the human genome. Genome Res. 2012; 22(9):1748–59. https://doi.org/10.1101/gr.

136127.111 PMID: 22955986

50. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of

111 reference human epigenomes. Nature. 2015; 518(7539):317–30. https://doi.org/10.1038/

nature14248 PMID: 25693563

51. Romanoski CE, Glass CK, Stunnenberg HG, Wilson L, Almouzni G. Epigenomics: Roadmap for regula-

tion. Nature. 2015; 518(7539):314–6. https://doi.org/10.1038/518314a PMID: 25693562

Gene expression allelic imbalance in brown adipose tissue

PLOS ONE | https://doi.org/10.1371/journal.pone.0180378 June 30, 2017 22 / 22

https://doi.org/10.1042/BJ20130457
http://www.ncbi.nlm.nih.gov/pubmed/23805974
https://doi.org/10.1186/2045-3701-1-35
http://www.ncbi.nlm.nih.gov/pubmed/22035495
https://doi.org/10.1093/nar/gkv1233
http://www.ncbi.nlm.nih.gov/pubmed/26602686
http://www.R.project.org/
https://doi.org/10.1093/bioinformatics/btu168
http://www.ncbi.nlm.nih.gov/pubmed/24681907
http://www.ncbi.nlm.nih.gov/pubmed/11125122
https://doi.org/10.1128/MCB.00722-15
http://www.ncbi.nlm.nih.gov/pubmed/26503783
http://www.ncbi.nlm.nih.gov/pubmed/23831548
https://doi.org/10.1038/srep16580
https://doi.org/10.1038/srep16580
http://www.ncbi.nlm.nih.gov/pubmed/26568450
https://doi.org/10.1186/s12864-015-2174-0
http://www.ncbi.nlm.nih.gov/pubmed/26596891
https://doi.org/10.1017/S0029665112000584
https://doi.org/10.1017/S0029665112000584
http://www.ncbi.nlm.nih.gov/pubmed/22704581
https://doi.org/10.1016/j.pbiomolbio.2010.11.008
https://doi.org/10.1016/j.pbiomolbio.2010.11.008
http://www.ncbi.nlm.nih.gov/pubmed/21163289
https://doi.org/10.1101/gr.136127.111
https://doi.org/10.1101/gr.136127.111
http://www.ncbi.nlm.nih.gov/pubmed/22955986
https://doi.org/10.1038/nature14248
https://doi.org/10.1038/nature14248
http://www.ncbi.nlm.nih.gov/pubmed/25693563
https://doi.org/10.1038/518314a
http://www.ncbi.nlm.nih.gov/pubmed/25693562
https://doi.org/10.1371/journal.pone.0180378

