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Abstract 

Background: 

Exposure to maternal obesity or hyperglycaemia increases the risk of obesity and poor glucose 

tolerance in the offspring. We hypothesized that maternal overnutrition in late pregnancy  would 

result in lower  methylation in the promoter region of the cytosolic form of phosphoenolpyruvate 

carboxykinase (PEPCK-C; PCK1) and higher expression of  hepatic gluconeogenic factors in the 

fetal and postnatal lamb. 

Methods: 

Ewes were fed  100% (n=18) or ~155% (n=17) of energy requirements from 115 days gestation 

and livers collected at ~140 days gestation or 30 days postnatal age. 

Results: 

Maternal overnutrition resulted in a decrease in hepatic expression of the mitochondrial form of 

PEPCK (PEPCK-M; PCK2) but not PEPCK-C or glucose-6-phosphatase (G6PHOS) before and 

after birth. Hepatic expression of peroxisome proliferator-activated receptor gamma co-activator 

1 (PGC-1), peroxisome proliferator-activated receptor α (PPARα), PEPCK-C, G6PHOS and 11β 

hydroxysteroid  dehydrogenase  type  1  (11βHSD1),  but  not  PEPCK-M,  was  higher  in  the 

postnatal compared to the fetal lamb. The level of PCK1 methylation was paradoxically ~2 fold 

higher in the postnatal compared to the fetal liver. 

Conclusions: 

Maternal overnutrition programs a decrease in hepatic PEPCK-M in offspring and as ~50% of 

total hepatic PEPCK is PEPCK-M, the longer term consequences of this decrease may be 

significant. 
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Introduction 

In  pregnancies  complicated  by  maternal  diabetes  mellitus,  gestational  diabetes  or  mildly 

impaired glucose tolerance, offspring are at risk of developing obesity and glucose intolerance 

(1-3). It has therefore been proposed that exposure to maternal and hence fetal hyperglycaemia 

may result in permanent metabolic changes within insulin sensitive tissues and the programming 

of an increased body fat mass, glucose intolerance and insulin resistance in later life (4,5). 

Exposure to maternal overnutrition during the last 30-40 days of gestation in the pregnant ewe 

results in fetal hyperglycaemia and an increase in fasting plasma glucose concentrations and in 

body fat deposition in the postnatal lamb (6). It is not clear, however, whether the metabolic 

consequences of exposure to maternal overnutrition are solely due to the increase in body fat 

mass in the offspring or whether they represent the outcome of programmed changes in insulin 

sensitive tissues, such as the liver, in addition to those changes which occur in adipose tissue to 

increase fat deposition. 

Hepatic peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1), induces fatty 

acid oxidation in the liver by co-activating the transcription factor peroxisome proliferator- 

activated  receptor  α  (PPARα)  and  also  induces  expression  of  the  hepatic  gluconeogenic 

enzymes, phosphoenolpyruvate carboxykinase (PEPCK-C; PCK1) and glucose-6-phosphatase 

(G6PHOS). PEPCK is the rate-limiting enzyme which regulates hepatic gluconeogenesis and it 

has been shown that exposure to chronic hypoxemia, hypoglycemia and glucocorticoids increase 

hepatic PEPCK and gluconeogenesis in the fetal sheep (7-10). There is also an increase in 

hepatic gluconeogenic enzyme activity with increasing gestational age which is dependent on the 

normal pre-partum rise in fetal cortisol (7). 

The enzyme11β hydroxysteroid dehydrogenase type 1 (11βHSD1) catalyses the inter-conversion 

of active cortisol and inert 11-dehydrocortisol (11). 11βHSD1 is highly expressed in liver, where 
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the reaction direction is 11β-reduction, potentially resulting in an increase in intra-hepatic 

cortisol. Suppression of hepatic 11βHSD1 expression and enzyme activity results in a reduced 

expression of hepatic PEPCK, suggesting that 11βHSD1 plays an important role in maintaining 

expression of key glucocorticoid-regulated hepatic transcripts (12). Whilst exposure to excess 

prenatal glucocorticoids or poor maternal nutrition can permanently program abnormal glucose 

metabolism in the offspring (13), it is not known whether maternal overnutrition has an effect on 

expression of either the glucocorticoid receptor (GR) or 11βHSD1 in the liver before or after 

birth. 

PEPCK is present in two isoforms in the liver, cytosolic PEPCK (PEPCK-C: PCK1) and 

mitochondrial PEPCK (PEPCK-M: PCK2). It is well established that mRNA and protein 

abundance of the cytosolic or inducible form of PEPCK are highly correlated and the role of 

PEPCK-C in gluconeogenesis as well as its transcriptional regulation in development has been 

extensively investigated (14-17). While 50% of total PEPCK activity in the livers of most 

mammals,  is comprised of PEPCK-M, there is relatively little  known about the role of PEPCK-

M during development (14,17).  

Epigenetic modification of key genes plays a role in metabolic programming through a range of 

mechanisms including methylation of CpG sites in the promoter regions of key genes including 

PCK1 (17,18). While maternal undernutrition results in a decrease in the level of methylation in 

the PCK1 promoter and a concomitant increase in PEPCK-C expression in the fetal baboon liver 

(19), there have been no studies on the impact of maternal overnutrition on the methylation of 

the PCK1 promoter in the liver of either the fetus or offspring. In this study, we have therefore 

investigated the effects of maternal overnutrition during late gestation in the sheep on the 

expression of PGC-1, PPARα, PEPCK-C, PEPCK-M, G6PHOS, glucose transporter-1 (GLUT-

1), GR and 11βHSD1 and on the level of methylation of the PCK1 promoter at 3 CpG sites (-49, 

-58 and -88 relative to the transcription start site) in the liver of the fetal and postnatal lamb. 
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Results 

Maternal overnutrition and relative fetal and lamb liver weight 

There was no difference in fetal arterial PO2 (Control, 22.8 ±.6 mm Hg; WF, 21.8 ± 0.4 mm Hg), 

PCO2 (Control, 49.9 ± 0.7 mm Hg; WF, 51.0 ± 0.9 mm Hg), or pH (Control, 7.39 ± 0.002; WF, 

7.39 ± 0.005) between the WF and Control groups throughout late gestation. Maternal plasma 

glucose concentrations were 3.5± 0.2 mmoll-1 and 3.0 ± 0.2 mmoll-1in the WF and Control 

groups respectively in late gestation. Mean plasma glucose concentrations were higher in the WF 

group in both fetuses and lambs (Table 2). Plasma insulin concentrations were higher in fetuses, 

but not in lambs, in the WF group compared to Controls (Table 2). There was no impact of 

exposure to maternal overnutrition on the plasma cortisol concentrations in either fetuses or 

lambs (Table 2). 

There was no difference between the relative liver weight in fetuses in the WF and Control 

groups at 139-141 days gestation (Control, 28.0 ± 2.3 g/kg; WF, 26.0 ± 1.4 g/kg). In the 

postnatal lambs, however, relative liver weight was significantly greater in the lambs of the WF 

compared to the Control group at 30 days postnatal age (WF, 21.7 ± 0.59 g/kg; Control, 19.4 ± 

0.57 g/kg, P<0.05). 

Maternal overnutrition and hepatic gene expression in the fetal and postnatal lamb 

Hepatic expression of PEPCK-M mRNA was lower in the fetal and postnatal lambs in the WF 

group compared to Controls (Figure 1a). Whilst there was also a trend (P<0.06) for hepatic 

PEPCK-C mRNA expression to be lower in the fetuses of the WF group, there was no effect of 

exposure to maternal overnutrition on hepatic PEPCK-C mRNA expression in the postnatal lamb 

(Figure 1b). There was no effect of exposure to maternal overnutrition, on the hepatic expression 

of PGC-1, PPARα, G6PHOS, GLUT-1 and 11βHSD1 mRNA either before or after birth 
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(Figures 2-5). There was also no effect of maternal overnutrition on the hepatic expression of 

GR either before or after birth (Fetal: Control, 0.50 ± 0.20, WF, 0.62 ± 0.11; Postnatal, Control, 

0.44 ± 0.02, WF, 0.43 ± 0.02), or G6PHOS mRNA in the postnatal lamb (Control, 0.032 ± 

0.005, WF, 0.041± 0.005).  

The levels of expression of PEPCK-C, PGC-1, PPARα and 11βHSD1 mRNA levels were 

significantly higher, whereas GLUT-1 mRNA expression was lower, in the liver of the postnatal 

lamb compared to the fetus, independent of the level of maternal nutrition (Figures 1b, 2-5). 

G6PHOS mRNA levels were not detectable in the fetus but increased after birth in both the 

Control and WF groups. There was no difference in GR mRNA expression between the fetuses 

and postnatal lambs (Fetal; 0.56 ±0.21, Postnatal 0.43 ±0.02).  

Furthermore, there was no relationship between the hepatic expression of these genes and the 

plasma concentrations of glucose, insulin or cortisol concentrations in either the fetus or 

postnatal lamb.   

Relationships between hepatic PGC-1, PPARα and gluconeogenic gene expression in the 

sheep fetus and postnatal lamb 

There was a direct relationship between the hepatic expression of PGC-1 and PEPCK-M mRNA 

(y= 6.39x - 0.04; r2= 0.34, P =0.016, n=14) in the fetal but not the postnatal cohort.  In contrast, 

there was no relationship between hepatic PGC-1 and PEPCK-C mRNA expression before birth.  

In the postnatal cohort, however, both PEPCK-C mRNA (y= 18.32x + 3.15; r2= 0.60, 

P<0.00001, n=19) and G6PHOS mRNA expression (y= 0.34x + 0.01; r2=0.38, P= 0.004, n=19) 

were directly related to hepatic PGC-1 mRNA expression. 

PCK1 promoter methylation 
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The level of methylation at each of the 3 CpG sites in the PCK1 promoter was relatively low 

(~3-10%) in the late gestation sheep fetus (Table 3). There was no impact of maternal 

overnutrition on the level of methylation at any CpG site in PCK1 in the liver of either the late 

gestation sheep fetus or postnatal lamb (Figure 5).  The level of methylation at each site 

increased significantly, however, after the transition from fetal to postnatal life (Figure 5). 
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Discussion 

Maternal overnutrition and liver growth in the offspring 

Whilst previous studies have shown that exposure to maternal global undernutrition or low 

protein diets result in altered liver growth and morphology (27-32), this study has found that 

there is an impact of maternal overnutrition in late pregnancy on liver size in early postnatal life. 

Interestingly there is also evidence that gestational diabetes is associated with an increase in liver 

size in the human fetus in mid gestation (33). Previous studies in the rodent have shown that 

high  fat  feeding  during  pregnancy  results  in  an  increase  in  liver  weight (34) and  in  liver 

triglyceride content in the offspring (34,35). Similarly, experimental induction of gestational 

diabetes in the rodent results in postnatal obesity and in changes in liver fatty acid composition 

and very-low-density lipoprotein (VLDL) lipid concentrations (36). Exposure to maternal 

overnutrition during late pregnancy results in an increase in subcutaneous body fat mass in the 

postnatal lamb but this occurs in the absence of an increase in circulating free fatty acid 

concentrations (37). Whilst an increase in lipid deposition in the liver appears unlikely to explain 

the increase in liver size in WF lambs, an increase in liver triglyceride content requires further 

investigation. An alternative explanation may be that an increase in fetal substrate supply 

programs an up-regulation of the expression of hepatic growth factors to induce hypertrophy or 

hyperplasia of hepatocytes after the transition to the postnatal nutritional environment.  

Maternal overnutrition and hepatic gluconeogenic gene expression 

An increase in maternal and fetal nutrition resulted in a significant suppression in PEPCK-M 

mRNA expression and a trend towards a decrease in PEPCK-C mRNA expression in the fetal, 

but not postnatal liver. These data highlight that the expression of the mitochondrial and 

cytosolic forms of PEPCK in the fetal liver are each sensitive to an increase in the prevailing 

glucose and/or insulin concentrations in late gestation. Interestingly the decrease in hepatic 
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PEPCK-M, but not PEPCK-C, mRNA expression persisted in postnatal lambs which had been 

exposed to maternal overnutrition in late gestation. One possibility is that the suppression of 

PEPCK-M mRNA expression in the postnatal liver is related to the presence of higher 

circulating glucose concentrations in the lambs of the WF group. There was no difference, 

however, in the level of PEPCK-M expression between the fetal and postnatal liver despite the 

markedly higher plasma glucose concentrations in postnatal compared to fetal life.  Exposure  to  

maternal  overnutrition  in  late gestation may therefore program a persistent suppression of 

PEPCK-M expression in the offspring. PEPCK-M plays a role within the hepatic cell in 

balancing the cytosolic redox state during gluconeogenesis from lactate by synthesizing P-

enolpyruvate directly in the mitochondria. This ensures that only one molecule of NADH is 

produced during the production of glucose from lactate (17). Thus a persistent suppression of 

PEPCK-M may have deleterious consequences for the hepatocyte in later life. Whilst PEPCK-C 

expression  may  be  altered  by  a  number  of  epigenetic  modifications  including  DNA  and 

chromatin methylation (17), nothing is currently known about factors which may result in a 

persistent down regulation of hepatic PEPCK-M expression. 

Transition to postnatal nutrition and gluconeogenic gene expression 

Consistent with previous studies in other tissues, GLUT-1 mRNA expression was higher in the 

fetal than postnatal liver (38). Interestingly, while it has been shown that glucose infusion into 

the pregnant ewe and resultant fetal hyperglycaemia result in a suppression of hepatic GLUT-1 

expression (38), we found no effect of the moderate increase in fetal glucose induced by 

increased maternal nutrition on hepatic GLUT-1 expression either before or after birth. 

There was a different impact of the transition from placental to enteral nutrition on the hepatic 

expression of PEPCK-M and PEPCK-C.  In contrast to PEPCK-M,  the  level  of  PEPCK-C  

expression was  significantly higher  in  the  liver  of  the postnatal lamb compared to the fetus. 
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Similarly, G6PHOS mRNA was expressed in the postnatal lamb liver in contrast to the 

negligible level of hepatic expression of G6PHOS mRNA in fetal life. It is well established that 

exposure to increased glucocorticoids induces hepatic PEPCK-C and gluconeogenesis in the 

fetal sheep (7-10). In the present study, hepatic 11βHSD1 mRNA expression was increased in 

postnatal compared to fetal life. Hepatic PGC-1 expression was also higher in the postnatal lamb 

compared to the fetus and there was the emergence of a relationship between hepatic PGC-1 and 

PEPCK-C mRNA expression in the lamb after birth. Thus in contrast to PEPCK-M, the 

transition from the fetal to the postnatal nutritional environment has a significantly greater 

impact on the regulation of PEPCK-C and G6PHOS than does exposure to maternal 

overnutrition in late gestation. 

Epigenetic changes in the PCK1 promoter after transition to postnatal life 

Intriguingly, in the current study we found that the increase in hepatic PEPCK-C expression 

which occurred after birth was associated with an increase in the level of methylation at 3 CpG 

dinucleotides (-88, -58 and -49) upstream of the transcription start site.  In contrast, it has been 

reported that the PCK1 gene is heavily methylated in the fetal rat liver and relatively under 

methylated in the adult liver (39). Whilst an increase in methylation at the 3 sites in the PCK1 

promoter would be expected to result in a decrease in the binding of transcription factors, 

including the cAMP response element-binding (CREB) protein, it is of note that the 3 CpG sites 

lie outside of the ‘glucocorticoid regulatory unit’ in PCK1. The increase in methylation at these 

3 CpG dinucleotides in the PCK1 promoter region may result in a suppression of ‘constitutive’ 

PCK1 expression to allow for the glucocorticoid induction of PCK1 which is important as the 

fetus makes the transition from continuous placental to intermittent enteral nutrition. 

There was no evidence that the epigenetic state of the PCK1 promoter was altered by exposure 

to either maternal overnutrition or prevailing high circulating glucose concentrations in fetal or 
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postnatal life. There is evidence from studies in the fetal baboon at 0.9 of gestation, that the level 

of methylation of a number of CpG sites (-82, -30, -5, +31, +99, +105) in the PCK1 gene was 

reduced after exposure to maternal undernutrition and that this decrease was associated with an 

increase in hepatic PEPCK-C mRNA expression (19). It appears therefore that maternal 

undernutrition and the transition from fetal to postnatal nutrition may each play different roles in 

determining the epigenetic state of the PCK1 gene. 
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Summary 

Exposure to either a restriction or an oversupply of fetal nutrients can result in long term 

consequences for glucose tolerance and insulin sensitivity in later life (40,41).  We have 

investigated the impact of maternal overnutrition and separately the transition from placental to 

enteral nutrition on the factors which regulate hepatic gluconeogenesis, the expression of the 

cytosolic and mitochondrial isoforms of PEPCK and the epigenetic status of PCK1. We have 

shown that there is a differential impact of exposure to prenatal overnutrition on PEPCK-M and 

PEPCK-C expression in the postnatal liver. Further work is required to understand the 

mechanism by which maternal overnutrition programs a decrease in hepatic PCK2 expression 

and the metabolic consequences of a decrease in PEPCK-M expression in the postnatal animal.  
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Material and Methods 

Animals and Feeding Regimen 

All procedures were approved by the University of Adelaide Animal Ethics Committee. Merino 

ewes were mated and pregnancy confirmed by ultrasound scanning in early gestation. From 90 

days gestation ewes were acclimatized to a Control diet which consisted of 1 kg lucerne chaff 

(85% dry matter, metabolisable energy (ME) content = 8.3 MJ/kg) and 300 g concentrated 

pellets containing: straw, cereal, hay, clover, barley, oats, lupins, almond shells, oat husks and 

limestone (89% dry matter, ME content = 11.6 MJ/kg; Ridley Agriproducts Sheep Nutrition 

Ration, Murray Bridge, South Australia, Australia). The diet was calculated to provide 100% of 

the energy requirements for the maintenance of a pregnant ewe bearing a singleton fetus or twin 

fetuses as appropriate, as specified by the Ministry of Agriculture, Fisheries and Food, UK (20). 

Surgery was then performed on these ewes between 103 and 113days gestation (term = 147 +/- 3 

days) using aseptic techniques. General anaesthesia was induced by intravenous injection of 

sodium thiopentone (1.25 g i.v., Pentothal, Rhone Merieux, Pinkenba, Queensland, Australia) 

and maintained with 2.5 - 4% halothane (Fluothane, ICI, Melbourne, Victoria, Australia) in 

oxygen. Vascular catheters were implanted in a jugular vein and carotid artery of the ewe and 

fetus, and in the amniotic cavity, as previously described (21). During surgery intramuscular 

injections of antibiotics (2 ml Procaine penicillin 250 mg/ml, Dihydrostreptomycin 250 mg/ml, 

procaine hydrochloride 20 mg/ml, Lyppards, Adelaide, South Australia, Australia or 0.1 ml/kg 

Terramycin 100, 100 mg/ml oxytetracycline hydrochloride, Pfizer, New South Wales, Australia) 

were administered to each ewe and fetus. All catheters were filled with heparinised saline and 

the fetal catheters exteriorised through an incision in the ewe’s flank. Before and after surgery 

the ewes were housed in individual pens in animal holding rooms with a 12 h: 12 h light/dark 

cycle. If there was any evidence of a decline in fetal well-being after surgery, as indicated by a 



16 
 

decline in fetal oxygenation, ampicillin (5ml) was administered to that fetus via the amniotic 

catheter for a period of 4 days. 

At 115 days gestation, i.e. prior to the commencement of the rapid fetal growth phase in late 

gestation (22), ewes were randomly assigned to either a Control (n=14) or Well Fed (WF) (n= 

16) group. Between 115 and 124 days gestation, Control ewes were provided with 14.0 ± 0.4 g 

of lucerne chaff and 6.5 ± 0.4 g of pelleted concentrate per kg bodyweight and WF ewes were 

provided with 22.1 ± 0.8 g lucerne chaff and 10.4 ± 0.7 g pelleted concentrate per kg 

bodyweight each day. The feed allowance of all ewes was proportionately increased by 15% 

every 10 days (20). 

Fetal Blood Sampling 

Between 113 and 139 days gestation, maternal (5.0 ml) and fetal (3.0 ml) arterial blood samples 

were collected three times per week prior to feeding at 0900 h. Fetal arterial blood (0.5 ml) was 

collected three times per week for determination of fetal blood gases (PO2, PCO2), oxygen 

saturation, pH, hematocrit, and haemoglobin using an ABL 520 analyser (Radiometer, 

Copenhagen, Denmark). 

Collection of Fetal Tissues 

Between 139 and 141 days gestation, ewes from the Control group (n=6) and the WF group 

(n=8) were killed with sodium pentobarbitone (Virbac Pty Ltd., Peakhurst, New South Wales, 

Australia). Fetal sheep were delivered by hysterectomy, weighed and killed by decapitation. 

Livers were weighed and samples were collected, snap frozen in liquid N2 and stored at –80° C. 

All fetuses were singletons.  

 

Lamb Protocols and Tissue Collection 
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The remaining Control (n=8; 4 carrying twins, 4 singletons) and WF (n=8; 1 carrying twins, 7 

singletons) ewes lambed spontaneously at term. Both twins from each ewe were used in this 

study. After lambing, all ewes were provided with 1 kg lucerne chaff and 500 g pelleted 

concentrate once daily. If all feed was consumed before 1500 h, an additional 1 kg of chaff was 

provided. After birth, each ewe and her lamb(s) were housed in an individual pen in a facility 

maintained at 20-22 º C and a 12h light: 12h dark light cycle. The day of birth was designated as 

day 1. Venous blood samples were collected between 0800 h – 1300 h after a 2 h fast on days 1-

5 and every 3 days thereafter until day 30. All blood samples were centrifuged at 1500 g for 10 

min and plasma stored at -20°C.  

 

At 30 days of age, lambs were killed with an overdose of sodium pentobarbitone (Virbac Pty 

Ltd, Peakhurst, New South Wales, Australia). Livers were dissected out and weighed and 

samples were collected and snap frozen in liquid N2 and stored at –80° C. 

Plasma Glucose 

Plasma glucose concentrations were measured by enzymatic analysis using hexokinase and 

glucose-6-phosphate dehydrogenase to measure the formation of NADH photometrically at 340 

nm (COBAS MIRA automated analysis system, Roche Diagnostica, Basel, Switzerland) (21). 

The sensitivity of the assay was 0.5 mmol/l and the intra- and inter assay coefficients of 

variation were both < 5%. 

Plasma Insulin 

Plasma insulin concentrations were measured using a radioimmunoassay (Rat insulin kit, Linco 

Research, Inc., Missouri, USA), which was validated for use with sheep plasma (6). The 

sensitivity of the assay was 0.01 ng/ml and the intra and inter assay coefficients of variance were 

both <10%. 
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Plasma Cortisol 

Cortisol was extracted from fetal plasma using dichloromethane as previously described (23).  

Fetal cortisol concentrations were then measured using an Orion Diagnostica 

Radioimmunoassay kit (Orion Diagnostica, Turku, Finland) previously validated for fetal sheep 

plasma (24). The inter-assay coefficient of variation was 20% and the intra-assay coefficient of 

variation was < 10%. 

RNA Extraction 

RNA from the dorsal lobe of the liver (≈30mg) was extracted using Trizol reagent (Invitrogen 

Australia Pty Limited, Mount Waverley, Victoria,Australia) and chloroform. RNA was treated 

with 50% ethanol and run through a purification process using the RNeasy Mini Kit (QIAGEN 

Pty Ltd Australia, Doncaster, Victoria, Australia). The quality and concentration of the RNA 

was determined by measuring absorbance at 260 and 280 nm, and RNA integrity was confirmed 

by agarose gel electrophoresis. cDNA was then synthesised using the purified RNA (≈ 5µg), 

Superscript III Reverse Transcriptase (Invitrogen Australia Pty Limited, Mount Waverley, 

Victoria, Australia) and random hexamers. 

Quantitative Real Time Reverse Transcription-PCR (qRT-PCR) 

The relative expression of PGC-1, PPARα, PEPCK-M, PEPCK-C, G6PHOS, GLUT-1, GR and 

11βHSD1 mRNA transcripts were measured by qRT-PCR using the SYBR Green system in an 

ABI prism 7900 Sequence Detection System (PE Applied Biosystems, Foster City, California). 

(25). For each transcript qRT-PCR was performed using specific primers (Table 1). Each 

amplicon was designed to be approximately 200 bp in length, was sequenced to ensure the 

authenticity of the DNA product and qRT-PCR melt curve analysis was performed to 

demonstrate amplicon homogeneity. Controls containing no reverse transcriptase were also used. 
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For the qRT-PCR measurements, the primer concentrations were equivalent for all genes and the 

amplification efficiencies were 0.981-0.999. A constant amount of cDNA equating to 10ng of 

total RNA was used  for  each  qRT-PCR  measurement  and  three  technical  replicates  were  

performed  in duplicate for each gene.  

Each  qRT-PCR reaction (5µl  total  volume) contained: 2.5 µl 2x SYBR Green master mix 

(Applied Biosystems, Foster City, California, USA); 0.25 µl of each primer giving a final 

concentration of 450 µl, 1.0 µl of molecular grade H2O and 1.0 µl of a 1:10 dilution of the stock 

template. The cycling conditions consisted of 40 cycles of 95ºC for 15 seconds and 60ºC for 1 

minute. At the end of each run, a dissociation melt curve was obtained. 

The abundance of each mRNA transcript was measured and its expression relative to that of 

Ribosomal Protein Large Subunit P0 (RPLP0) was calculated using Q-gene qRT-PCR analysis 

software. There were no differences in the expression of the housekeeper gene between the 

Control and Well Fed groups in either the fetal or postnatal cohort. 

Combined Bisulphite Restriction Analysis 

DNA methylation within the PCK1 promoter region was analysed using combined bisulphite 

restriction assay (COBRA) (26). Briefly, approximately 2 µg of DNA from the ventral lobe of 

fetal and lamb liver was subjected to bisulphite conversion (EpiTect; QIAGEN Pty Ltd 

Australia, Doncaster, Victoria, Australia). PCR was then performed on 100 ng of bisulphite-

converted DNA using primers (Forward: 5’ TAAAGGTTTGTTATGGTTGGTTTAG 3’; 

Reverse: 3’ CTAACCTTTAAATTCCAAAAAAA 5’) and conditions that amplified methylated 

and unmethylated templates with no bias. The amplicon contained three CpG sites at -49, -58 

and -88 where +1 denotes the transcription start site. COBRA was performed using restriction 

endonucleases that cleave only those amplicons derived from methylated templates. The PCK1 

amplicon was digested with 20 U of TaqI (Thermo Fisher Scientific, Scoresby, Victoria, 
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Australia), MaeII and DpnII (New England Biolabs, Ipswich, Massachusetts, USA), which 

digests methylated templates at  -49,  -58  and  -88  respectively. The intensity of uncut and cut 

fragments was quantified using the ExperionTM Automated Electrophoresis System (Bio-Rad, 

Hercules, California, USA). The percentage of methylation was estimated by measuring the ratio 

of cut to total PCR product. 

Statistical Analyses 

Data are presented as the mean ± SEM. The fetal cohort comprised 6 Control fetuses (4 males 

and 2 females) and 8 fetuses from WF ewes (3 males and 5 females). The postnatal lamb cohort 

comprised 12 Control lambs (6 males and 6 females) and 9 lambs in the WF group (3 males and 

6 females). There were 14 singleton and no twins in the fetal group and 11 singletons and 10 twins in 

the postnatal lamb group. Using multifactorial ANOVA we found no significant effect (main effect or 

interaction with treatment group) of being a twin or of the sex of the lamb on the expression of any 

hepatic mRNA level and therefore data were combined for subsequent analysis. Two way 

Analysis of Variance (ANOVA) was then used to determine the main effects of maternal 

nutritional treatment (Control vs. WF) and developmental age (fetal vs. postnatal) and their 

interaction on birth weight, liver mass, and hepatic gene expression and the level of PCK1 

methylation. Simple linear regression analyses were used to determine relationships between 

postnatal measures of fat mass, plasma nutrient and hormone concentrations and gluconeogenic 

gene expression. Plasma glucose and insulin and cortisol concentrations across postnatal week 1 

– 4 were averaged for correlation analyses unless stated otherwise. Partial correlation analysis 

was used to control for the effects of maternal intake or mean plasma glucose levels where 

appropriate. A probability of 5% (P<0.05) was taken as the level of significance in all analyses. 

  



21 
 

Acknowledgements: 

The authors acknowledge Anne Jurisevic and Laura O’Carroll for expert assistance with animal 

surgery and maintenance. 

  



22 
 

References: 

1. Buchanan TA, Kjos SL. Gestational diabetes: risk or myth? J Clin Endocrinol Metab 

1999;84:1854-7. 

2. Catalano PM, Thomas A, Huston-Presley L, Amini SB. Phenotype of infants of mothers 

with gestational diabetes. Diabetes Care 2007;30:S156-60. 

3. Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for 

diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res 

1994;26:213-21. 

4. Martin R, Hausman G, Hausman D. Regulation of adipose cell development in utero. 

Proc Soc Exp Biol Med 1998;219:200-10. 

5. Plagemann A, Harder T, Kohlhoff R, Rohde W, Dorner G. Glucose tolerance and insulin 

secretion in children of mothers with pregestational IDDM or gestational diabetes. Diabetologia 

1997:1094-100. 

6. Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC. Increased maternal 

nutrition alters development of the appetite-regulating network in the brain. FASEB J 

2006;20:1257-9. 

7. Fowden AL, Mijovic J, Silver M. The effects of cortisol on hepatic and renal 

gluconeogenic enzyme activities in the sheep fetus during late gestation. J Endocrinol 

1993;137:213-22. 

8. Gentili S, Morrison JL, McMillen IC. Intrauterine growth restriction and differential 

patterns of hepatic growth and expression of IGF1, PCK2, and HSDL1 mRNA in the Sheep 

Fetus in Late Gestation. Biol Reprod 2009;80:1121-7. 

9. Rozance PJ, Limesand SW, Barry JS, et al. Chronic late-gestation hypoglycemia 

upregulates hepatic PEPCK associated with increased PGC1 mRNA and phosphorylated 

CREB in fetal sheep. Am J Physiol Endocrinol Metab 2008;294:E365-70. 



23 
 

10. Warnes DM, Seamark RF, Ballanrd FJ. The appearance of gluconeogenesis at birth in 

sheep. Activation of the pathway associated with blood oxygenation. Biochem J 1977;162:627-

34. 

11. Cooper MS, Stewart PM. 11-Hydroxysteroid Dehydrogenase Type 1 and Its Role in the 

Hypothalamus-Pituitary-Adrenal Axis, Metabolic Syndrome, and Inflammation. J Clin 

Endocrinol Metab 2009;94:4645-54. 

12. Jamieson P, Nyirenda M, Walker B, Chapman K, Seckl, JR. Interactions between 

oestradiol and glucocorticoid regulatory effects on liver-specific glucocorticoid-inducible genes: 

possible evidence for a role of hepatic 11beta-hydroxysteroid dehydrogenase type 1. J 

Endocrinol 1999;160:103-9. 

13. Nyirenda MJ, Lindsay RS, Kenyon CJ, Burchell A, Seckl JR. Glucocorticoid exposure in 

late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and 

glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J Clin 

Invest 1998;101:2174-81. 

14. Hanson RW. Thematic Minireview Series: A perspective on the biology of 

Phosphoenolpyruvate Carboxykinase 55 years after its discovery. J Biol Chem 2009;284:27021-

3. 

15. Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the 

enzyme. Adv Enzymol Relat Areas Mol Biol 1994;69:203-81. 

16. Hanson RW, Reshef L. Regulation of phoshoenolpyruvate carboxykinase (GTP) gene 

expression. Annu Rev Biochem 1997;66:581-611. 

17. Yang J, Kalhan SC, Hanson RW. What is the metabolic role of phosphoenolpyruvate 

carboxykinase? J Biol Chem 2009;284:27025-9. 

18. Yang J, Reshef L, Cassuto H, Aleman G, Hanson RW. Aspects of the Control of 

Phosphoenolpyruvate Carboxykinase Gene Transcription. J Biol Chem 2009;284:27031-5. 



24 
 

19. Nijland MJ, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic 

phosphoemolpyruvate carboxykinase following exposure to moderately reduced nutrient 

availability. J Physiol 2010;588:1349-59. 

20. Alderman GA, Morgan DE, Harvard A, Edwards RE, Todd JR. Energy allowances and 

feeding systems for ruminants. In: Ministry of Agriculture, Fisheries and Food: Technical 

Bulletin 33. London: Her Majesty's Stationery Office; 1975. 

21. Edwards LJ, Symonds ME, Warnes KE, et al. Responses of the fetal pituitary-adrenal 

axis to acute and chronic hypoglycaemia during late gestation in the sheep. Endocrinology 

2001;142:1778-85. 

22. Fowden A. Nutrient requirements for normal fetal growth and metabolism. In: Hanson 

M, Spencer J, Rodeck C, eds. Fetus and Neonate: Physiology and clinical applications. 1 ed. 

Cambridge: Cambridge University Press; 1995:31-56. 

23. Bocking AD, McMillen IC, Harding R, G.D T. Effect of reduced uterine blood flow on 

fetal and maternal cortisol. J Dev Physiol 1986;8:237-45. 

24. Edwards LJ, Coulter CL, Symonds ME, McMillen IC. Prenatal undernutrition, 

glucocorticoids and the programming of adult hypertension. Clin Exp Pharmacol Physiol 

2001;28:938-41. 

25. Heid C, Stevens J, Livak K, William P. Real Time Quantitative PCR. Genome Res 

1996;6:986-44. 

26. Xiong Z, Laird PW. COBRA: A sensitive and quantitative DNA methylation assay. 

Nucleic Acids Res 1997;25:2532-4. 

27. Bollo E, Bassano B, Peracino V, Biolatti B. Effect of emanciation on liver histology of 

alpine chamois during winter. J Wildl Dis 1999;35:770-3. 



25 
 

28. Burns SP, Desai M, Cohen RD, et al. Gluconeogenesis, glucose handling, and structural 

changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and 

lactation. J Clin Invest 1997;100:1768-74. 

29. El Khattabi I, Gregoire F, Remacle C, Reusens B. Isocaloric maternal low-protein diet 

alters IGF-I, IGFBPs, and hepatocyte proliferation in the fetal rat. Am J Physiol Endocrinol 

Metab 2003;285:E991-1000. 

30. Hyatt MA, Gopalakrishnan GS, Bispham J, et al. Maternal nutrient restriction in early 

pregnancy programs hepatic mRNA expression of growth-related genes and liver size in adult 

male sheep. J Endocrinol 2007;192:87-97. 

31. Schwartz J, McMillen IC. Fetal Hypothalamus-Pituitary-Adrenal Axis on the road to 

Partuition. Clinical and Experimental Pharmacology and Physiology 2001;28:108-12. 

32. Ozanne SE, Smith GD, Tikerpae J, Hales CN. Altered regulation of hepatic glucose 

output in the male offspring of protein-malnourished rat dams. Am J Physiol Endocrinol Metab 

1996;270:E559-64. 

33. Mirghani H, Zayed R, Thomas L, Agarwal M. Gestational diabetes mellitus: Fetal liver 

length measurements between 21 and 24 weeks' gestation. J Clin Ultrasound 2007;35:34-7. 

34. Guo F, Jen KLC. High-fat feeding during pregnancy and lactation affects offspring 

metabolism in rats. Physiology & Behavior 1995;57:681-6. 

35. Buckley AJ, Keserü B, Briody J, Thompson M, Ozanne SE, Thompson CH. Altered 

body composition and metabolism in the male offspring of high fat-fed rats. Metabolism 

2005;54:500-7. 

36. Merzouk H, Madani S, Hichami A, Prost J, Belleville J, Khan NA. Age-related changes 

in fatty acids in obese offspring of streptozotocin-induced diabetic rats. Obes Res 2002;10:703-

14. 



26 
 

37. Muhlhausler BS, Duffield JA, McMillen IC. Increased maternal nutrition increases leptin 

expression in perirenal and subcutaneous adipose tissue in the postnatal lamb. Endocrinology 

2007;148:6157-63. 

38. Das UG, Schroeder RE, Hay WW, Jr., Devaskar SU. Time-dependent and tissue-specific 

effects of circulating glucose on fetal ovine glucose transporters. Am J Physiol Regul Integr 

Comp Physiol 1999;276:R809-17. 

39. Benvenisty N, Mencher D, Meyuhas O, Razin A, Reshef L. Sequential changes in DNA 

methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development. 

Proc Natl Acad Sci U S A 1985;82:267-71. 

40. Girard J. Gluconeogenesis in late fetal and early neonatal life. Biol Neonate 

1986;50:237-58. 

41. Hay WW. Fetal and neonatal glucose homeostasis and their relation to the small for 

gestational age infant. Semin Perinatol 1984;8:101-16. 

 

 

  



27 
 

Figure Legends: 

Figure 1. (a) PEPCK-M mRNA expression in fetal and lamb livers in Control (open bars) and 

WF (closed bars) groups. * denotes a significant difference when compared to the Control group 

(P<0.05). (b) PEPCK-C mRNA expression in fetal and lamb livers in Control (open bars) and 

WF (closed bars) groups. ** denotes a significant difference between one month of age when 

compared to 139-141d gestation (P<0.001). † denotes that the level of difference between the 

WF and Control group was at the P= 0.06 level  

 

Figure 2. (a) PPARα mRNA expression in fetal and lamb livers in Control (open bars) and WF 

(closed bars) groups. ** denotes a significant difference between one month of age when 

compared to 139-141d gestation (P<0.01) (b) PGC-1 mRNA expression in fetal and lamb livers 

in Control (open bars) and WF (closed bars) groups ** denotes a significant difference between 

one month of age when compared to 139-141d gestation (P<0.01).  

 

Figure 3. GLUT1 mRNA expression in fetal and lamb livers in Control (open bars) and WF 

(closed bars) groups ** denotes a significant difference between one month of age when 

compared to 139-141d gestation (P<0.001). 

Figure 4. 11βHSD1 mRNA expression in fetal and lamb livers in Control (open 

bars) and WF (closed bars) groups. ** denotes a significant difference between one month of 

age when compared to 139-141d gestation (P<0.01). 

Figure 5. The level of methylation at each of the 3 CpG sites in the PCK1 promoter in the 

Control (open bars) and WF (closed bars) fetal sheep and lambs.** denotes a significant 

difference between one month of age when compared to 139-141d gestation (P<0.01).  


