21 research outputs found

    Comparative Analysis of the RADWQ Report and Academic Literature on the Quality of Water in Nigeria.

    Get PDF
    This paper compares analyses of water quality in Nigeria presented in the academic literature with that reported by the Joint Monitoring Programme (JMP) by the World Health Organisation (WHO) and United Nations International Children’s Emergency Fund (UNICEF) in the Rapid Assessment of Drinking Water Quality (RADWQ) programme. Bibliographic and grey literature databases were used to identify studies of microbial and physicochemical water quality in Nigeria. We screened 521 study abstracts and identified 90 relevant studies based on 11,648 water samples. For each relevant study, we recorded the number of water samples, the location/hydrological areas and the water source that was analysed. The percentage compliance for the academic literature with the WHO guideline for each of these parameters was obtained and compared to the RADWQs result. We then analysed these results with the same method used for the RADWQ report to compare results from both studies. We found little variation in physicochemical results between the two studies, but a large difference between the identified microbial properties. The overall national average compliance with the WHO guideline value for the academic literature is 53.37%, while that for RADWQ project was 73%. These disparities could be attributed to the huge difference in the total number of water samples analysed, the high level of contamination in the water samples and most notably, the non-representativeness of the water samples in the hydrological areas. Keyword: water quality, microbial properties, physicochemical properties, WHO RADW

    Water availability and agricultural demand:An assessment framework using global datasets in a data scarce catchment, Rokel-Seli River, Sierra Leone

    Get PDF
    Study region: The proposed assessment framework is aimed at application in Sub-Saharan Africa, but could also be applied in other hydrologically data scarce regions. The test study site was the Rokel-Seli River catchment, Sierra Leone, West Africa. Study focus: We propose a simple, transferable water assessment framework that allows the use of global climate datasets in the assessment of water availability and crop demand in data scarce catchments. In this study, we apply the assessment framework to the catchment of the Rokel-Seli River in Sierra Leone to investigate the capabilities of global datasets complemented with limited historical data in estimating water resources of a river basin facing rising demands from large scale agricultural water withdrawals. We demonstrate how short term river flow records can be extended using a lumped hydrological model, and then use a crop water demand model to generate irrigation water demands for a large irrigated biofuels scheme abstracting from the river. The results of using several different global datasets to drive the assessment framework are compared and the performance evaluated against observed rain and flow gauge records. New hydrological insights: We find that the hydrological model capably simulates both low and high flows satisfactorily, and that all the input datasets consistently produce similar results for water withdrawal scenarios. The proposed framework is successfully applied to assess the variability of flows available for abstraction against agricultural demand. The assessment framework conclusions are robust despite the different input datasets and calibration scenarios tested, and can be extended to include other global input datasets

    River water temperature demonstrates resistance to long‐term air temperature change

    Get PDF
    Ecosystem health and water quality of rivers are dependent on their temperature. With ongoing human-induced climate change causing increases in air temperature across the globe, it is anticipated the stream temperatures will rise too—in turn increasing the rates of biogeochemical stream processes and potentially threatening the viability and health of aquatic organisms. To understand the relationship between climate change and stream temperature response, the longer the records that can be analysed, the more the robust the analysis for detecting change. In this study, we analyse records from 263 catchments from across the United Kingdom for 45 years from 1974 to 2019 to assess the link between air temperature and stream temperature change. To give the most precise analysis of these long records, Bayesian hierarchical modelling was used and showed that: (i) The Bayesian hierarchical approach was 59% more precise, that is, reduced uncertainty on long-term trends, than using simple linear regression. (ii) The increase in annual average air temperature over 45 years across the United Kingdom showed no significant differences between 22 weather stations and gave a 45-year change of 1.35 ± 0.9°C. (iii) Trends in annual mean stream temperature change varied from −2.3 °C to 2.0 °C over 45 years, with the mean over 263 sites being 0.5 °C over 45 years. (iv) 1% of rivers showed a stream temperature trend significantly greater than the air temperature trend but 3% of sites showed a stream temperature trend significantly lower than zero. (v) 74% of all river sites showed no significant monotonic trend, either positive or negative, in water temperature even after 45 years. The observed declines in stream temperature could be ascribed to the closures of thermoelectric power stations but it is unclear why the stream temperature at some sites has risen faster than air temperature. The study shows that mean river temperature was well buffered against changes in air temperature—a 1°C rise in air temperature giving 0.37°C in mean stream temperature

    Human impact on long-term organic carbon export to rivers

    Get PDF
    Anthropogenic landscape alterations have increased global carbon transported by rivers to oceans since preindustrial times. Few suitable observational data sets exist to distinguish different drivers of carbon increase, given that alterations only reveal their impact on fluvial dissolved organic carbon (DOC) over long time periods. We use the world's longest record of DOC concentrations (130 years) to identify key drivers of DOC change in the Thames basin (UK). We show that 90% of the long-term rise in fluvial DOC is explained by increased urbanization, which released to the river 671 kt C over the entire period. This source of carbon is linked to rising population, due to increased sewage effluent. Soil disturbance from land use change explained shorter-term fluvial responses. The largest land use disturbance was during the Second World War, when almost half the grassland area in the catchment was converted into arable land, which released 45 kt C from soils to the river. Carbon that had built up in soils over decades was released to the river in only a few years. Our work suggests that widespread population growth may have a greater influence on fluvial DOC trends than previously thought

    The problem of underpowered rivers

    Get PDF
    This study has hypothesized that for many rivers the trade‐off between flow accumulation and the decrease in slope along channel length means that stream power increases downstream and, moreover, that given the low slope angles in headwater and low‐order streams, they would have insufficient stream power to erode let alone transport sediment. The study considered the stream power profile, the particle travel distances and the application of the Hjulström curve based on the velocity profile of nine, large UK catchments. The study showed that: Some rivers never showed a maximum in their longitudinal stream power profile, implying that some rivers never develop a deposition zone before they discharge at the tidal limit. Particle travel distances during a bankfull discharge event showed that for some rivers 91% of the upper main channel would not be cleared of sediment. Furthermore, while some rivers could transport a 2 mm particle their entire length in one bankfull event, for another river it would take 89 such events. The Hjulström curve shows that for three of the study rivers the upper 20 km of the river was not capable of eroding a 2 μm particle. The study has shown that for all rivers studied, erosion is focused downstream and deposition upstream. Many UK rivers have a dead zone where, on time scales of the order of centuries, no erosion or transport occurs and erosion only occurs in the lower courses of the channel where discharge rather than slope dominates – we propose these as underpowered rivers

    The stable oxygen isotope ratio of resin extractable phosphate derived from fresh cattle faeces

    Get PDF
    Phosphorus losses from agriculture pose an environmental threat to watercourses. A new approach using the stable oxygen isotope ratio of oxygen in phosphate (δ18OPO4 value) may help elucidate some phosphorus sources and cycling. Accurately determined and isotopically distinct source values are essential for this process. The δ18OPO4 values of animal wastes have, up to now, received little attention. Methods Phosphate (PO4) was extracted from cattle faeces using anion resins and the contribution of microbial PO4 was assessed. The δ18OPO4 value of the extracted PO4 was measured by precipitating silver phosphate and subsequent analysis on a thermal conversion elemental analyser at 1400°C, with the resultant carbon monoxide being mixed with a helium carrier gas passed through a GC column into a mass spectrometer. Faecal water oxygen isotope ratios (δ18OH2O values) were determined on a dual-inlet mass spectrometer through a process of headspace carbon dioxide equilibration with water samples. Results Microbiological results indicated that much of extracted PO4 was not derived directly from the gut fauna lysed during the extraction of PO4 from the faeces. Assuming that the faecal δ18OH2O values represented cattle body water, the predicted pyrophosphatase equilibrium δ18OPO4 (Eδ18OPO4) values ranged between +17.9 and +19.9‰, while using groundwater δ18OH2O values gave a range of +13.1 to +14.0‰. The faecal δ18OPO4 values ranged between +13.2 and +15.3‰. Conclusions The fresh faecal δ18OPO4 values were equivalent to those reported elsewhere for agricultural animal slurry. However, they were different from the Eδ18OPO4 value calculated from the faecal δ18OH2O value. Our results indicate that slurry PO4 is, in the main, derived from animal faeces although an explanation for the observed value range could not be determined

    CAMELS-GB: hydrometeorological time series and landscape attributes for 671 catchments in Great Britain

    Get PDF
    We present the first large-sample catchment hydrology dataset for Great Britain, CAMELS-GB (Catchment Attributes and MEteorology for Large-sample Studies). CAMELS-GB collates river flows, catchment attributes and catchment boundaries from the UK National River Flow Archive together with a suite of new meteorological time series and catchment attributes. These data are provided for 671 catchments that cover a wide range of climatic, hydrological, landscape, and human management characteristics across Great Britain. Daily time series covering 1970–2015 (a period including several hydrological extreme events) are provided for a range of hydro-meteorological variables including rainfall, potential evapotranspiration, temperature, radiation, humidity, and river flow. A comprehensive set of catchment attributes is quantified including topography, climate, hydrology, land cover, soils, and hydrogeology. Importantly, we also derive human management attributes (including attributes summarising abstractions, returns, and reservoir capacity in each catchment), as well as attributes describing the quality of the flow data including the first set of discharge uncertainty estimates (provided at multiple flow quantiles) for Great Britain. CAMELS-GB (Coxon et al., 2020; available at https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9) is intended for the community as a publicly available, easily accessible dataset to use in a wide range of environmental and modelling analyses
    corecore