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Abstract

Ecosystem health and water quality of rivers are dependent on their temperature.

With ongoing human-induced climate change causing increases in air temperature

across the globe, it is anticipated the stream temperatures will rise too—in turn

increasing the rates of biogeochemical stream processes and potentially threatening

the viability and health of aquatic organisms. To understand the relationship between

climate change and stream temperature response, the longer the records that can be

analysed, the more the robust the analysis for detecting change. In this study, we

analyse records from 263 catchments from across the United Kingdom for 45 years

from 1974 to 2019 to assess the link between air temperature and stream tempera-

ture change. To give the most precise analysis of these long records, Bayesian hierar-

chical modelling was used and showed that: (i) The Bayesian hierarchical approach

was 59% more precise, that is, reduced uncertainty on long-term trends, than using

simple linear regression. (ii) The increase in annual average air temperature over

45 years across the United Kingdom showed no significant differences between

22 weather stations and gave a 45-year change of 1.35 ± 0.9�C. (iii) Trends in annual

mean stream temperature change varied from �2.3 �C to 2.0 �C over 45 years, with

the mean over 263 sites being 0.5 �C over 45 years. (iv) 1% of rivers showed a stream

temperature trend significantly greater than the air temperature trend but 3% of sites

showed a stream temperature trend significantly lower than zero. (v) 74% of all river

sites showed no significant monotonic trend, either positive or negative, in water

temperature even after 45 years. The observed declines in stream temperature could

be ascribed to the closures of thermoelectric power stations but it is unclear why the

stream temperature at some sites has risen faster than air temperature. The study

shows that mean river temperature was well buffered against changes in air

temperature—a 1�C rise in air temperature giving 0.37�C in mean stream

temperature.
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1 | INTRODUCTION

Water temperature is a fundamental property of river water (Webb

et al., 2008; Ouellet et al., 2020) and, given human-induced climate

change, there is a concern that in a warming climate river water temper-

ature will increase (Garner et al., 2017; Jackson et al., 2020). Warming

of the river water could be exacerbated or alleviated by climate-induced

changes in the amounts and pathways contributing to the stream flow

(van Vliet et al., 2013; Wanders et al., 2019; Watts et al., 2015). Warmer

river water will have multiple impacts, for example, influence the growth

and performance of a range of aquatic organisms (Ouellet et al., 2020;

Strayer et al., 2004); and increase reaction rates in biogeochemical pro-

cess (e.g., carbon cycling - Comer-Warner et al., 2018). Warming of river

water can lead to both acute and chronic impacts on fish, for example,

Brown trout (Salmo trutta) are at mortality risk at stream temperatures

>24.7�C (Jonsson & Jonsson, 2009) and >33�C is lethal for juvenile

Atlantic salmon (Elliott & Elliott, 1995). Warmer river water has eco-

nomic and social impacts (Hannah et al., 2008; PACEC, 2017). Tourism

related to game fishing of cold water species (trout, salmon and charr)

will be impacted as warmer water reduces the habitat of the important

species (Elliott & Elliott, 2010). Heberling et al. (2015) have shown a

1.5% increase in water treatment cost for every 1�C rise in river temper-

ature exceeding 23�C.

Multiple studies have drawn the link between climate change,

and specifically air temperature, and changing stream water tempera-

ture. Linking air temperature to stream water temperature has long

been a research goal (e.g., Macan, 1958) as such a link provides an

easy way to predict stream temperature as air temperature is often

readily available in comparison to values of parameters required in

more physically-based models. However, link between air tempera-

ture and stream temperature will always be moderated by catchment

properties, land use and hydrology (Garner et al., 2014). Studies of

long-term patterns in river temperature have been limited to individ-

ual sites or a few basins (e.g., Langan et al., 2003; Webb et al., 2003) -

as reviewed in the next paragraph. Arismendi et al. (2012) concluded

that our perspective of climate impacts on stream temperatures had

been clouded by a lack of long-term data.

Webb and Nobilis (1997) considered time series of stream water

temperature (1901–1990) for a catchment in Austria; and they were

able to develop good relationships between monthly air and water tem-

peratures, but did not find a significant trend in either air or water tem-

perature over the 90 years. Basarin et al. (2016) considered a 60-year

record of water temperature from three sites on the River Danube with

an increase in water temperature of up to 0.5�C/year; but this was not

compared to the long-term trend in air temperature at the sites. Jonkers

and Sharkey (2016) considered stream temperature records from 1982

to 2011 from British catchments and found a median water temperature

increase of 0.02�C/year with the highest median water temperature

increase of 0.06�C/year; but this result is not based on actual trend

analysis of water temperature records, but multivariate modelling based

on stream reach properties. Orr et al. (2015) analysed stream tempera-

ture records across England and Wales and found that 8% of the

records showed a significant increase over the time period 1990–2006

with a median increase equivalent to 0.03�C/year. They state that this

river temperature change is comparable to the air temperature change

over the same period, but their study gave no formal comparison. Graf

and Wrzesinski (2020) analysed 35 years of daily water temperature

records from 53 rivers recorded at 94 gauging stations and air tempera-

ture at 43 meteorological stations. All air temperature records showed

significant increases over the period compared to 85% of water temper-

ature records. The global modelling by Wanders et al. (2019) suggested

a global increase in average river water temperature of 0.016�C/year

(quoted as 0.16�C per decade) between 1960 and 2014, although water

temperature decreases downstream of melting glaciers associated with

high mountain ranges (e.g., Himalayas). Johnson et al. (2009) predicted

that summer temperatures in some UK river systems would rise by up

to 4�C by 2080 based on a 1: 1 linear relationship with air temperature

change. For the United States, Kaushal et al. (2010) analysed stream

temperature for 40 major rivers and showed significant, long-term

warming trends for 20 rivers that were significantly correlated with air

temperature. Isaak et al. (2017) studied stream temperature data from

22 700 sites from 2011 from across the Western United States to pre-

dict impact of climate change and specifically air temperature increases.

Hare et al. (2021) considered 1729 sites across the United States with

184 having stream temperature time series of up to 30 years showed

sites with deep groundwater influence showed no stream temperature

increase. In Japan, Ye and Kameyama (2021) found that between 1981

and 2016, 42% of 153 sites were warming faster than air temperature.

Anthropogenic activity and interventions can influence stream

temperature. Relatively warm water can come from a number of

anthropogenic sources, including: thermal power stations

(Worthington et al., 2015); land use and land use change (Laizé

et al., 2017); urban paved area (Croghan et al., 2019; Herb

et al., 2008); urban wastewater (Kinouchi et al., 2007); or dam

impoundment or management (Casado et al., 2013). Therefore, con-

tinuing human development within any catchment (e.g., urbanization)

may alter the influence of increasing air temperature, leading to river

water temperatures being more or less sensitive to ongoing climate

change. So, the aim of this study was to consider how stream water

temperature had changed over periods of decades in relation to air

temperature (sometimes referred to as thermal sensitivity – Kelleher

et al., 2012) change across catchments with diverse land use (a) to

understand the space–time patterns of change; and (b) to infer under-

lying factors controlling river temperature response.

2 | METHODS

To understand the link between stream temperature change and local

air temperature change, the stream temperature records are com-

pared to air temperature records of the same length, and over the

same time period, from sites across Great Britain. Air temperature

records were chosen from across Great Britain so that stream temper-

ature records could be compared to local air temperature change. Dar-

aio et al. (2017) used a Bayesian hierarchical regression to quantify

variation in stream temperature (Tw) and its relationship with air

2 of 14 WORRALL ET AL.
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temperature (Ta) at 11 sites across 1.3 km reach of an urban stream.

Sohrabi et al. (2017) used a Bayesian regression approach to estimate

daily stream water temperature from air temperature and stream

water discharge in 34 sites across the United States. Letcher et al.

(2016) used a Bayesian hierarchical approach to improve models of

stream temperature in a single catchment in United States. Similarly,

we use Bayesian hierarchical general linear modelling to estimate the

annual trend in stream temperature and the Bayesian hierarchical gen-

eral linear modelling approach offers several benefits. First, the Bayes-

ian approach means that all data has value so that in such a large

dataset the precision of the analysis at individual sites will be

increased, that is, the uncertainty on any estimated trend will be smal-

ler, therefore increasing the sensitivity of the analysis to detecting sig-

nificant trends. Second, this approach is robust against the irregular

sampling common in national monitoring; this is because factorial

information (e.g., month of sampling) can be included in the analysis.

By including factorial information such as the month of sampling, this

can account for uneven sampling across a year and so provide more

accurate and precise expected values for sampling sites. However, to

demonstrate the advantage of the Bayesian hierarchical approach sim-

ple linear regression was also applied to the dataset.

2.1 | River temperature data

This study uses data from the Harmonized Monitoring Scheme sites

(HMS - Bellamy & Wilkinson, 2001). There are 56 sites in Scotland

and 214 sites in England and Wales but only 263 sites were ever

monitored for stream temperature (Figure 1 and Table 1), that is, for

seven sites in the HMS no stream temperature data was ever

recorded. The river temperature was measured in the field on spot

samples taken approximately monthly. Monitoring sites were included

in the original HMS monitoring programme if they were at the tidal

limit of rivers with an average annual discharge greater than 2 m3 s�1,

or any tributaries that also had a mean annual discharge above

2 m3 s�1 (Bellamy & Wilkinson, 2001). The catchment areas vary

between 40 and 9885 km2 (Table 1) These discharge criteria means

that there may be several HMS monitoring sites in a single, large

catchment. These criteria provided good spatial coverage of the coast

of England and Wales, but in Scotland many of the west-coast rivers

are too small for inclusion in the HMS. No HMS data were available

from Northern Ireland. The separate HMS monitoring programme

ceased at the end of 2014, but the same monitoring sites were main-

tained by the national agencies in England, Scotland and Wales.

Therefore, stream temperature data could be considered from

263 sites between 1974 and 2018 (45 years).

2.2 | Air temperature data

To compare the trends estimated for stream records to local air tem-

perature change, we used the UK Met Office long-term, onshore

weather station dataset (Figure 2). To be included in this analysis, the

records for the weather had to exist for the period 1974–2019 and

only sites at lower altitudes were used (<200 m above sea level).

Lower-altitude sites were used because the majority of HMS sites

were below this altitude and lapse rates across terrain may alter with

ongoing climate change. These data from UK Met Office long-term,
F IGURE 1 The location of monitoring sites that were used in this
study.

TABLE 1 Range of properties of the
catchments considered in this study.

Catchment property Range Catchment property Range (%)

Area (km2) 40–9885 Mineral soil cover 0–100

(mm) 426–588 Organo-mineral soil cover 0–100

Annual rainfall (mm) 561–2606 Organic soil cover 0–100

Baseflow index 0.3–0.9 Arable land cover 0–70

Urban land cover 0–78

Grass land cover 0–36

WORRALL ET AL. 3 of 14
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onshore weather station dataset are reported as mean monthly maxi-

mum (Tmax ) and mean monthly minimum temperature (Tmin ) and so

monthly average temperature was considered where monthly average

temperature was
Tmax�Tminð Þ

2 . The long-term station dataset were ana-

lysed in exactly the same way as the stream temperature data, that is,

using a Bayesian hierarchical approach as described below.

2.3 | Bayesian hierarchical generalized linear
modelling

The same approach was used for air temperature as for river tempera-

ture. The approach was based upon Bayesian hierarchical general lin-

ear modelling. The preferred model was fitted to these data:

E Tð Þxt ¼N μxt,
1
σ2

� �
ð1Þ

μxt ¼ αxtþβxt Site,Monthð ÞΔ Year½ �xt
� � ð2Þ

Δ Year½ �xt ¼ Year½ �xt� Year½ � ð3Þ

where, E(T)xt, is the expected value of the stream, or air, temperature

for site x at time t (�C); Site, a factor representing the different moni-

toring sites for which data were available and so had 263 levels one

for each site within the dataset; Month is a factor representing the

calendar months of sampling and hence there are 12 levels in this fac-

tor; Year is the year of the sampling, but taken as a covariate and not

as a factor. In this way, βxt were calculated for each monitoring site,

for each month, across the record and represents the trend in the

stream temperature across the period for a particular site and month.

Note that year was given as the difference from the mean of all the

data and in this way αxt is not the y-intercept, that is, the value of

T (be that stream or air temperature) at year 0, rather αxt is the

expected value of T at site x in 1996, that is, the middle year of the

record. The approach of expressing year as the difference from the

global mean value is to make estimation of α more precise as α now

sits in the middle of the observations rather than at one extreme

(year = 0) as would be the case if α was the y-intercept. The model in

Equations (1)–(3) is henceforward referred to as the preferred model

as it included both Site and Month factors. Other models using only

one or other of these two factors were fitted as a means of testing

model fit.

Markov Chain Monte Carlo (MCMC) simulation was used for the

Bayesian estimation using Jags code called from R using the R2Jags

library (R and JAGS code and example code are included in supple-

mentary material, S1). An MCMC chain of length 10 000 iterations

after a 2000 burn was used with samples saved every 10 cycles and

with 3 chains.

For all models fitted in this study for both river and air tempera-

ture and for any combination of available factors, the prior distribution

for values of β were set as normal distributions with a mean of zero so

F IGURE 2 The onshore weather
stations used in the study and their
annual average temperature
(1974–2019).

4 of 14 WORRALL ET AL.
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that both positive and negative trends over time were equally

favoured at the outset. The prior distributions for the values of α were

also set as a normal distribution but with the mean set to be the mean

of all the dataset and a standard deviation chosen to make negative

values unlikely. The choice of such a distribution is justified because if

values of β are small then α is the prediction of a particular monitoring

site's expected value and thus should approximate the expected value

of the distribution of the data as a whole. A half-t distribution was

used for the prior distributions of the standard deviations for all terms

as half-t distributions mean that a negative value of the standard devi-

ation cannot occur. The size of the dataset means that the assump-

tions about the magnitude of the prior will become important.

A number of approaches were used to test the fit of the models,

including the preferred model - Equations (1)–(3). First, adequacy of

the MCMC process was assessed using bR, the convergence statistic,

and values 1 <�bR<1.1 were considered acceptable. IfbR>1.1 then the

burn in process and number of iterations were increased to 20000

although this did not prove necessary in this case. Second, that for

any factor, the 95% credible interval does not include zero, going for-

ward this is referred to as being a 95% probability of being signifi-

cantly different from zero. Third, that when a factor, interaction, or

covariate is included, this caused total model deviance to decrease –

deviance is a goodness of fit measure and is a generalization of the

idea of using the sum of squares of residuals in ordinary least squares.

This third criteria was tested by fitting the preferred model

(Equations 1–3) with the three possible combinations of the two fac-

tors included, that is, month only, Site only and Site and Month.

Fourth, when an additional factor, interaction or covariate is included,

there is a resulting decrease in the deviance information criterion

(DIC). Because inclusion of additional factors, covariates or interac-

tions will increase the degrees of freedom of any fitted model; such

inclusion would lead to a decrease in the total deviance of any partic-

ular model, and hence the need for another measure rather than sim-

ply total deviance. The DIC accounts for the trade-off between the

inclusion of more parameters against the additional fit of the model

and penalizes for additional parameters relative to the fit of a particu-

lar model – DIC is the general case of Aikake Information Criterion. As

for the third criteria, this fourth criteria was assessed by fitting models

with the separate factors (site and month) in comparison to the model

including both the Site and Month factors. Fifthly, the effective num-

ber of parameters (pD) was monitored: it would be expected that as a

factor or covariate was added to a model, then the number of effec-

tive parameters would likewise increase. If pD did not increase with

inclusion of a factor or covariate, then that parameter is having no

effect on a model and can be removed. Furthermore, pD should be

close to the ideal case if all parameters are contributing, and so the

calculated pD can be expressed as a percentage of that maximum

possible—this value can never be greater than 100%. Finally, the fit of

any model was judged using a posterior prediction check, that is, the

output of the preferred model was plotted against the observed

values and the fitted line between these two examined—it would be

expected that a good fit model would give a 1:1 line between

observed and posterior predicted values. In addition, the underlying

assumption of the nature of the likelihood function was tested. The

approach of this study assumes that the residuals of the models will

be independent in time and so the residuals from the preferred model

were tested for their normality and homoscedasticity. Normality was

tested using the Anderson-Darling test (Anderson & Darling, 1952);

the presence of homoscedasticity or heteroscedasticity was tested by

plotting the residuals against the fitted values and by use of the

Breusch-Pagan test (Breusch & Pagan, 1979); and tested for autocor-

relation within the residuals using the Durbin-Watson statistics

(Durbin & Watson, 1950).

To quantify the benefit of using a Bayesian hierarchical approach

two other approaches to the estimation of trend at the river monitor-

ing sites were used. First, a non-Bayesian hierarchical model was

fitted to the data using a linear mixed effects model. The linear mixed

effects model was fitted to the data using a maximum likelihood

method and the lme4 library in R and considering the Site and Month

as fixed factors and Year as the random factor. In this way,

Equation (2) is being fitted to the whole dataset, just as in the Bayes-

ian approach, but without the advantage of prior knowledge. Second,

a linear regression was fitted, separately, to each monitored site. Lin-

ear regression, applied individually and separately at each site is the

most commonly used approach for estimating river temperature

trends (e.g., Kaushal et al., 2010) and so a linear regression was

applied separately to each site. The model fitted to each site was

where the stream temperature for year is:

Txt ¼ αxþβxΔYearð Þ ð4Þ

Terms are as described above and for comparison with the Bayes-

ian approach ΔYear was used. When simple linear regression was

used then least squares fitting was used with the fit of the model

being assessed by the significance of the βx. Note that in Equation (4)

there is no allowance for the seasonal cycle, that is, month has not

included as a fixed factor nor transformed to be included as a continu-

ous variable. The results from the Bayesian, linear mixed effects and

simple linear regression were compared by considering the slope esti-

mates (i.e., the estimated in stream temperature between the two

methods) and the 95% confidence interval on the slope estimates for

each site.

2.4 | Comparative data and analysis

To give context to the UK stream temperature data, the Environment

Agency databases were examined to give the distribution of tempera-

ture for groundwater, lake water and sewage treatment discharge for

all the sites the Environment Agency monitored across England. There

was only one measurement of rainwater temperature within the Envi-

ronment Agency database and so it was not included.

To understand the reason for changes in the trend between the

study catchments, the slope estimates (β) were compared to the prop-

erties of the catchments (Table 1). The land use for each 1 km2 of

Great Britain (i.e., the UK minus Northern Ireland) was classified into:

WORRALL ET AL. 5 of 14
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arable, grass and urban from the June Agricultural Census for 2004

(DEFRA, 2005). The dominant soil-type of each 1 km2 grid square in

Great Britain was classified by this study into mineral, organo-mineral

and organic soils based upon the classification system of Hodgson

(1997), and used nationally-available data (Lilly et al., 2009; Smith

et al., 2007). Note that, by this definition, peat soils are a subset of

organic soils. The catchment area to each monitoring point was calcu-

lated from the CEH Wallingford digital terrain model which has a

50 m grid interval and a 0.1 m altitude interval (Morris &

Flavin, 1994). The soil and land-use characteristics for each 1 km2

were summed across each catchment to the monitoring points with

available stream temperature information. For each of the catch-

ments, for which the study could calculate a stream temperature

trend, the following hydrological characteristics were used: the base

flow index, the average actual evaporation, the average annual total

river discharge and the average annual rainfall. The hydrological char-

acteristics for each catchment were available from the National River

Flow Archive (www.ceh.ac.uk/data/nrfa/).

The measure of the stream temperature trend was compared to

the catchment properties in two ways. First, multiple linear regression

was performed with both explanatory variables and the response vari-

able untransformed and then log-transformed. Normality of trans-

formed and untransformed variables was tested using the Anderson-

Darling test (Anderson & Darling, 1952). Variables were only included

in the model if they were statistically significant (probability of differ-

ence from zero at p < 0.05). The second approach was to use logistic

regression. Logistic regression is an ideal technique for understanding

the difference between binary outcomes. The slope estimated (βBayes)

for each of the study site was classified into binary groups for:

(i) βBayes greater or less than zero; (ii) βBayes greater or less than the air

temperature change; and (iii) βBayes significantly greater or less than

zero. Logistic regression was then used for predicting a binary out-

come (e.g., slope greater or less than zero) from continuous explana-

tory variables (e.g., proportion of organic soil in a catchment)—the

prediction is the probability of being in one of the two groups. This

regression method does not use a least squares fitting method as used

by multiple linear regression, but rather uses maximum likelihood esti-

mation. Logistic regression allows the significance of parameters

included in the model to be assessed, thus aiding the mechanistic

interpretation of the model. The goodness of fit of any logistic regres-

sion model was tested as being the proportion of correct classification

based upon a 50% probability of a slope greater than zero.

3 | RESULTS

Between 1974 and 2019, there were 175 834 spot measurements

of river temperature from 263 sites. The arithmetic annual mean was

11.0�C with a 95th percentile range of 2.5–20.3�C. The least sam-

pled site was the River Teign at Clifford (13 measurements) and the

most sampled was the River Wensum at Sweet Brier Road Bridge

(1714 measurements). The warmest site was the River Lee

(Carpenters Road) at an arithmetic mean of 13.8�C and the coldest

was River Findhorn (A96 road bridge) with an arithmetic mean of

8.1�C. The coldest year was 1986 with an average 10.1�C and the

warmest year was 2014 with an average of 11.8�C. The most sam-

pled year was 1977 (6451 samples) and the least sampled year was

2013 (1007 samples).

The comparative data for freshwater compartments and air tem-

perature are given in Table 2. The visual inspection of the comparative

data show that, without being able to make direct comparisons for

influences on individual rivers or at individual sites, it would appear that

river water temperatures are increased by presence of lakes, sewage

and wastewater discharges, trade effluents and power station dis-

charges. It should be noted that this is a study about trend and not a

study of the absolute value of stream temperature at the study sites.

Thus it is not so much the actual temperature of sources that is critical

in this study so much as the changes in the temperature of these water

sources that may be key to driving changes in stream temperature.

3.1 | Air temperature trends

The model fitted had a deviance = 135 895, DIC = 135 952 and a

pD = 43.5 giving an efficiency of 99%; a model at 100% efficiency

would mean that all terms in the model were contributing, in this case

it would be that the intercept and slope for each onshore station is

contributing.

TABLE 2 Summary of the temperature for comparative freshwater compartments.

Type Expected value 95% interval N Source

Groundwater 11.2 6.3–17.6 11 945 Environment Agency

Riverwater 11.0 2.5–20.3 175 834 This study

Lakewater 12.3 3.0–22.5 11 808 Environment Agency

Air 9.9 2.2–18.1 12 074 UK Met Office

Final sewage effluent 13.3 5.9–20.6 317 694 Environment Agency

Trade effluent 14.4 4.5–29.4 46 224 Environment Agency

Thermoelectric power station dischargea 16.0 5.7–23.2 97 Environment Agency

aThese data are only for coal-fired power stations which discharge to rivers. Data for power stations of other types or discharging beyond the tidal limit

were not included. The data are from four power stations in four different rivers.
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The slopes for the weather stations were not significantly differ-

ent from each other (Figure S1) with a mean 45-year slope of 1.35

± 0.9�C (0.03 ± 0.01�C year), the greatest increase was for Whitby

(1.37�C over 45 years) and the smallest was for Chivenor (1.33�C over

the 45 years). This result only refers to the trend in the average

monthly air temperature at the chosen weather stations; the actual

average monthly air temperatures at these weather stations do differ

significantly and the coolest average temperatures are in northern

Britain and warmest are in southern Britain (Figure 2).

When separate linear regressions were considered for each of the

weather stations, a mean 45-year slope was 1.30 ± 2.8�C (0.03

± 0.03�C/year), that is, implying the same results as for the Bayesian

analysis, but the uncertainty was approximately three times greater

for the linear analysis. From the linear regression analysis, as for the

Bayesian hierarchical modelling, there was no significant differences

between onshore stations. However, for 12 out of the 22 stations

considered, the trend from the linear regression analysis was not sig-

nificantly different from zero, that is, the Bayesian hierarchical

method provided more precise results. Both the Bayesian and the lin-

ear regression analysis shows that, with respect to air temperature

trends, we did not need to compare trends in stream records with a

local air temperature trend and need only compare the stream tem-

perature records' mean 45-year slope of 1.35 ± 0.9�C (0.03 ± 0.01�C/

year). If we were compare weekly or daily values than more local com-

parison might be needed.

3.2 | Stream temperature trends

The comparison of the fitted models is given in Table 3. A model using

only the Site factor was the most efficient showing that 91% of sites

were significantly different and contributed to the model fit. The

model with only the Month factor showed that most months made a

significant contribution to the model outcome and was better a fitting

the data than using only the Site factor. The preferred model with

both factors had a deviance = 106 893, DIC = 107 684 and a

pD = 805 giving an efficiency 11% efficiency which would mean that

many of the sites are not showing significant trends with time or there

are months at sites which make no significant difference to the pre-

diction of the result The Anderson-Darling test showed that the resid-

uals of the site + month model were not significantly different from

normally distributed (P < 0.00). The Breusch-Pagan test showed that

residuals of the Site + Month model were homoscedastic at P < 0.00,

and the Durbin-Watson statistic was used for autocorrelation in the

residuals. Therefore, the Site + Month model was sufficient to meet

the assumptions of the likelihood function and the Bayesian hierarchi-

cal model has removed sufficient temporal structure in the dataset.

The fit of Equations (1)–(3) generated 12 estimates of β for each

site, a slope estimate for each month at each site, these estimates

were summarized to give a single value of β for each site. The esti-

mated 45-year trends varied from �2.3 ± 1.1�C to 2.0 ± 1.4�C, with

the mean of the 263 sites being 0.5 ± 1.1�C and the distribution of

the trends at all 263 sites is shown in Figure 3. Only two sites, out of

all 263, had slopes greater than the 95% confidence interval of the

UK air temperature change, that is, greater than 2.25�C

(1.35 + 0.9�C). A total of 22 sites had a 45-year change greater than

the mean air temperature change, that is, greater than 1.35�C over

45 years. Of the 263 sites in the study, a total of 62 sites had a posi-

tive increase in stream over the 45 years which was significantly

greater than zero at a 95% confidence limit. For a further 171 sites

the 45-year stream temperature change was not significantly greater

than zero even the mean estimate of the 45 year stream temperature

change was greater than zero. In total, 233 sites have a 45-year

stream temperature increase greater than zero. The remaining 30 sites

had a 45-year stream temperature change that was less than zero,

that is, have a long-term decrease in temperature. Of these 30 sites

with a stream temperature decrease, six sites had a change signifi-

cantly lower than zero. Or to state the results another way, out of

263 sites considered, 203 showed no significant increase in annual

average stream temperature over a 45 year period while six sites

showed a significant decrease in annual average stream temperature

over a 45 year period.

In comparison, the linear mixed effect model, a significant trend

was found at 75 of the 263 sites with the 45-year stream temperature

TABLE 3 Fitting properties of the model combinations applied.
The pD is expressed as both its absolute value and the % of that
which could expected if all new parameters included in the model
were effective.

Factors pD (% expected) DIC Deviance

Site 479 (91) 1 053 900 1 053 421

Month 25.2 (70) 816 659 816 664

Site + Month 805 (11) 107 684 106 893

F IGURE 3 Distribution of the mean slope estimates for each of
the HMS sites. The comparison to both no change (βBayes = 0) and to
the change in UK air temperature (95% confidence interval).
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changes varying from �0.42 to 0.47. Of the 263 sites in this study,

75 showed significant slope at 95% probability, with the significant

slopes varying 0.10–0.47�C.

For the linear regression approach slope estimates varied from a

45-year stream temperature change of 7.9 to �18.9�C (0.18 to

�0.42�C/year), that is, a physical impossible range, and only 153 out

of 263 sites showed a significant slope at the 95% probability, with

the significant slopes varying 0.03–2.2�C over 45 years (0.0007–

0.05�C/year).

Comparing the slope estimates between the Bayesian and linear

regression methods shows that there was a significant relationship

between the slope estimates based upon the two estimates (Figure 4).

βBayes ¼0:47βLRþ0:25n¼263, r2 ¼0:82 ð5Þ

0:02ð Þ 0:02ð Þ

where, βBayes = 45-year slope estimate based upon the Bayesian hier-

archical approach; and βLR = 45-year slope estimate based upon linear

regression. Values in brackets below the equation are the standard

errors of the coefficient and the constant term. Equation (5) shows

that slope estimates from the Bayesian are on average 48% lower

than estimates from linear regression. For a value βLR >0.47 the value

of βBayes < βLR, that is, the Bayesian hierarchical method produces

lower values for the larger slope values predicted by the linear regres-

sion approach. Conversely, for a value βLR <0.47 the value of

βBayes > βLR and so the Bayesian hierarchical approach produced nega-

tive values of slope.

Comparing the error on slope estimates between the Bayesian

and linear regression methods shows that there was a significant rela-

tionship between the slope estimates based upon the two estimates

(Figure 5).

eBayes ¼0:41eLRþ0:43n¼263, r2 ¼0:45 ð6Þ

0:02ð Þ 0:02ð Þ

where, eBayes = 95th confidence interval based upon the Bayesian

hierarchical approach; and eLR = 95th confidence interval based upon

linear regression.

On average, the confidence interval was 59% smaller for the

Bayesian estimate than the linear regression approach. For five sites,

the confidence interval of the linear regression was smaller than that

for the same sites under the Bayesian hierarchical approach and in

Figure 4 that these are relatively close to the 1:1 line which represents

an upper bound to the plot with the majority of the sites plotting

below this line. Simple linear regression would be more precise than

non-parametric approaches such as the Sen slope estimator

(Sen, 1968).

The spatial distribution of the trends across Great Britain shows

that, although it was difficult to visually discern a pattern amongst

sites with positive trends, the six sites with negative trends are clus-

tered in two locations (Figure 6a,b). In the eastern cluster, it is possible

to associate the sites that have shown significant declines with ther-

moelectric power stations. The largest decline was observed for the

River Aire at Beal weir (British National Grid SE534255); this monitor-

ing point is 6 km downstream of the Ferrybridge power station that

by 1981 was producing 1600 GWh of electricity from burning coal.

Similarly, there is also a significant decline in stream temperature at

the other monitoring site on the River Aire (Fleet weir - SE381285)

and is again within 6 km of the former Skelton Grange thermal power

station that in 1981 was producing 1790 GWh of electricity but was

decommissioned by 1994. The second largest decline in stream tem-

perature was observed for the River Calder (Methley, SE409258)

which is downstream of the Wakefield power station that in 1981

F IGURE 4 Comparison of slope estimates between the Bayesian
hierarchical and linear regression methods. The two methods are
compared to the 1:1 line and the best-fit linear regression.

F IGURE 5 The comparison of the confidence interval on the
slope estimation between the two methods. The two methods are
compared to the 1:1 line and the best-fit linear regression.
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was a 640 GWh power station but was decommissioned in 1993. For-

mer thermal power stations can be associated with the two other

monitoring sites where significant declines in stream temperature

were observed on the River Trent and Don – although in none of

these cases was a step change in the river temperature record visible

(an example is given in Figure 7). The exception is the third largest

decline which for the River Weaver at Frodsham (SJ530785) where

there is no thermal power station upstream of it and other drivers of

F IGURE 6 The distribution of the slopes
(βBayes) across all the study sites.

F IGURE 7 The Trent at Dunham, one of the sites with a significant decline. (_) is the observed data; ( ) is the fitted data; and ( ) is the annual
average river temperature.
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change are not known. For the River Trent, there is contrasting behav-

iour with a significant decline at the most downstream site, although

the decline is not significantly different from zero. However, the most

upstream site on the River Trent shows an increase in stream temper-

ature which, although significantly greater than zero, was less than

the increase in air temperature. Although, in this study we were able

to examine trends versus catchment properties, there is not the level

of detailed land use change records available to test trends against

changing properties of the study catchments.

Two sites showed a positive trend that was significantly greater

than the change in the air temperature, but it is not clear what could

have been the cause. The two sites are in quite distinct parts of the

United Kingdom with one in a predominantly rural catchment of south

west Scotland (River Nith - NX973765) and the other in a suburban

catchment (River Stour - SO814709), example is shown in Figure 8.

Comparing the estimated trends with catchment properties using

multiple regression showed the best-fit line to be:

βbayes ¼2:2þ0:00026Area�0:003EAct�0:0003Org�0:0022Urban

r2�0:13, n¼235

ð0:7Þ ð0:00006Þ ð0:001Þ ð0:0002Þ ð0:0005Þ
ð7Þ

where: Area = catchment area (km2); EAct = annual actual evaporation

(mm); Org = area of organic soils in the catchment (km2);

Urban = urban area of the catchment (km2). The values in the

brackets below the equation represent the standard errors in the

constant and coefficient terms. Equation (7) suggests a weak rela-

tionship implying that increases in stream temperature were more

likely in larger catchments but lower in catchments with a higher

proportion of organic soils and urban land use. Kelleher et al. (2012)

has shown that controls on stream temperature do change signifi-

cant with scale.

Of the three classifications used only one, classification based on

βBayes >0, gave a significant model:

ln
θ

1�θ

� �
¼2:13þ0:003Arable�0:007Urban

ð0:2Þ ð0:002Þ ð0:002Þ
ð8Þ

where terms are as defined above and values in brackets below the

equation are the standard errors in the constants and coefficients.

Equation (8) confirms the association between cooling trends and

urbanized catchments where thermoelectric power stations have

closed, but there is also a weak, but significant association with warm-

ing trends being in arable catchments. The data available to this study

could not be used to consider land use change and urbanization, as

opposed to just urban area – urbanization has been linked to increas-

ing stream temperature (e.g., Ye & Kameyama, 2021).

4 | DISCUSSION

This study has found that the UK rivers are not warming faster than

the local air temperature. Of the 263 sites considered, only 2 had a

trend significantly greater than air temperature change. Alternatively,

60 further sites had a positive stream temperature trend, although

increasing, was lower than the air temperature change and 195 sites

F IGURE 8 The Stour at Stourport, one of the sites with an increase significantly greater than air temperature. (_) is the observed data; ( ) is
the fitted data; and ( ) is the annual average river temperature.
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had a stream temperature trend not significantly different from zero.

The question is then: why have UK stream temperatures not risen as

fast as air temperature? First, there were identifiable events that

caused significant declines in stream temperature. There were six sites

that became significantly cooler over the 45-year study period and

these could be identified with the closure of thermoelectric power

stations. Given the decline of the manufacturing sector in the

United Kingdom and the switching away from coal as a source for

power generation, then there will have been other power stations, or

industrial sources of warm water that have closed over the period of

the study. However, what is noticeable is that the closure of the

power stations, or other industrial sources of warm water, are one-off

events but even over a 45-year history, the closure of a power station

was of sufficient impact that even ongoing rising air temperature was

not sufficient to mask the impact of that plant closure. However, each

plant can only close once and so the impact with the closure of the

thermoelectric power plants would be expected to have diminishing

effect with ongoing climate change. Furthermore, such one of clo-

sures of hot water sources would be expected to lead to step changes

in the stream temperature, but this was not observed in this study.

Second, these are large enough catchments that change is distributed

in time and space so that a change in water temperature in one part

of the catchment may be offset a lack of change in other part of the

catchment. Garner et al. (2014) has suggested that larger catchments

are better buffered against change than smaller catchments unless the

latter are groundwater dominated. Such an explanation could suggest

that smaller values of βBayes would be in the larger catchments; no

such relationship was found. Third, as noted by van Vliet et al. (2013),

changes in climate might lead to changes in flow paths and sources of

water to the streams. If, for example, changes in rainfall or evapora-

tion lead to a decreased proportion of groundwater in river flow, then

the annual average stream temperature might decline (Watts

et al., 2015). Fourth, this study has only considered the annual aver-

age stream temperature and not other components of the stream

temperature time series (i.e., not the regime or different temperature

metrics). The annual average may mask changes that might have been

apparent in some other component of the time series, for example,

assessing changes in the maximum stream temperature. However, in

this study the annual stream temperature trend at river monitoring

sites was compared to annual air temperature trend at a range of loca-

tions across the UK, and not to some other component of the air tem-

perature time series and catchment properties—future work could

target the detail of change over the annual cycle.

Changing river discharge and thus altered in-stream residence

time could lead to changing thermal regime and potentially the buffer-

ing being exhausted. Huntington (2006) has proposed that climate

change would bring about an intensification of the water cycle that

would lead to increased average river flows and reduced in-stream

residence times. Marsh and Dixon (2012) showed that outflows

increased from the United Kingdom for the period 1961–2011,

although it was only statistically significant in Scotland. Hannaford

and Marsh (2006) for two study periods (1963–2002 and 1973–

2002) found there were increases in western and northern Britain

(especially Scotland), in contrast to southern and eastern England

where no trend was apparent. Increases in annual runoff reported by

Marsh and Dixon (2012) were as high as 22.2% in Scotland but only

1.7% in England. If stream temperature was being buffered by river

discharge, then that effect would have been chiefly found in Scotland

– that spatial pattern was not observed here.

The comparative freshwater temperature data given in Table 2

shows that for both the lake and final sewage waters sampled in

England have, in general, higher temperatures than river water. Could

the muted response observed in river temperatures observed in this

study be due to change in these sources of warmer water? Lakes are

not widespread in the United Kingdom and are present in only a

minority of the study catchments. However, wastewater treatment

works (sewage works) are widespread and multiple works would be

found in the majority of the study catchments. During the period cov-

ered by this study, the Urban Waste Water Treatment Directive came

in to force in the United Kingdom (UWWTD - European

Commission, 1991). The UWWTD required secondary treatment

(meaning at least biological treatment of waste water, e.g., activated

sludge process) for treatment works greater than 15 000 population

equivalent (p.e.) by the 31 December 2000, for works greater than

2000 p.e. by 2005 and by then the United Kingdom was 99% compli-

ant. Implementation of the UWWTD can include interventions to

remove nutrients but can also include measures to lower the organic

matter, and indeed the impact of the UWWTD on water quality has

already been demonstrated for phosphorus (Civan et al., 2018), nitro-

gen (Worrall et al., 2016), particulates (Worrall et al., 2014); and DOC

(Worrall et al., 2018), this it would be expected, a priori, that the

UWWTD would have altered the supply of hot water to surface

waters. Despite the demonstrated warming effect of sewage effluent

(Kinouchi et al., 2007), we do not know whether changes implemen-

ted to improve water quality would change the volume or tempera-

ture of the final sewage effluent. In 1974, the population of the

United Kingdom was 56 million and in 2020 it was 67 million and so

an increase in the volume of final sewage effluent entering UK rivers

over the study period would have been expected.

Since the majority (92%) of the 263 sites in this study showed a

45-year trend in stream temperature that was less than change in air

temperature, and 176 sites (65%) showed no significant increase,

implying that streams are not vulnerable to climate change. Walker

et al. (2004) have defined an ecological resilience as “the capacity of a

system to absorb disturbance and reorganize while undergoing change

so as to still retain essentially the same function, structure, identity

and feedbacks”. In the case of UK stream temperatures, this study has

shown that for change in energy equivalent to 1.35�C, the average

change was 0.5�C, which gives a strain (change in output compared to

change in the input), or stream thermal sensitivity, of 0.35, and modu-

lus (the change in input required for a unit change in output) of 3.6�C.

Walker et al. (2004) go further and describe four critical aspects of

resilience – latitude, resistance, precariousness, and panarchy. First,

latitude represents the maximum amount a system can be changed

before losing its ability to recover. This is an elastic limit and there is

no evidence that UK rivers have not reached a point of regime
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change. Second, resistance is the ease or difficulty of changing the

system, that is, how difficult it is to change. With respect to the rivers

in this study, we can interpret this as the reciprocal of the strain. Ther-

mal resistance is 2.7; this assumes that a linear change in air tempera-

ture represents a linear change in energy input in to the rivers. Third,

precariousness (or precarity) is how close the current state of the sys-

tem is to a limit or threshold. Carpenter et al. (2011) have demon-

strated methods by which precarity could be assessed for the status

of lakes given the removal of warm water sources. Walker et al.

(2004) define a fourth term, panarchy, which represents the degree to

which a certain hierarchical level of an ecosystem is influenced by

other levels: it is unclear whether rivers have different thermal states

that would interact with each other.

The approach used in this study is demonstrably more sensitive

than simple linear regression; the advantage of the Bayesian approach

is then clear. The Bayesian approach means all information has some

value. First, this means that information from monitoring sites not in a

catchment of interest help inform the distribution of data within the

catchment of interest. Second, information is drawn from all the data

means that missing values in a particular catchment are less important

because an estimate can be made for any catchment in the dataset as

long as it is sampled sometime within the larger dataset and that other

catchments are sampled during the period with the missing values.

Assessing low-frequency monitoring data within a Bayesian frame-

work with its improved sensitivity (e.g., Figures 4 and 5) maximizes

the information available and makes most efficient use of publicly-

funded data.

This study considers more rivers over more time than any pre-

vious study, although other studies have considered more sites

(Isaak et al., 2017; Hare et al., 2021) these studies consider shorter

time periods, or there are studies consider fewer longer records

(e.g., Webb & Nobilis, 1997), and the purpose of these studies was

different from the current one. However, it is still restricted to the

UK. However, the scale of UK rivers, their mix of land uses, and the

nature of industrial and land use change within the United Kingdom

make them very similar to much of the developed world. Therefore,

we would propose that the resistance and buffering observed in

these 263 river temperature records would be a more general

result.

The study implies that UK rivers are somewhat disconnected

from atmospheric heat source and respond more to changes in hydro-

logical pathway resulting from land use. Similarly, Arismendi et al.

(2012) found some disconnect between climate and stream tempera-

ture trends in the catchment of US Pacific North West. Such work

illustrates the importance of considering river temperature as a

“hydrological phenomenon” that takes into account climate drivers

but also how they are modified by catchment properties and hydro-

logical processes of water storage and release.

The disconnect observed in the United Kingdom could be due to

the average river water being governed by the groundwater sources.

Groundwater is typically warmer than air temperature (e.g., Table 2)

and its controlled by the geotherm. The average geotherm in the

United Kingdom is 28�C/km (Busby et al., 2011) and no groundwater

in the study of Busby et al. was taken from below 400 m depth

below surface (UKTAG, 2011). Geothermal heat is independent air

temperature and climate change and so this heat source can buffer

stream temperature until the point that average air temperature

(9.9�C, Table 2) goes above average groundwater temperature

(11.2�C, Table 2). Kurylyk et al. (2014) have considered the impact of

climate change scenarios on the impact of groundwater on tempera-

ture of rivers and showed that shallow groundwater begin to warm

in line with air temperature change which then impacted the streams

of the catchment. The study of Kurylyk et al. (2014) shows that

potential for groundwater buffering may breakdown with ongoing

climate change.

5 | CONCLUSION

This study considered long term records of stream temperature across

a diverse set of catchments. Over a 45-year period, for the majority

(92%) of 263 UK rivers, stream temperature changed less than the

local air temperature change. Only for 1% of the 263 rivers did the

stream temperature rise significantly faster than the air temperature,

while for 3% the stream temperature significantly declined over the

45 years of the record. The study used a Bayesian hierarchical

approach which proved to be 59% more precise than linear regres-

sion, but even so 74% of 263 river sites showed no significant trend

in stream temperature over 45 years of air temperature increase. The

study shows that average river temperature is well buffered and resis-

tant to changes in air temperature although some of this resistance

can be attributed to one-off events such as closures of thermal power

stations. Our work makes it clear that we must consider river temper-

ature as a “hydrological phenomenon” and take into account the

interactions between climate-catchment properties-hydrology to

understand past trends and to underpin robust projections of future

river temperatures under climate change and with increasing interfer-

ence of people in the water cycle.
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