25 research outputs found

    Detecting upland glaciation in Earth’s pre-Pleistocene record

    Get PDF
    Earth has sustained continental glaciation several times in its past. Because continental glaciers ground to low elevations, sedimentary records of ice contact can be preserved from regions that were below base level, or subject to subsidence. In such regions, glaciated pavements, ice-contact deposits such as glacial till with striated clasts, and glaciolacustrine or glaciomarine strata with dropstones reveal clear signs of former glaciation. But assessing upland (mountain) glaciation poses particular challenges because elevated regions typically erode, and thus have extraordinarily poor preservation potential. Here we propose approaches for detecting the former presence of glaciation in the absence or near-absence of ice-contact indicators; we apply this specifically to the problem of detecting upland glaciation, and consider the implications for Earth’s climate system. Where even piedmont regions are eroded, pro- and periglacial phenomena will constitute the primary record of upland glaciation. Striations on large (pebble and larger) clasts survive only a few km of fluvial transport, but microtextures developed on quartz sand survive longer distances of transport, and record high-stress fractures consistent with glaciation. Proglacial fluvial systems can be difficult to distinguish from non-glacial systems, but a preponderance of facies signaling abundant water and sediment, such as hyperconcentrated flood flows, non-cohesive fine-grained debris flows, and/or large-scale and coarse-grained cross-stratification are consistent with proglacial conditions, especially in combination with evidence for cold temperatures, such as rip-up clasts composed of noncohesive sediment, indicating frozen conditions, and/or evidence for a predominance of physical over chemical weathering. Other indicators of freezing (periglacial) conditions include frozen-ground phenomena such as fossil ice wedges and ice crystals. Voluminous loess deposits and eolian-marine silt/mudstone characterized by silt modes, a significant proportion of primary silicate minerals, and a provenance from non-silt precursors can indicate the operation of glacial grinding, even though such deposits may be far removed from the site(s) of glaciation. Ultimately, in the absence of unambiguous ice-contact indicators, inferences of glaciation must be grounded on an array of observations that together record abundant meltwater, temperatures capable of sustaining glaciation, and glacial weathering (e.g., glacial grinding). If such arguments are viable, they can bolster the accuracy of past climate models, and guide climate modelers in assessing the types of forcings that could enable glaciation at elevation, as well as the extent to which (extensive) upland glaciation might have influenced global climate.Ye

    Atmospheric dust flux in northeastern Gondwana during the peak of the late Paleozoic ice age

    Get PDF
    The silicate mineral fraction of shallow marine carbonates archives dust contributions to the Central Persian Terranes along the northeastern margin of Gondwana (∼30°S paleolatitude), enabling reconstruction of atmospheric dust loading and circulation for intervals of the late Paleozoic ice age. The Central Persian Terranes hosted cyclic deposition of warm water carbonates from middle Pennsylvanian to earliest Permian time, and our data set includes two ∼28 m sections from the Moscovian and Asselian sampled at 20 cm intervals. Bounding surfaces between successive cycles (high-frequency sequences) are recognized by either abrupt basinward shifts in facies or subtle exposure features; these high-frequency sequences range from 1 m to 5 m thick and are interpreted to record glacioeustatic variations. Time series analysis of the dust fraction through the studied interval supports the hypothesis of orbital forcing for the dust signal. The stratigraphic pattern of the dust flux indicates minimal flux during interglacial highstands (0.19–0.27 g/cm2/kyr) and peak flux during glacial lowstands (3.77–4.57 g/cm2/kyr) after accounting for hiatal time at sequence boundaries. Grain size analysis of the dust for all samples (n = 230) reveals modal sizes (volume-based) of 1–15 µm through the Moscovian interval and 10–75 µm through the Asselian interval. Dust deposition increased during glacial times relative to interglacial times by a factor of 16 to 19. Additionally, the Asselian interval exhibits higher dust flux overall relative to the Moscovian interval, which is interpreted to reflect the more extreme icehouse conditions of the Asselian. Variation in the dust content through the studied sections provides an indicator of temporal changes in atmospheric loading that varied at both glacial–interglacial and higher-frequency (<104 yr) scales. Geochemical data reveal that the Arabian–Nubian Shield and southwestern Pangaea (South America) are the most likely sources of dust deposition in the Central Persian Terranes, with sources shifting during different phases. Increased dust flux during glacials likely reflects multiple factors, including enhanced aridity in the source region, exposure of shelf regions, and potential changes in winds. However, the discrepancy in model reconstructions of the amplitude of glacial–interglacial dust variations indicates that increased production of dust sourced by dynamic glaciation played a large role in enhancing dust flux during glacial phases.Research that contributed to the concepts presented here was funded by the National Science Foundation (EAR-1338331 and EAR-1337463 to G.S. Soreghan, EAR-1543518 to L.A. Hinnov, EAR-1337463 to N.G. Heavens, and EAR-1338440 to the University of Michigan). Supplementary funding was provided by the Eberly Family Chair (University of Oklahoma).Ye

    Coal-derived rates of atmospheric dust deposition during the Permian

    Get PDF
    Despite widespread evidence for atmospheric dust deposition prior to the Quaternary, quantitative rate data remains sparse. As dust influences both climate and biological productivity, the absence of quantitative dust data limits the comprehensiveness of models of pre-Quaternary climate and biogeochemical cycles. Here, we propose that inorganic matter contained in coal primarily records atmospheric dust deposition. To test this, we use the average concentration of inorganic matter in Permian coal to map global patterns and deposition rates of atmospheric dust over Pangea. The dust accumulation rate is calculated assuming Permian peat carbon accumulation rates in temperate climates were similar to Holocene rates and accounting for the loss of carbon during coalification. Coal-derived rates vary from 0.02 to 25 g m− 2 year− 1, values that fall within the present-day global range. A well-constrained East–West pattern of dust deposition corresponding to expected palaeoclimate gradients extends across Gondwana with maximum dust deposition rates occurring close to arid regions. A similar pattern is partially defined over the northern hemisphere. Patterns are consistent with the presence of two large global dust plumes centred on the tropics. The spatial patterns of dust deposition were also compared to dust cycle simulations for the Permian made with the Community Climate System Model version 3 (CCSM3). Key differences between the simulations and the coal data are the lack of evidence for an Antarctic dust source, higher than expected dust deposition over N and S China and greater dust deposition rates over Western Gondwana. This new coal-based dust accumulation rate data expands the pre-Neogene quantitative record of atmospheric dust and can help to inform and validate models of global circulation and biogeochemical cycles over the past 350 Myr

    Report on ICDP Deep Dust workshops: probing continental climate of the late Paleozoic icehouse–greenhouse transition and beyond

    Get PDF
    Chamberlin and Salisbury's assessment of the Permian a century ago captured the essence of the period: it is an interval of extremes yet one sufficiently recent to have affected a biosphere with near-modern complexity. The events of the Permian - the orogenic episodes, massive biospheric turnovers, both icehouse and greenhouse antitheses, and Mars-analog lithofacies - boggle the imagination and present us with great opportunities to explore Earth system behavior. The ICDP-funded workshops dubbed "Deep Dust," held in Oklahoma (USA) in March 2019 (67 participants from nine countries) and Paris (France) in January 2020 (33 participants from eight countries), focused on clarifying the scientific drivers and key sites for coring continuous sections of Permian continental (loess, lacustrine, and associated) strata that preserve high-resolution records. Combined, the two workshops hosted a total of 91 participants representing 14 countries, with broad expertise. Discussions at Deep Dust 1.0 (USA) focused on the primary research questions of paleoclimate, paleoenvironments, and paleoecology of icehouse collapse and the run-up to the Great Dying and both the modern and Permian deep microbial biosphere. Auxiliary science topics included tectonics, induced seismicity, geothermal energy, and planetary science. Deep Dust 1.0 also addressed site selection as well as scientific approaches, logistical challenges, and broader impacts and included a mid-workshop field trip to view the Permian of Oklahoma. Deep Dust 2.0 focused specifically on honing the European target. The Anadarko Basin (Oklahoma) and Paris Basin (France) represent the most promising initial targets to capture complete or near-complete stratigraphic coverage through continental successions that serve as reference points for western and eastern equatorial Pangaea.This research has been supported by the ICDP (DeepDust2019 grant).Ye

    The role of snowfall in forming the seasonal ice caps of Mars: Models and constraints from the Mars Climate Sounder

    No full text
    Wintertime observations of the martian polar regions by orbiting spacecraft have provided evidence for carbon dioxide clouds, which measurably alter the polar energy budget and the annual CO_2 cycle. However, it has remained unclear whether snowfall contributes a substantial quantity to the accumulating seasonal ice caps. We develop models to constrain precipitation rates based on observations of south polar CO_2 clouds by the Mars Climate Sounder (MCS), and show that snowfall contributes between 3% and 20% by mass to the seasonal deposits at latitudes 70–90°S. The lower bound on this estimate depends on a minimum effective cloud particle size of ∼50 μm, derived by comparing the short lifetimes (less than a few hours) of some clouds with calculated sedimentation velocities. Separate constraints from infrared spectra measured by MCS suggest CO_2 cloud particles in the size range 10–100 μm. Snow particles are not likely to re-sublime before reaching the surface, because the lower atmosphere in this region remains near saturation with respect to CO_2. Based on cooling rate calculations, snowfall originating below 4 km altitude likely contributes a comparable or greater amount to the seasonal deposits than the rest of the atmosphere. Due to the positive feedback between cloud particle number density and radiative cooling, CO_2 snow clouds should propagate until they become limited by the availability of condensation nuclei or CO_2 gas. Over the south polar residual cap, where cloud activity is greatest, atmospheric radiative cooling rates are high enough to offset heat advected into the polar regions and maintain consistent snowfall. At latitudes of 60–80°S the lower atmosphere tends to be slightly sub-saturated and rapid cooling by mechanical lift driven by orography or convergent flow may be required to initiate a snowstorm, consistent with the more sporadic clouds observed by MCS in this region, and their correlation with topographic features. Snowfall and accumulation at the surface are found to be inevitable consequences of the polar energy budget, unless advection redistributes heat from lower latitudes in much greater quantities than expected
    corecore