25 research outputs found

    Evaluating Effects of H2O and overhead O3 on Global Mean Tropospheric OH Concentration

    Get PDF
    The oxidizing capacity of the troposphere is controlled, to a large extent, by the abundance of hydroxyl radical (OH). The global mean concentration of OH, [OH]GLOBAL, inferred from measurements of methyl chloroform, has remained relatively constant during the past several decades, despite rising levels of CH4 that should have led to a steady decline. Here we examine other factors that may have affected [OH]GLOBAL, such as the overhead burden of stratospheric O3 and tropospheric H2O, using global OH fields from the GEOS-CHEM Chemistry-Climate Model. Our analysis suggests these factors may have contributed a positive trend to [OH]GLOBAL large enough to counter the decrease due to CH4

    Profiles of Reactive Trace Gases over Remote Oceans During ATom

    Get PDF
    The Atmospheric Tomography (ATom) mission deployed an extensive gas and aerosol payload on the NASA DC-8 aircraft on four campaigns spanning each season. ATom systematically sampled the atmosphere from 0.2 to 12 kilometer altitude, from 85 degrees North Latitude to 65 degrees South Latitude, in both the Pacific and the Atlantic to provide detailed profiles of chemical composition over the remote oceans. We will present profiles of reactive trace species, such as O3, NOx, NOy, HOx, HCHO, and several other short-lived source gases. We will combine these measurements with results from a 0-D box model to show their utility in (1) evaluating gradients in latitude/season, (2) identifying contributions of pollution from long-range and convective transport, and (3) evaluating column measurements from remote sensing satellite instruments

    Validation of formaldehyde products from three satellite retrievals (OMI SAO, OMPS-NPP SAO, and OMI BIRA) in the marine atmosphere with four seasons of ATom aircraft observations

    Get PDF
    Formaldehyde (HCHO) in the atmosphere is an intermediate product from the oxidation of methane and non-methane volatile organic compounds. In remote marine regions, HCHO variability is closely related to atmospheric oxidation capacity and modeled HCHO in these regions is usually added as a global satellite HCHO background. Thus, it is important to understand and validate the levels of satellite HCHO over the remote oceans. Here we intercompare three satellite retrievals of total HCHO columns (OMI-SAO (v004), OMPS-NPP SAO, and OMI BIRA) and validate them against in situ observations from the NASA Atmospheric Tomography Mission (ATom) mission. All retrievals are correlated with ATom integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. Three satellite HCHO retrievals and in situ ATom columns all generally captured the spatial and seasonal distributions of HCHO in the remote ocean atmosphere. Retrieval bias varies by latitude and season, but a persistent low bias is found in all products at high latitudes and the general low bias is most severe for the OMI BIRA product. Examination of retrieval components reveals slant column corrections have a larger impact on the retrievals over remote marine regions while AMFs play a smaller role. This study informs that the potential latitude-dependent biases in the retrievals require further investigation for improvement and should be considered when using marine HCHO satellite data, and vertical profiles from in situ instruments are crucial for validating satellite retrievals

    Tropospheric Chemical Impact of Considering a Surrogate vs. an Explicit VSLBr Mechanism on the O3 and HOx Distributions within the CAM-Chem model

    Get PDF
    The contribution of very short-lived bromine (VSLBr) represent 5 ± 2 ppt (∌25%) of total stratospheric bromine (WMO, 2018), which is still nowadays dominated by long-lived bromocarbons that do not impact on tropospheric chemistry. Due to their shorter lifetimes, the overall injection to the stratosphere of VSLBr compounds possesses two distinct pathways: i) Source Gas Injection (SGI), where the brominated species are injected as they were emitted at the surface; and ii) Product Gas Injection (PGI), where the photochemical processing of reactive species arising from SG degradation must be considered. Depending on the partitioning and distribution of SGI and PGI, the chemical impact of VSLBr on tropospheric and lowermost stratospheric ozone, HOx and other oxidizing species can be very different. Many Chemistry Climate Models (CCMs) include a simplified treatment of tropospheric VSLBr sources by assuming a long-lived halocarbon (usually CH3Br) as a Surrogate for VSLBr. Even though these surrogate models possess a consistent evolution of the stratospheric bromine loading, CCMs including an explicit VSLBr representation compare better with organic and inorganic bromine observations in the lowermost stratosphere (Wales et al., 2018). Here we used the halogenated version of the CAM-Chem model (Fernandez et al., 2014) to evaluate the chemical impact of considering an explicit treatment of VSLBr versus considering a simplified tropospheric treatment of long-lived CH3Br as surrogate of VSLBr. The explicit mechanism considers a full gas- and aerosol- phase chemical scheme (including sea-salt dehalogenation) as well as time dependent and geographically-distributed VSLBr emissions inventory (Ordoñez et al., 2012), which replaces the typical lower-boundary surface conditions for longlived compounds usually considered in CCMs. An additional baseline simulation neglecting the contribution of VSLBr is also considered. First we show the differences in the overall inorganic bromine (Bry) burden as a function of altitude, latitude and time of the year, and compare the model changes on SGI and PGI for each model configuration. Based on the vertical and latitudinal Bry distributions, we focus the analysis on determining the surrogate vs. explicit VSLBr impact on the tropospheric ozone burden, as well as the changes in HOx and NOx mixing ratios within different regions. In particular, seasonal variations in the Odd-Oxygen chemical loss channels during within the marine boundary layer (MBL), tropical tropopause layer (TTL) and mid-latitudes upper troposphere (UT) are evaluated. Our results indicate that the impact of VSLBr species is strongly underestimated when a simplified treatment of tropospheric VSLBr chemistry is considered, which might have strong climatic impacts.Fil: FernĂĄndez, Rafael Pedro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; Argentina. Consejo Superior de Investigaciones CientĂ­ficas. Instituto de QuĂ­mica FĂ­sica; España. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; ArgentinaFil: Barrera, Javier Alejandro. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Departamento de FĂ­sica; ArgentinaFil: Iglesias Suarez, Fernando. Consejo Superior de Investigaciones CientĂ­ficas. Instituto de QuĂ­mica FĂ­sica; EspañaFil: Cuevas, Carlos Alberto. Consejo Superior de Investigaciones CientĂ­ficas. Instituto de QuĂ­mica FĂ­sica; EspañaFil: Kinnison, Douglas E.. No especifĂ­ca;Fil: Lamarque, Jean Francoise. No especifĂ­ca;Fil: Tilmes, Simone. No especifĂ­ca;Fil: Wales, Pamela. University of Maryland; Estados UnidosFil: Nicely, Julie M.. No especifĂ­ca;Fil: Salawitch, Ross J.. University of Maryland; Estados UnidosFil: Saiz Lopez, Alfonso. Consejo Superior de Investigaciones CientĂ­ficas. Instituto de QuĂ­mica FĂ­sica; España. University of Maryland; Estados UnidosEGU General Assembly 2019VienaAustriaEuropean Geosciences Unio

    Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations

    Get PDF
    The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 10^6 cm^(−3)), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss

    Missing OH reactivity in the global marine boundary layer

    Get PDF
    The hydroxyl radical (OH) reacts with thousands of chemical species in the atmosphere, initiating their removal and the chemical reaction sequences that produce ozone, secondary aerosols, and gas-phase acids. OH reactivity, which is the inverse of OH lifetime, influences the OH abundance and the ability of OH to cleanse the atmosphere. The NASA Atmospheric Tomography (ATom) campaign used instruments on the NASA DC-8 aircraft to measure OH reactivity and more than 100 trace chemical species. ATom presented a unique opportunity to test the completeness of the OH reactivity calculated from the chemical species measurements by comparing it to the measured OH reactivity over two oceans across four seasons. Although the calculated OH reactivity was below the limit of detection for the ATom instrument used to measure OH reactivity throughout much of the free troposphere, the instrument was able to measure the OH reactivity in and just above the marine boundary layer. The mean measured value of OH reactivity in the marine boundary layer across all latitudes and all ATom deployments was 1.9 s⁻Âč, which is 0.5 s⁻Âč larger than the mean calculated OH reactivity. The missing OH reactivity, the difference between the measured and calculated OH reactivity, varied between 0 and 3.5 s⁻Âč, with the highest values over the Northern Hemisphere Pacific Ocean. Correlations of missing OH reactivity with formaldehyde, dimethyl sulfide, butanal, and sea surface temperature suggest the presence of unmeasured or unknown volatile organic compounds or oxygenated volatile organic compounds associated with ocean emissions

    A pervasive role for biomass burning in tropical high ozone/low water structures.

    Get PDF
    Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.We thank L. Pan for coordinating the CONTRAST flights and her constructive criticism of an early version of the manuscript; S. Schauffler, V. Donets and R. Lueb for collecting and analysing AWAS samples; T. Robinson and O. Shieh for providing meteorology forecasts in the field; and the pilots and crews of the CAST BAe-146 and CONTRAST Gulfstream V aircrafts for their dedication and professionalism. CAST was funded by the Natural Environment Research Council; CONTRAST was funded by the National Science Foundation. Research at the Jet Propulsion Laboratory, California Institute of Technology, is performed under contract with the National Aeronautics and Space Administration (NASA). A number of the US-based investigators also benefitted from the support of NASA as well as the National Oceanic and Atmospheric Administration. The views, opinions, and findings contained in this report are those of the author(s) and should not be construed as an official National Oceanic and Atmospheric Administration or US Government position, policy or decision. We would like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory. NCAR is sponsored by the National Science Foundation.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1026

    An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    Get PDF
    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January–February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of two, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January–February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP

    Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations

    Get PDF
    The hydroxyl radical (OH) fuels tropospheric ozone production and governs the lifetime of methane and many other gases. Existing methods to quantify global OH are limited to annual and global-to-hemispheric averages. Finer resolution is essential for isolating model deficiencies and building process-level understanding. In situ observations from the Atmospheric Tomography (ATom) mission demonstrate that remote tropospheric OH is tightly coupled to the production and loss of formaldehyde (HCHO), a major hydrocarbon oxidation product. Synthesis of this relationship with satellite-based HCHO retrievals and model-derived HCHO loss frequencies yields a map of total-column OH abundance throughout the remote troposphere (up to 70% of tropospheric mass) over the first two ATom missions (August 2016 and February 2017). This dataset offers unique insights on near-global oxidizing capacity. OH exhibits significant seasonality within individual hemispheres, but the domain mean concentration is nearly identical for both seasons (1.03 ± 0.25 × 10^6 cm^(−3)), and the biseasonal average North/South Hemisphere ratio is 0.89 ± 0.06, consistent with a balance of OH sources and sinks across the remote troposphere. Regional phenomena are also highlighted, such as a 10-fold OH depression in the Tropical West Pacific and enhancements in the East Pacific and South Atlantic. This method is complementary to budget-based global OH constraints and can help elucidate the spatial and temporal variability of OH production and methane loss
    corecore