1,342 research outputs found

    A Reservoir of Ionized Gas in the Galactic Halo to Sustain Star Formation in the Milky Way

    Full text link
    Without a source of new gas, our Galaxy would exhaust its supply of gas through the formation of stars. Ionized gas clouds observed at high velocity may be a reservoir of such gas, but their distances are key for placing them in the Galactic halo and unraveling their role. We have used the Hubble Space Telescope to blindly search for ionized high-velocity clouds (iHVCs) in the foreground of Galactic stars. We show that iHVCs with 90 < |v_LSR| < 170 km/s are within one Galactic radius of the sun and have enough mass to maintain star formation, while iHVCs with |v_LSR|>170 km/s are at larger distances. These may be the next wave of infalling material.Comment: This paper is part of a set of three papers on circumgalactic gas observed with COS and STIS on HST, to be published in Science, together with related papers by Tripp et al. and Tumlinson et al., in the November 18, 2011 edition. This version has not undergone final copyediting. Please see Science online for the final printed versio

    Chandra and Far Ultraviolet Spectroscopic Explorer Observations of z~0 Warm-Hot Gas Toward PKS 2155-304

    Get PDF
    The X-ray bright z=0.116 quasar PKS 2155-304 is frequently observed as a Chandra calibration source, with a total of 483 ksec of Low Energy Transmission Grating (LETG) exposure time accumulated through May 2006. Highly-ionized metal absorption lines, including numerous lines at z=0 and a putative OVIII K-alpha line at z=0.055, have been reported in past Chandra studies of this source. Using all available Chandra LETG spectra and analysis techniques developed for such z=0 X-ray absorption along other sightlines, we revisit these previous detections. We detect 4 absorption lines at >3\sigma significance (OVII K-alpha/beta, OVIII K-alpha, and NeIX K-alpha), with OVII K-alpha being a 7.3\sigma detection. The 1\sigma ranges of z=0 OVII column density and Doppler parameter are consistent with those derived for Mrk 421 and within 2\sigma of the Mrk 279 absorption. Temperatures and densities inferred from the relative OVII and other ionic column densities are found to be consistent with either the local warm-hot intergalactic medium or a Galactic corona. Unlike the local X-ray absorbers seen in other sightlines, a link with the low- or high-velocity far-ultraviolet OVI absorption lines cannot be ruled out. The z=0.055 OVIII absorption reported by Fang et al. is seen with 3.5\sigma confidence in the ACIS/LETG spectrum, but no other absorption lines are found at the same redshift.Comment: 11 pages, 9 figures; minor changes, accepted to Ap

    XMM-Newton View of the z>0 Warm-Hot Intergalactic Medium Toward Markarian 421

    Get PDF
    The recent detection with Chandra of two warm-hot intergalactic medium (WHIM) filaments toward Mrk 421 by Nicastro et al. provides a measurement of the bulk of the "missing baryons" in the nearby universe. Since Mrk 421 is a bright X-ray source, it is also frequently observed by the XMM-Newton Reflection Grating Spectrometer (RGS) for calibration purposes. Using all available archived XMM observations of this source with small pointing offsets ( 29A. The non-detection of the WHIM absorbers by XMM is thus fully consistent with the Chandra measurement

    Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309

    Full text link
    We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309, combined with a lower S/N spectrum of the same target, to search for the presence of warm-hot absorbing gas associated with two Large-Scale Structures (LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster, PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically significant (>=3sigma) individual absorption is detected from any of the strong He- or H-like transitions of C, O and Ne at the redshifts of the structures. However we are still able to constrain the physical and geometrical parameters of the associated putative absorbing gas, by performing joint spectral fit of marginal detections and upper limits of the strongest expected lines with our self-consistent hybrid ionization WHIM spectral model. At the redshift of the PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H =19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our constraints allow us to estimate the cumulative number density per unit redshifts of OVII WHIM absorbers. We also estimate the cosmological mass density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent with the mass density of the intergalactic 'missing baryons' for high metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap

    A New Method for Obtaining Binary Pulsar Distances and its Implications for Tests of General Relativity

    Get PDF
    We demonstrate how measuring orbital period derivatives can lead to more accurate distance estimates and transverse velocities for some nearby binary pulsars. In many cases this method will estimate distances more accurately than is possible by annual parallax, as the relative error decreases as t^-5/2. Unfortunately, distance uncertainties limit the degree to which nearby relativistic binary pulsars can be used for testing the general relativistic prediction of orbital period decay to a few percent. Nevertheless, the measured orbital period derivative of PSR B1534+12 agrees within the observational uncertainties with that predicted by general relativity if the proper-motion contribution is accounted for.Comment: 4 pages, latex, uuencoded compressed postscript + source, no figures, uses aaspptwo.sty and dec.sty, accepted for publication in ApJL, omitted reference now include

    A detailed view of filaments and sheets in the warm-hot intergalactic medium. I. Pancake formation

    Full text link
    Numerical simulations predict a considerable fraction of the missing baryons at redshift z ~ 0 resting in the so called warm-hot intergalactic medium (WHIM). The filaments and sheets of the WHIM have high temperatures 10^5 - 10^7 K) and a high degree of ionization while having only low to intermediate densities. The particular physical conditions of the WHIM structures, e.g. density and temperature profiles, velocity fields, are expected to leave their special imprint on spectroscopic observations. In order to get further insight into these conditions, we perform hydrodynamical simulations of the WHIM. Instead of analyzing large simulations of cosmological structure formation, we simulate particular well-defined structures and study the impact of different physical processes as well as of the scale dependencies. We start with the comprehensive study of the one-dimensional collapse (pancake) and examine the influence of radiative cooling, heating due to an UV background, and thermal conduction. We investigate the effect of small scale perturbations given according to the initial cosmological power spectrum. If the initial perturbation length scale L exceeds ~ 2 Mpc the collapse leads to shock confined structures. As a result of radiative cooling and of heating due to an UV background a relatively cold and dense core forms in the one-dimensional case. The properties of the core (extension, density, and temperature) are correlated with L. For larger L the core sizes are more concentrated. Thermal conduction enhances this trend and may even result in an evaporation of the core. Our estimates predict that a core may start to evaporate for perturbation lengths larger than L ~ 30 Mpc. The obtained detailed profiles for density and temperature for prototype WHIM structures allow for the determination of possible spectral signatures by the WHIM.Comment: 14 pages, 9 figures, accepted for publication in A&

    On the nature of the z=0 X-ray absorbers: I. Clues from an external group

    Full text link
    Absorption lines of OVII at redshift zero are observed in high quality Chandra spectra of extragalactic sightlines. The location of the absorber producing these lines, whether from the corona of the Galaxy or from the Local Group or even larger scale structure, has been a matter of debate. Here we study another poor group like our Local Group to understand the distribution of column density from galaxy to group scales. We show that we cannot yet rule out the group origin of z=0 systems. We further argue that the debate over Galactic vs. extragalactic origin of z=0 systems is premature as they likely contain both components and predict that future higher resolution observations will resolve the z=0 systems into multiple components.Comment: Submitted to ApJ
    corecore