27 research outputs found

    Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade

    Get PDF
    Greater understanding of tumour immunobiology has led to a new era of cancer treatment in which immuno-oncology (IO) therapies are used to boost anti-cancer immune responses. Prominent among these therapies are immune checkpoint inhibitors (ICIs), antibody-based drugs that can unleash the power of tumour-specific CD8 + T-cells. ICIs targeting the Programmed cell death protein 1 (PD-1) cell surface receptor or its ligand PD-L1 are particularly effective, with clinical studies reporting powerful and durable therapeutic impact against many cancer types, including melanoma and non-small cell lung cancer. ICIs have the potential to transform the landscape of cancer treatment, and their development was recognised by the award of the 2018 Nobel Prize in Physiology or Medicine to James Allison and Tasuku Honjo. However, the proportion of patients responding to anti-PD-1/PD-L1 monotherapy can be low. The next major challenge involves understanding and overcoming the innate and acquired resistance that prevents most patients from responding to PD-1/PD-L1 blockade. In this review, we outline the physiological function of PD-1 and its exploitation by developing tumours. We give an overview of current FDA-approved drugs targeting PD-1 or PD-L1 and summarise clinical progress so far. We then discuss key mechanisms thought to underpin resistance to PD-1/PD-L1 blockade, describing biomarkers that could allow patient responses to be predicted before treatment, and tracked once treatment has started. We also present clinical and pre-clinical combination therapies that have been developed to overcome resistance and which have the potential to substantially extend the therapeutic reach of these revolutionary drugs

    Immune checkpoint inhibitors: new strategies to checkmate cancer

    Get PDF
    Immune checkpoint inhibitors (ICIs) targeting Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) or Programmed cell Death protein 1 (PD-1) receptors have demonstrated remarkable efficacy in subsets of patients with malignant disease. This emerging treatment modality holds great promise for future cancer treatment and has engaged pharmaceutical research interests in tumour immunology. While ICIs can induce rapid and durable responses in some patients, identifying predictive factors for effective clinical responses has proven challenging. This review summarises the mechanisms of action of ICIs and outlines important pre-clinical work that contributed to their development. We explore clinical data that has led to disease-specific drug licensing, and highlight key clinical trials that have revealed ICI efficacy across a range of malignancies. We describe how ICIs have been used as part of combination therapies, and explore their future prospects in this area. We conclude by discussing the incorporation of these new immunotherapeutics into precision approaches to cancer therapy

    A novel computational model predicts key regulators of chemokine gradient formation in lymph nodes and site-specific roles for CCL19 and ACKR4

    Get PDF
    The chemokine receptor CCR7 drives leukocyte migration into and within lymph nodes (LNs). It is activated by chemokines CCL19 and CCL21, which are scavenged by the atypical chemokine receptor ACKR4. CCR7-dependent navigation is determined by the distribution of extracellular CCL19 and CCL21, which form concentration gradients at specific microanatomical locations. The mechanisms underpinning the establishment and regulation of these gradients are poorly understood. Here, we have incorporated multiple biochemical processes describing the CCL19/CCL21/CCR7/ACKR4 network into our model of LN fluid flow to establish a computational model to investigate intranodal chemokine gradients. Importantly, the model recapitulates CCL21 gradients observed experimentally in B cell follicles and interfollicular regions, building confidence in its ability to accurately predict intranodal chemokine distribution. Parameter variation analysis indicates that the directionality of these gradients is robust, but their magnitude is sensitive to these key parameters: chemokine production, diffusivity, matrix binding site availability, and CCR7 abundance. The model indicates that lymph flow shapes intranodal CCL21 gradients, and that CCL19 is functionally important at the boundary between B cell follicles and the T cell area. It also predicts that ACKR4 in LNs prevents CCL19/CCL21 accumulation in efferent lymph, but does not control intranodal gradients. Instead, it attributes the disrupted interfollicular CCL21 gradients observed in Ackr4-deficient LNs to ACKR4 loss upstream. Our novel approach has therefore generated new testable hypotheses and alternative interpretations of experimental data. Moreover, it acts as a framework to investigate gradients at other locations, including those that cannot be visualized experimentally or involve other chemokines

    The IÎşB-protein BCL-3 controls toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus

    Get PDF
    Proinflammatory responses induced by Toll-like receptors (TLRs) are dependent on the activation of the NF-ĸB and mitogen-activated protein kinase (MAPK) pathways, which coordinate the transcription and synthesis of proinflammatory cytokines. We demonstrate that BCL-3, a nuclear IĸB protein that regulates NF-ĸB, also controls TLR-induced MAPK activity by regulating the stability of the TPL-2 kinase. TPL-2 is essential for MAPK activation by TLR ligands, and the rapid proteasomal degradation of active TPL-2 is a critical mechanism limiting TLR-induced MAPK activity. We reveal that TPL-2 is a nucleocytoplasmic shuttling protein and identify the nucleus as the primary site for TPL-2 degradation. BCL-3 interacts with TPL-2 and promotes its degradation by promoting its nuclear localization. As a consequence, Bcl3−/− macrophages have increased TPL-2 stability following TLR stimulation, leading to increased MAPK activity and MAPK-dependent responses. Moreover, BCL-3–mediated regulation of TPL-2 stability sets the MAPK activation threshold and determines the amount of TLR ligand required to initiate the production of inflammatory cytokines. Thus, the nucleus is a key site in the regulation of TLR-induced MAPK activity. BCL-3 links control of the MAPK and NF-ĸB pathways in the nucleus, and BCL-3–mediated TPL-2 regulation impacts on the cellular decision to initiate proinflammatory cytokine production in response to TLR activation

    A comprehensive profile of chemokine gene expression in the tissues of the female reproductive tract in mice

    Get PDF
    Homeostatic leukocyte trafficking into and within the female reproductive tract (FRT) contributes to fertility and reproductive health. It is unclear how this process is regulated in the anatomically distinct reproductive tissues, or whether the genes involved are affected by cyclical changes in reproductive hormones. In tissues such as skin and intestine, mouse studies have defined evolutionarily conserved molecular mechanisms for tissue-specific homing, interstitial positioning, and leukocyte egress. Chemokine family members are invariably involved, with the chemokine expression profile of a tissue regulating leukocyte content. Reproductive tissues (ovary, vagina, cervix, uterine horn) of 8 week old virgin female C57BL/6 mice (n = 20) were collected, and expression of mRNA for leukocyte markers and chemokines conducted by qPCR. Lymphocytic and myeloid cell populations within the uterus, cervix, bone marrow and PALN from virgin C57BL/6 mice were determined by flow cytometric analysis. Variation in leukocyte content between reproductive tissues is evident, with the uterus and cervix containing complex mixtures of lymphocytes and myeloid cells. Twenty-six chemokine genes are expressed in the FRT, many by several component tissues, some preferentially by one. Most striking are Xcl1 and Ccl28, which are restricted to the uterus. Ccl20 and genes encoding CXCR2 ligands are primarily transcribed in cervix and vagina. Ovary shows the lowest expression of most chemokine genes, with the notable exception of Ccl21 and Ccl27. We also identify eight chemokines in the vagina whose expression fluctuates substantially across the oestrous cycle. These data reveal complex chemokine networks within the FRT, and provide a framework for future studies of homeostatic leukocyte trafficking into and within these tissues

    The atypical chemokine receptor Ackr2 constrains NK cell migratory activity and promotes metastasis

    Get PDF
    Chemokines have been shown to be essential players in a range of cancer contexts. In this study, we demonstrate that mice deficient in the atypical chemokine receptor Ackr2 display impaired development of metastasis in vivo in both cell line and spontaneous models. Further analysis reveals that this relates to increased expression of the chemokine receptor CCR2, specifically by KLRG1+ NK cells from the Ackr2−/− mice. This leads to increased recruitment of KLRG1+ NK cells to CCL2-expressing tumors and enhanced tumor killing. Together, these data indicate that Ackr2 limits the expression of CCR2 on NK cells and restricts their tumoricidal activity. Our data have important implications for our understanding of the roles for chemokines in the metastatic process and highlight Ackr2 and CCR2 as potentially manipulable therapeutic targets in metastasis

    Pre-conception maternal erythrocyte saturated to unsaturated fatty acid ratio predicts pregnancy after natural cycle frozen embryo transfer

    Get PDF
    The environment for embryo implantation and fetal growth and development is affected by maternal nutritional, metabolic and health status. The aim of this prospective, cohort study was to test whether plasma metabolic and inflammatory biomarkers can predict pregnancy resulting from in vitro fertilisation (IVF). Women with a natural menstrual cycle undergoing frozen embryo transfer (FET) were recruited and fasting baseline blood samples were collected a mean of 3.4 days prior to the luteinising hormone (LH) surge and a non-fasting blood sample was taken on the day of FET. Ongoing pregnancy was defined by positive fetal heartbeat on ultrasound scan at day 45 post LH surge. Thirty-six pregnancies resulted from FET in 143 women. In an overall stepwise multivariable analysis, erythrocyte saturated to unsaturated fatty acid ratio was positively associated with ongoing pregnancy. A similar model incorporating day of FET covariates found that erythrocyte saturated to unsaturated fatty acid ratio, erythrocyte fatty acid average chain length and plasma log-triglycerides predicted ongoing pregnancy. In conclusion, a higher peri-conceptional saturated to unsaturated fatty acid ratio predicted ongoing pregnancy after natural cycle frozen embryo transfer and may reflect a maternal nutritional status that facilitates pregnancy success in this assisted conception scenario

    Co-inhibition of TGF-β and PD-L1 pathways in a metastatic colorectal cancer mouse model triggers interferon responses, innate cells and T cells, alongside metabolic changes and tumor resistance

    Get PDF
    Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20–30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), “KPN”, which resembles the human ‘CMS4’-like subtype. We show here that transforming growth factor (TGF-β1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-β1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-β inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-β and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC

    The small and large intestine contain related mesenchymal subsets that derive from embryonic Gli1+ precursors

    Get PDF
    The intestinal lamina propria contains a diverse network of fibroblasts that provide key support functions to cells within their local environment. Despite this, our understanding of the diversity, location and ontogeny of fibroblasts within and along the length of the intestine remains incomplete. Here we show that the small and large intestinal lamina propria contain similar fibroblast subsets that locate in specific anatomical niches. Nevertheless, we find that the transcriptional profile of similar fibroblast subsets differs markedly between the small intestine and colon suggesting region specific functions. We perform in vivo transplantation and lineage-tracing experiments to demonstrate that adult intestinal fibroblast subsets, smooth muscle cells and pericytes derive from Gli1-expressing precursors present in embryonic day 12.5 intestine. Trajectory analysis of single cell RNA-seq datasets of E12.5 and adult mesenchymal cells suggest that adult smooth muscle cells and fibroblasts derive from distinct embryonic intermediates and that adult fibroblast subsets develop in a linear trajectory from CD81+ fibroblasts. Finally, we provide evidence that colonic subepithelial PDGFRÎąhi fibroblasts comprise several functionally distinct populations that originate from an Fgfr2-expressing fibroblast intermediate. Our results provide insights into intestinal stromal cell diversity, location, function, and ontogeny, with implications for intestinal development and homeostasis

    Evading the anti-tumour immune response - a novel role for Focal Adhesion Kinase

    Get PDF
    Here I describe a new function of Focal Adhesion Kinase (FAK) in driving anti-tumour immune evasion. The kinase activity of FAK in squamous cancer cells drives the recruitment of regulatory T-cells (Tregs) by transcriptionally regulating chemokine/cytokine and ligand-receptor networks, including the transcription of CCL5 and TGFβ, which are required for enhanced Treg recruitment. In turn, these changes inhibit antigen-primed cytotoxic CD8+ T-cell activity in the tumour microenvironment, permitting survival and growth of FAK-expressing tumours. I show that immune evasion requires FAK’s catalytic activity, and a small molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, drives depletion of Tregs and permits CD8+ T-cell-mediated tumour clearance. It is therefore likely that FAK inhibitors may trigger immune-mediated tumour regression, providing previously unrecognized therapeutic benefit
    corecore