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Abstract 

Background: Homeostatic leukocyte trafficking into and within the female reproductive tract 

(FRT) contributes to fertility and reproductive health.  It is unclear how this process is regulated 

in the anatomically distinct reproductive tissues, or whether the genes involved are affected by 

cyclical changes in reproductive hormones.  In tissues such as skin and intestine, mouse studies 

have defined evolutionarily conserved molecular mechanisms for tissue-specific homing, 

interstitial positioning, and leukocyte egress.  Chemokine family members are invariably 

involved, with the chemokine expression profile of a tissue regulating leukocyte content.   

Methods:  Reproductive tissues (ovary, vagina, cervix, uterine horn) of 8 week old virgin 

female C57BL/6 mice (n=20) were collected, and expression of mRNA for leukocyte markers 

and chemokines conducted by qPCR. Lymphocytic and myeloid cell populations within the 

uterus, cervix, bone marrow and PALN from virgin C57BL/6 mice was determined by flow 

cytometric analysis.   

Results: Variation in leukocyte content between reproductive tissues is evident, with the uterus 

and cervix containing complex mixtures of lymphocytes and myeloid cells. Twenty-six 

chemokine genes are expressed in the FRT, many by several component tissues, some 

preferentially by one. Most striking are Xcl1 and Ccl28, which are restricted to the uterus.  

Ccl20 and genes encoding CXCR2 ligands are primarily transcribed in cervix and vagina. 

Ovary shows the lowest expression of most chemokine genes, with the notable exception of 

Ccl21 and Ccl27.  We also identify eight chemokines in the vagina whose expression fluctuates 

substantially across the estrous cycle.  

Conclusion: These data reveal complex chemokine networks within the female reproductive 

tract, and provide a framework for future studies of homeostatic leukocyte trafficking into and 

within these tissues. 
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Introduction 

Leukocytes are abundant in bone marrow, blood and lymphoid tissues, but these key 

immune cells are also found in virtually all healthy non-lymphoid tissues under homeostatic 

conditions. There is constant movement of leukocytes into, within, and out of these tissues, and 

discrete interstitial niches often contain specialised populations of resident leukocytes. 

Collectively, these cells maintain peripheral immunological tolerance, detect tissue damage 

and infection, and initiate the innate and adaptive immune responses that lead to tissue repair 

and immune protection. In addition, memory T cells generated during an infection are 

imprinted with specific homing properties that allow them, after homeostasis has been restored, 

to preferentially home to the tissue where the infection was first detected (Sheridan, 2011).  

Here they are ideally placed to rapidly respond if the infectious agent is encountered for a 

second time. Thus, the recruitment, positioning and departure of leukocytes is of fundamental 

importance to all tissues because they contribute to immunosurveillance, tolerance, tissue 

repair and immune memory.   

Homeostatic leukocyte migration and localisation is largely dependent on leukocytic 

expression of cell adhesion molecules and chemoattractant receptors. Heptahelical G-protein-

coupled receptors for chemokines are particularly important (Bachelerie, 2014; Hughes, 2018). 

Chemokines are a large family of small, secreted chemoattractants that are subdivided into four 

groups (CC, CXC, XC and CX3C) based on the configuration of conserved cysteine residues 

near their amino-terminus (Zlotnik, 2012).  They have been implicated in many processes 

critical for leukocyte trafficking, including arrest on blood vessel endothelium, transendothelial 

migration, interstitial motility, retention in specific tissue compartments, and departure from 

tissue via lymphatic vessels (Hughes, 2018). Some chemokines are constitutively expressed by 

many non-lymphoid tissues where they contribute to common migratory processes. For 

instance, CCL21 is widely expressed because it mediates the steady state egress of dendritic 
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cells (DCs), a process that happens in many tissues (Johnson, 2010; Tal, 2011).  Other 

chemokines show a more restricted pattern of expression and are responsible for recruiting 

leukocyte populations with critical tissue-specific functions. This has been particularly well 

studied in the skin and intestine of mice. For example, CCL8 is abundantly produced in resting 

skin (Islam, 2011), while CCL25 is found almost exclusively in the small intestine (Campbell,  

2002).  As a consequence, leukocytes expressing CCR8, the CCL8 receptor, have the potential 

to home to the skin, while those expressing the CCL25 receptor CCR9 can enter the wall of the 

small intestine. Chemokine receptor expression is used to define the migratory potential of a 

leukocyte and identify discrete populations of cells with shared functional properties. Similarly, 

the chemokine expression profile of a tissue gives a clear indication of which molecular 

pathways are likely to play critical roles in regulating its leukocyte infiltrate. Importantly, while 

most studies of leukocyte homing have been performed in mice, the pathways that have been 

characterised to date appear to be conserved in other mammals, including humans (Nomiyama, 

2013). 

  The female reproductive tract (FRT) consists of several anatomically and functionally 

distinct tissues, each containing discrete microanatomical compartments. These tissues are 

subject to fluctuations in female sex hormones that drive a cyclical pattern of fertility. In mice 

this estrous cycle lasts 4-5 days and is split into four main phases: proestrus, estrus (during 

which ovulation occurs), metestrus and diestrus (Byers, 2012; Bertolin, 2014).  Progress 

through the estrous cycle is accompanied by alterations in the structure and leukocyte content 

of FRT tissues. In these tissues, as in other tissues, leukocytes will contribute to 

immunosurveillance, immunological tolerance, tissue repair and post-infection immune 

memory. They will also initiate the immune and inflammatory responses that are associated 

with key reproductive processes, such as implantation (Pijnenborg, 2002; Garlanda, 2008; 

Dekel, 2014), placentation (Spencer, 2014), parturition (Thomson, 1999; Bollapragada, 2009) 
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and post-partum involution (Shynlova, 2013). Abnormal inflammation in the FRT is associated 

with gynaecological conditions and reproductive problems in humans, including polycystic 

ovarian syndrome (Ojeda-Ojeda, 2013; Schmidt, 2014), endometriosis (Maybin, 2011; Laux-

Biehlmann, 2015), pre-eclampsia (Spencer, 2014), ovarian cancer (Singh, 2016; Sanguinete, 

2017) and preterm labour (Romero, 2006; Blank, 2008; Ito, 2010; Phillips, 2014). Despite the 

evident physiological and pathological importance of leukocytes in the tissues of the FRT, the 

mechanisms that control the homeostatic trafficking of these cells into, within, and out of these 

tissues in mice and humans are largely unknown.  

We hypothesised that to regulate constitutive leukocyte trafficking, tissues of the FRT 

will have overlapping chemokine gene expression profiles that may fluctuate over the course 

of the estrous cycle. To examine this, we have defined the steady state chemokine gene 

expression profile of the four major tissues of the mouse FRT, and compared this to equivalent 

data generated from skin, small intestine and colon, whose homeostatic chemokine profiles 

have been more widely studied. We have also examined how the expression of each chemokine 

gene is modulated over the course of the estrous cycle. Remarkably, we find that 26 different 

chemokine genes are expressed in the FRT under homeostatic conditions. Some are highly 

restricted to, or preferentially expressed in, one tissue of the FRT, while others show equivalent 

expression in two or more tissues. We also show that, in the vagina, the estrous cycle modulates 

the expression of 8 chemokine genes, 7 of which peak during diestrous and/or metestrous. 

Collectively, these data reveal the complexity of chemokine networks within the FRT, and 

provide a framework for future investigation of the mechanisms directing homeostatic 

leukocyte trafficking and localisation in its component tissues. 
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Methods 

 

Animals and tissue collection 

All animal experiments were approved by the University of Glasgow ethical review committee 

and were performed under the auspices of UK Home Office licences (Home Office Project 

Licence number 60/3765).  All work used 8-week old virgin female C57BL/6 mice maintained 

in specific pathogen-free conditions at the University of Glasgow’s Central Research Facility. 

Estrous cycle stage (proestrus, estrus, metestrus or diestrus) was determined by vaginal 

appearance and microscopic examination of the cellularity of vaginal lavage, as previously 

described (Caligioni, 2009).   The ovary, vagina, cervix and mid portions of each uterine horn, 

along with dorsal skin, small intestine and colon, were collected into RNAlater® before snap 

freezing in liquid nitrogen and storing at -80oC.  Cycle assessment and tissue collection were 

performed at the same time each morning to ensure consistency. 

 

RNA isolation and complementary DNA synthesis 

Each frozen tissue biopsy was homogenized in 1ml of TRIzol® reagent (Thermo Fisher 

Scientific, Paisley, UK) using an Omni µH homogenizer (Omni International, Kennesaw, 

USA).  Total RNA was extracted according to the manufacturer’s instructions, and quantified 

using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific).  A260/280 was 

recorded for each sample as a measure of purity.  RNA quality was assessed by gel 

electrophoresis: all samples showed tight 28S and 18S rRNA bands, indicating that minimal 

degradation had occurred during the isolation process (data not shown).  5µg of RNA was 

treated with DNAse-I using the DNA-freeTM kit (Life Technologies).  To synthesise cDNA, 

the High Capacity Reverse Transcription Kit was used (10µl final reaction volume) (Thermo 
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Fisher Scientific).  Control samples were also prepared in which reverse transcriptase was 

omitted from the reaction (i.e. –RT control). 

 

Gene expression analysis by quantitative PCR (QPCR) 

The expression of genes encoding leukocyte markers was quantified using Taqman® 

technology on the ABI Prism 7900HT system (Applied Biosystems) and SDS Version 2.3 

software. Gene expression assays used are listed in Table 1. Into each well, 1.25µl 20X target 

or endogenous control assay was added, along with 12.5µl Taqman® Universal Mastermix 

(Thermo Fisher Scientific), 10.25µl molecular grade water (Sigma Aldrich, St. Louis, USA) 

and 1µl of the cDNA reaction. Reactions were incubated for 2min at 50oC, 10min at 95oC, 

followed by 40 cycles of 95oC (15sec) and 60oC (1min). In all experiments, negative controls 

were performed in which cDNA was replaced with water or with an aliquot of the ‘–RT control’ 

reaction: these samples consistently failed to generate any PCR product. The formula 2-Cq was 

used to determine relative expression (Livak, 2001) in comparison to the endogenous control 

gene, Gapdh, and fold change calculated relative to ovary, which was given the arbitrary value 

of 1. Of those endogenous control genes examined, Gapdh gave the most consistent Ct values 

between samples and tissues (data not shown).  

 

Preparation of single cell suspensions  

Uterine horn or cervix was minced with scissors in 7ml or 3ml, respectively, of Hank’s 

Balanced Salt Solution (Sigma) (with Ca2+ and Mg2+) containing 0.026 Wunsch Units/ml 

Liberase TM (Roche) and 50µg/ml DNase I (Roche), and then incubated for 40min at 37oC 

with gentle continuous shaking. The digested tissues were then mashed through a cell strainer 

using the plunger of a 2ml syringe. The strainer was then washed with complete RPMI (i.e. 
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RPMI containing 2mM L-glutamine and 10% heat-inactivated foetal calf serum). Bone marrow 

(BM) aspirates were prepared by dissecting the femurs from mice, cutting off each end of the 

bone, and flushing out the cells with 1ml of complete RPMI using a syringe. Single cell 

suspensions of the para-aortic lymph node (PALN) were prepared by mashing the node through 

a cell strainer in complete RPMI using the plunger of a 2ml syringe. All samples were 

centrifuged at 400g for 5min at 4oC, washed once with complete RPMI, resuspended in ice-

chilled FACS buffer (PBS containing 1% foetal calf serum, 5mM EDTA and 0.02% sodium 

azide), and stored at 4oC in preparation for immunostaining.   

 

Immunostaining and flow cytometry 

Cells in FACS buffer were incubated in Fc Block (BD Biosciences) for 15mins at 4oC, washed 

with FACS buffer, and stained for 15mins at 4oC in fluorescently labelled antibodies. After two 

washes with FACS buffer, cells were incubated for 10mins with Viaprobe (BD Biosciences) 

(to allow subsequent identification of dead cells) and then passed through a Nitex filter into a 

FACS tube. Antibodies against the following proteins were used according to the supplier’s 

instructions (fluorophores are indicated in parentheses): CD45 (APC-Cy7), F4/80 (PE-Cy7), 

CD4 (PE-Cy7), and CD8 (PE) (all from eBiosciences), and CD11b (V450), Ly6C (FITC), CD3 

(VioBlue), CD25 (FITC) (all from BD Biosciences). Data were acquired on a MACS Quant 

flow cytometer (Miltenyi Biotec). Acquisition parameters were set using (i) anti-mouse Ig 

k/negative control CompBeads (BD Biosciences), (ii) samples stained with a single antibody, 

and (iii) fluorescence minus one controls (in which one fluorescent antibody in the mixture was 

omitted). Data were analysed using FlowJo software (Tree Star). During analysis, we excluded 

cell debris by pre-gating using physical properties (forward scatter (FSC) and side scatter 

(SSC)), and discounted dead cells by selecting for Viaprobe-negative cells. Cells doublets and 

higher order aggregates were excluded by plotting FSC area against FSC height. The various 
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control samples were then used to set gates to identify cells expressing a particular protein, or 

set of proteins. 

 

Gene expression analysis by Taqman® Gene Expression Array Cards 

Custom Taqman® Gene Expression Array Cards (Thermo Fisher Scientific) were designed to 

include target assay mixes for the endogenous control gene, Gapdh, and for all chemokines 

expressed by C57BL/6 mice that are known to directly regulate leukocyte migration (Table 2). 

For each sample, we combined cDNA transcribed from 1µg RNA, molecular grade water and 

Taqman® Universal Mastermix to give a final volume of 100µl and added this to the 

appropriate well of the array card. All cards contained negative controls in which cDNA was 

replaced with water or a –RT control sample: these samples consistently failed to generate any 

PCR product. Cards were centrifuged twice for 1min at 500g, before being placed in the ABI 

Prism 7900HT system using SDS Version 2.3 software. For analysis, DataAssistTM Version 

2.0 was used. In all analyses, the formula 2-Cq was used to determine relative expression (Livak, 

2001) in comparison to the Gapdh, and fold change calculated relative to ovary, which was 

given the arbitrary value of 1.    

 

Determination of CCL27 protein concentration by ELISA 

Ovary and uterus were removed from C57BL/6 mice, snap frozen in liquid nitrogen and stored 

at -80oC. Tissues were weighed and Cell Lytic MT solution (Sigma) containing protease 

inhibitors (Roche) added (20ml per gram of tissue). Tissues were homogenised and lysates 

cleared of debris by centrifugation at 13000rpm for 10min at 4oC. Supernatant was collected 

and stored at -20oC. CCL27 concentration was measured using a DuoSet ELISA kit (R&D 
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systems) according to the manufacturer’s instructions and is presented as amount of chemokine 

(pg) per mg of tissue. 

 

Statistical Analysis 

Differences between more than two groups were examined using the Kruskal-Wallis test, 

followed by a post hoc Dunn’s test.  Comparisons between two groups were determined using 

the Mann-Whitney Test. p<0.05 was considered statistically significant.   
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Results  

The tissues of the FRT differentially express markers of specific leukocyte populations 

First, to get an indication of differences in leukocyte content between tissues of the 

FRT, we compared their expression of genes encoding established markers of T cells (gamma 

polypeptide of CD3), B cells (CD19), natural killer (NK) cells (CD49b), DCs (CD11c), 

macrophages (F4/80), neutrophils (Neutrophil Granule Protein (NGP)) and eosinophils (Major 

Basic Protein (MBP)) in the ovary, uterus, cervix and vagina of virgin C57BL/6 mice (Table 

1). Many of these proteins are widely used in flow cytometry and immunohistology to identify 

specific leukocyte populations in lymphoid and non-lymphoid tissues of mice and to our 

knowledge, there is no evidence to suggest that they are expressed by non-leukocytic cells in 

the FRT or elsewhere. Moreover, analysis of data from the Immunological Genome Project 

(www.immgen.org) confirmed the highly restricted expression of the genes encoding these 

proteins by the expected leukocyte subset (data not shown). However, it should be noted that 

macrophages can produce low to intermediate amounts of CD11c (Murray and Wynn 2011) 

and eosinophils can express F4/80 (Diener et al. 2016). With the exception of Cd19, all other 

genes were detectably expressed in the FRT (Figure 1 and data not shown). Moreover, there 

was clear evidence of variation in their expression between tissues of the FRT. Most notable 

was the uterus, which compared to other FRT tissues showed highest expression of the genes 

encoding F4/80, CD11c, MBP or CD3g (Figure 1A-D). The uterus, along with the cervix, also 

showed highest expression of Itga2 (which encodes CD49B), the NK cell marker (Figure 1E). 

Compared to the vagina, the cervix had significantly higher expression of the genes encoding 

F4/80, CD11c, or MBP (Figure 1A-C), while the neutrophil marker Ngp was preferentially 

expressed by the vagina and cervix (Figure 1F). Thus, the tissues of the FRT vary in their 

expression of specific markers of major leukocyte subsets suggesting that, as expected, they 

vary with respect to their resident leukocyte populations. 
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Uterus and cervix contain diverse populations of lymphocytes and myeloid cells. 

To explore the diversity of leukocyte content in the FRT, we performed flow cytometry 

on single cell suspensions of uterus and cervix (Figure 2). These two tissues showed the highest 

level, and greatest diversity, of leukocyte marker expression (Figure 1), and, in preliminary 

analysis, proved to be more amenable than ovary and vagina to analysis by flow cytometry 

(data not shown). To aid gate setting, and to act as positive controls, leukocyte-rich BM 

aspirates or single cell suspensions of the PALN (through which FRT lymph drains) were 

included in experiments examining myeloid cells or CD3+ cells, respectively.  

As expected, many BM cells and virtually all PALN cells expressed the pan-leukocyte 

marker, CD45. A proportion of cells isolated live from cervix and uterus were also CD45+ 

(Figure 2). A large fraction of these FRT leukocytes carried CD11b, a protein expressed by all 

myeloid cells (Figure 2A). In BM, the CD11b+ myeloid population can be split according to 

expression of F4/80 and Ly6C into F4/80+ macrophages/eosinophils, F4/80-Ly6Chi monocytes, 

an F4/80- Ly6Clo population (that contains mostly neutrophils and their precursors), and a small 

F4/80-Ly6C- subset likely to contain other granulocytic cells. Equivalent subsets of CD11b+ 

myeloid cells were also identifiable in the cervix and uterus, indicating that these tissues 

contain various populations of cells of the monocyte/macrophage and granulocytic lineages 

(Figure 2A).  

Guided by parallel analysis of PALN, it was also clear that CD3+ leukocytes were 

present in the uterus and the cervix (Figure 2B). As expected, most CD3+ cells in the PALN 

were either CD4+ or CD8+, and equivalent populations of cells were also present in the uterus, 

although their expression of CD4 and CD8 was somewhat lower than that seen in the PALN. 

As expected, virtually all these CD4+ and CD8+ cells expressed a T cell receptor containing the 

alpha and beta chains (TCRab) (data not shown). As previously reported (Johansson, 2003), 
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there was also a significant population of CD4-CD8- ‘double negative’ (DN) CD3+ cells in the 

uterus. In the cervix, CD4+CD3+ cells were present, but CD8+CD3+ cells were rare, and most 

CD3+ cells in this tissue were DN. CD3+CD4+CD25+ cells were rare in PALN, uterus and 

cervix. Cells co-expressing CD3, CD4 and CD25 in mice are typically either regulatory T cells 

(Tregs) or recently-activated CD4+ T helper cells. However, although previous work has shown 

that CD25 is almost always co-expressed with the Treg marker FoxP3 in CD3+CD4+ cells in 

the non-pregnant mouse uterus (Kallikourdis, 2007), expression of FoxP3 would need to be 

specifically analysed before the uterine and cervical CD3+CD4+CD25+ cells we have detected 

can be definitively identified as FoxP3+ Tregs. Any FoxP3-negative CD3+CD4+CD25+ cells 

present could be recently-activated CD4+ T helper cells, FoxP3- Tregs, or another FoxP3-

CD3+CD4+CD25+ cell type. Consistent with previous work (Johansson, 2003), the abundant 

DN CD3+ cells in uterus and cervix, but not those in the PALN, were CD25+ (Figure 2B). 

Further analysis of the DN CD3+ population in the FRT (data not shown) revealed that it 

contained some gd T cells (TCRgd+) and NKT cells (TCRab+NK1.1+), but the majority (>60%) 

resembled the unconventional, extrathymically-derived, regulatory TCRab+ T cells previously 

reported to be abundant within the murine FRT (Johansson, 2003). 

Collectively, the gene expression and flow cytometry data shown in Figures 1 and 2 

indicate that, under homeostatic conditions, the tissues of the FRT carry a diverse repertoire of 

leukocyte populations. In addition, comparisons of different tissues within the FRT provide 

evidence of regional specialisation in leukocyte recruitment and/or retention, which was to be 

expected given the differences in function, microbial exposure and immunological pressure 

that exist between the discrete components of the FRT.  

 

>70% of chemokine genes are expressed in tissues of the FRT 
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Chemokines are likely to contribute to leukocyte trafficking into, within, and out of the 

tissues of the FRT. In order to gain an unbiased and comprehensive overview of constitutive 

chemokine expression in these tissues, Taqman® Gene Expression Arrays were used to analyse 

the expression of the 34 chemokine genes in C57BL/6 mice that are known to directly control 

leukocyte migration (Table 2). This was done using RNA prepared from ovary, uterus, cervix 

and vagina, and matched samples of skin, colon, and small intestine: these non-reproductive 

tissues are known to constitutively express several chemokine genes and chemokine-driven 

tissue-specific homing to these tissues is particularly well-defined, with known involvement of 

ligands for CCR4, 8, 9 or 10. Expression of Gapdh, an endogenous control gene, was used to 

normalise the data.  Transcripts from the Cxcl9, Cxcl10, Cxcl13, Cxcl15, Ccl19, Ccl24, Ccl25 

and Ccl26 genes were either not present or were barely detectable in any FRT tissue, despite, 

in most cases, being readily detectable in at least one of the three non-reproductive tissues (e.g. 

Ccl25 in the small intestine; Ccl24 in the skin) (data not shown). These genes were therefore 

excluded from further analysis. Remarkably, however, the other 26 chemokine genes (>70% 

of those analysed) were clearly expressed in one or more FRT tissue, particularly the uterus, 

cervix and vagina. These data are shown in Figures 3-5, and described in more detail below: 

chemokines have been clustered according to the nature of their expression profile within the 

FRT. Amongst FRT tissues, the ovary showed the lowest expression of virtually all the 

chemokines. Thus, for clarity and consistency, the mean expression of each chemokine in this 

tissue was given an arbitrary relative expression value of 1, and gene expression in all other 

tissues adjusted accordingly. 

 

In the FRT, the uterus shows highest expression of many chemokines 

The predominant chemokine gene expression profile we found was one in which the 

uterus had higher expression than other FRT tissues (Figures 3 & 4).  
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Four chemokines – Ccl1, Ccl5, Ccl28, and Xcl1 – showed significantly higher 

expression in uterus than the other three FRT tissues (Figure 3). Most notable were Xcl1 and 

Ccl28, which showed ~20-fold higher expression in the uterus than other FRT tissues. There 

was also a small (2-3-fold), but statistically significant, increase in Ccl1 and Ccl28 expression 

in vagina compared to cervix.  

Six other chemokines (Ccl2, Ccl6, Ccl9, Ccl12, Cxcl14, and Cxcl16) were significantly 

higher in uterus than ovary and vagina. They also seemed to be more abundant in uterus than 

cervix, but differences between these two tissues were not statistically significant (Figure 4A). 

Of these six chemokines, Ccl6, Cxcl14 and Cxcl16 were expressed at a significantly higher 

level in cervix than vagina.  

Expression of three other chemokines - Cx3cl1, Cxcl12 and Ccl8 - also appeared to be 

highest in uterus (Figure 4B). Statistical analyses revealed that uterus expressed more Cx3cl1 

than cervix and vagina, and more Cxcl12 than vagina. Ccl8 expression was not significantly 

different between uterus, cervix and vagina, but these tissues all expressed more Ccl8 than 

ovary.   

Comparisons to the non-reproductive tissues were also informative (Figures 3 & 4). 

The uterus expressed Ccl1 and Ccl8 to a level equivalent to the skin: CCL1 and CCL8, both 

ligands for CCR8, are known to control the trafficking of leukocytes in skin (Qu, 2004; 

Schaerli, 2004; Gombert, 2005; Islam, 2011; McCully, 2015).  Ccl6, Ccl28 and Cx3cl1 were 

prominently expressed in the intestine, where indispensable functions for these chemokines or 

their receptors have been defined (Hieshima, 2004; Feng, 2006; Kotarsky, 2010; Hadis,  2011; 

Medina-Contreras,  2011; Schneider, 2015).  Ccl28 expression in the uterus was similar to that 

seen in the intestine, while Ccl6 and Cx3cl1 were only ~2-fold lower in uterus than intestine. 

Although there were no striking differences between skin, small intestine and colon with 

respect to expression of Ccl2, Ccl9, Ccl12, Xcl1, Cxcl12, Cxcl14 and Cxcl16, it was notable 



 17 

that these chemokines were all expressed in the uterus to a level that was similar to, or higher 

than, these non-reproductive tissues. Amongst the seven tissues examined, Xcl1 could be 

classified as being the most uterus-specific chemokine. Finally, it is worth noting that, in 

addition to showing preferential expression in the uterus within the FRT, Ccl5 was 

unexpectedly found to be ~10-fold more abundant in the small intestine than the colon. 

Thus, of the many chemokine genes expressed in the FRT, 13 show evidence of 

preferential expression in the uterus. The chemokine expression profile of the cervix bore 

closest resemblance to the uterus. Several of the chemokines expressed by the uterus have well 

defined roles in the skin and intestine, and uterine expression levels were comparable to those 

seen in these non-reproductive tissues.  

 

Identification of chemokines preferentially expressed in ovary, cervix and/or vagina 

 In addition to the 13 chemokine genes discussed above, another 13 were detectably 

expressed by the tissues of the FRT (Figure 5A-E). Although many of these were expressed in 

the uterus, expression by other FRT tissues matched or exceeded uterine expression, and a 

variety of distinct expression profiles were apparent.  

 Ccl3, Ccl4, Ccl7 and Ccl11 were each expressed at an equivalent level in uterus and 

cervix (Figure 5A). The vagina also expressed Ccl3 and Ccl4, but there was a marked reduction 

in expression of Ccl7, and particularly Ccl11, between cervix and vagina. Ccl17 and Ccl22, 

which encode the only chemokines able to activate the CCR4 receptor, had similar expression 

profiles within the tissues of the FRT, peaking in the cervix (Figure 5B). Each of these six 

chemokines was expressed by one or more FRT tissue at a level comparable to, or higher than, 

skin, colon and small intestine (Figure 5A-B).  

 Cxcl1, Cxcl2, Cxcl5 and Cxcl7, which all encode ligands for the CXCR2 receptor, were 

also strongly expressed by the cervix (Figure 5C). Transcripts encoding CXCL1 were ~6-fold 
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more abundant in cervix than uterus and ovary, but this increased to 200-3,000-fold when 

Cxcl2, Cxcl5 and Cxcl7 were examined. The vagina also strongly expressed these three 

chemokines: Cxcl2 expression was similar between the two tissues, although Cxcl5 and Cxcl7 

transcripts were ~3-fold lower in vagina than cervix. Transcripts encoding these four 

chemokines were barely detectable in skin or intestine. 

 Ccl20, which encodes the only chemokine able to activate the CCR6 receptor, also 

showed preferential expression by cervix and vagina (Figure 5D). It was the only chemokine 

for which the vagina appeared to be richest source of expression, although variation in 

expression between individuals meant that the difference between cervix and vagina failed to 

achieve statistical significance.  

 Finally, there were two chemokines for which the ovary was not the lowest expressing 

tissue of the FRT. These were Ccl21 and Ccl27 (Figure 5E). Both were expressed at a similar 

level in ovary and uterus, but Ccl21, and particularly Ccl27, were more strongly expressed in 

ovary than cervix or vagina. The unexpected expression of Ccl27 in the ovary was examined 

further by quantifying CCL27 protein by ELISA in lysates of ovarian and uterine tissue (Figure 

5F). CCL27 was detected in the uterus, but even more of it was present in ovary lysates with, 

on average, ~110pg of CCL27 per mg of tissue. 

 Thus, a number of chemokine genes show broad expression within the FRT, or 

preferential expression in the cervix and vagina. The ovary typically shows the lowest level of 

chemokine gene expression, but it does have a relatively high abundance of Ccl21 and Ccl27 

transcripts and produces appreciable amounts of CCL27 protein. 

 

Changes in chemokine expression in the vagina during the estrous cycle 

Next, to explore the impact of the estrous cycle on chemokine gene expression, the data 

for each individual tissue was split into four groups based on the cycle stage of the mice at the 
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time of tissue harvest i.e. proestrus, estrus, metestrus or diestrus. This had been determined by 

microscopic examination of vaginal lavage collected prior to dissection (Caligioni 2009). In 

uterus, skin, colon and small intestine, we did not detect any statistically significant changes in 

the expression of any of the chemokine genes over the course of the estrous cycle (data not 

shown). In the cervix, Ccl7 was the only chemokine gene whose expression we found to 

detectably vary across the cycle, with a statistically significant reduction from proestrus to 

estrus (Figure 6A and data not shown). In the ovary, the few chemokines that showed relatively 

high expression in this tissue were unaffected by cycle stage, but there was a significant 

reduction in expression of Ccl2 and Ccl4 from proestrus to estrus (Figure 6B and data not 

shown). In contrast to these other FRT tissues, we readily detected differences in vaginal 

chemokine expression over the course of the estrous cycle (Figure 6C). Ccl3, Ccl4, Ccl22, 

Cxcl1, Cxcl2, Cxcl5 and Cxcl7 were all predominantly expressed in metestrus. Expression of 

many of these genes remained high during diestrus, before plummeting in proestrus and 

remaining low during estrus. In contrast, but as seen in the cervix, Ccl7 expression in the vagina 

dropped as mice moved from proestrus into estrus. 

Thus, chemokine gene expression in several FRT tissues can fluctuate over the course 

of the estrous cycle, but it is in the vagina where these changes are most readily observed.  
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Discussion 

Homeostatic leukocyte trafficking into, within and out of the tissues of the FRT 

contributes to reproductive health and fertility. We hypothesised that each FRT tissue contains 

a unique chemokine gene expression profile, components of which might fluctuate with 

cyclical changes in reproductive hormones. Our data support this hypothesis, and highlight the 

complexity of chemokine networks in the FRT.  

There were clear differences between FRT tissues in their expression of genes encoding 

markers of specific leukocyte populations. Although these data do not provide an absolute 

quantitation of leukocyte abundance, they do indicate that there are marked differences in 

leukocyte content between the tissues of the FRT. Our flow cytometry data further illustrates 

the complex nature of this leukocyte content. For example, the CD25+CD3+ population in 

uterus and cervix contains up to five distinct cell types and there are also diverse populations 

of myeloid cells (CD45+CD11b+ cells) in these tissues, consistent with a recent report 

identifying at least nine distinct leukocyte populations in mouse uterus (Diener, 2016). These 

lymphocytes and myeloid cells, or their precursors, will have been recruited from the blood 

and then subject to interstitial cues that control localisation, retention and egress. Based on 

precedents established in non-FRT tissues, chemokines will play a major role in these 

processes. 

We found that 26 chemokine genes are detectably expressed in the FRT of 8-week old 

virgin C57BL/6 mice housed in specific pathogen-free conditions: it will be of interest to 

investigate if chemokine expression profiles vary between strains and over time (e.g. prior to 

sexual maturation, or during and after pregnancy). We found that the uterus is the dominant 

site of chemokine expression, but most chemokines are also expressed in other FRT tissues. 

However, Ccl1, Ccl5, and particularly Ccl28 and Xcl1, appear to be largely restricted to the 

uterus so may mediate migration specifically to this site. Their function in this context remains 
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largely unexplored. CCL5 might have indispensable roles in the uterus, although other 

chemokines expressed in this tissue (CCL3, CCL4, CCL6, CCL7, CCL9, CCL11 and CCL12) 

can activate one or more of the CCL5 receptors (CCR1, CCR3 and CCR5) so might be capable 

of doing the same job. Indeed, the complex interactions between these chemokines and their 

receptors may have evolved to ensure that responses cannot be readily disrupted by pathogen 

evasion strategies or host genetic variation. However, genetic deficiency in a single chemokine, 

Ccl11, is sufficient to disrupt eosinophil recruitment to the uterus, despite it expressing several 

other genes, including Ccl5, that encode chemokines capable of inducing leukocyte migration 

through CCR3, the dominant CCL11 receptor on eosinophils. Ccl11 deficiency also delays the 

onset of puberty, although estrous cycle and reproduction are not affected (Gouon-Evans, 

2001).   

CCL1, CCL28 and XCL1, encoded by other chemokine genes expressed primarily by 

the uterus in the FRT, direct leukocyte trafficking through CCR8, CCR10 and XCR1, 

respectively. CCR8 and CCR10 are also activated by CCL8 and CCL27, respectively: the genes 

encoding these chemokines are also expressed in uterus. CCR10 directs IgA-producing 

antibody-secreting cells (IgA ASCs) to the gut wall driven by the high expression of Ccl28 in 

the small intestine and colon (Pan 2000; Kunkel 2003; Lazarus, 2003; Hieshima, 2004; Ogawa, 

2004; Feng, 2006). IgA ASCs generated by intranasal or intravaginal immunisation can home 

to the uterus, but not cervix or vagina, and CCL28 neutralisation attenuates this process (Cha, 

2011). Ccl27 expressed in the uterus might contribute to this process.  

CCR10, along with CCR8, might also direct T cell homing to the uterus: they have both 

been implicated in the trafficking of leukocytes, particularly T cells, into and within the skin 

of humans and mice during homeostasis and inflammation (Reiss, 2001; Homey, 2002; Soler, 

2003; Qu, 2004; Schaerli, 2004; Gombert, 2005; Sigmundsdottir, 2007; Islam, 2011; McCully, 

2012; Nagao, 2012; McCully, 2015).  Our data show that uterus expresses Ccl1 and Ccl8 at a 
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level equivalent to skin. To our knowledge there have been no studies exploring the function 

of CCR8 and its ligands in the uterus. This is also the case for XCL1. XCR1 is the only receptor 

for XCL1 and has no other known ligands. It is highly restricted to a subset of DCs that cross-

present antigens to CD8+ T cells to initiate immune responses to viruses or tumours (Dorner, 

2009; Crozat, 2010; Crozat, 2011).  Mice lacking XCR1 or XCL1 show diminished CD8+ T 

cell responses to infection (Dorner, 2009). The XCL1/XCR1 axis also maintains intestinal 

homeostasis by controlling T cell and DC abundance in the tissue (Ohta, 2016).  We speculate 

that XCL1/XCR1 serves a similar homeostatic function in the uterus, and will contribute to 

anti-viral immune responses in the FRT. Interestingly, male antigens in seminal fluid can be 

cross-presented to CD8+ T cells (Moldenhauer, 2009) and generate tolerogenic CD4+ Tregs 

(Robertson, 2009; Guerin, 2011), so XCL1 might play important roles in preparing the uterus 

for implantation. CCL21 is also likely to be important in this regard. Acting through CCR7, it 

directs DC egress from tissues into lymphatic vessels (Girard, 2012), after which the DCs travel 

to lymph nodes where they activate or tolerize naïve T cells. 

In contrast to previous studies (Gouon-Evans, 2001; Kallikourdis, 2007; Hickey, 

2013b; Yip, 2013), we did not find any statistically significant changes in chemokine mRNA 

levels in the uterus over the course of the estrous cycle, perhaps because of variation in mouse 

age, housing conditions or strain (we used C57BL/6 rather than CD-1 (Yip, 2013) or 129/SvEv 

(Gouon-Evans, 2001)), or because any differences have been masked by our use of the whole 

tissue, rather than its individual component parts.  It is also possible that our study did not have 

the power to detect small differences in gene expression between phases, which are more likely 

to be revealed when only two phases of the cycle are compared (Yip, 2013).  It is also worth 

noting that although Diener and colleagues recently reported fluctuations in uterine leukocyte 

populations across the estrous cycle, these failed to achieve statistical significance (Diener et 

al. 2016) so a major change in chemokine expression across the cycle may not be required.  
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Ccl21 and Ccl27 are the only chemokine genes that are expressed at a higher level in 

ovary than other FRT tissues. The most likely function of CCL21 is to mediate DC migration 

out of the ovary, but roles for CCL27 are harder to predict. An important first step will be to 

identify cells in the ovary carrying functional receptors for this protein. 

A number of chemokine genes showed highest expression in cervix and/or vagina, 

including those encoding the CCR4 ligands CCL17 and CCL22, whose expression peaked in 

the cervix. CCR4 can direct T cell homing to skin (Campbell, 1999): expression of Ccl17 and 

Ccl22 in the cervix was at least twice that of skin. These chemokines may therefore contribute 

to the recruitment of the various T cell populations present in the cervix. Our finding that Ccl20 

is highly expressed in the vagina is consistent with studies showing CCL20 protein in mouse 

vaginal secretions (Hicke, 2013a). CCL20, which activates CCR6, has been proposed to drive 

the recruitment of Langerhans cell precursors into the human vaginal epithelium (Cremel, 

2005) and the keratinocyte layer of human skin (Charbonnier, 1999; Le Borgne, 2006).  CCL20 

in the vaginal fluid of Balb/c mice peaks during diestrus, and its secretion is suppressed by 

estradiol (Hickey, 2013a).  Ccl20 transcripts were not measured in this study, and, using 

C57BL/6 mice, we did not find any differences in Ccl20 expression in the vagina across the 

estrous cycle. The effect of estradiol on CCL20 secretion may therefore occur post-

transcriptionally, although Ccl20 expression might be regulated differently in Balb/c and 

C57BL/6 mice. The presence of CCL20 in vaginal secretions is interesting because high 

concentrations have direct antimicrobial properties (Yang, 2003; Guesdon, 2015).  In fact, 

many other chemokines expressed in the FRT exhibit antimicrobial properties (Wolf, 2012) 

and could conceivably regulate the vaginal microbiome.    

The other chemokine genes preferentially expressed in cervix and vagina encode 

ligands for CXCR2, a receptor that directs neutrophil migration. Vaginal expression is 

profoundly influenced by estrous cycle stage, each peaking in metestrus and diestrus, before 
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dropping dramatically as mice enter proestrus. At metestrus, neutrophils enter the vaginal 

epithelium and lumen: neutralisation of CXCR2 profoundly inhibits this process (Sonoda, 

1998), and neutrophil depletion results in a block at diestrus, suggesting neutrophil recruitment 

to the FRT is critical for progress through the estrous cycle (Sasaki, 2009).  CXCR2, and 

hormonal regulation of its ligands, is also critical in regulating neutrophil migration into the 

vaginal wall and lumen during Candida albicans infection (Lasarte, 2016) so CXCR2 appears 

to play major physiological and immunological roles in the vagina. 

Expression of other chemokines was also affected by the estrous cycle. In vagina, Ccl3, 

Ccl4 and Ccl22 transcripts peaked during diestrus and/or metestrus, while Ccl7 was suppressed 

in estrus in both cervix and vagina. Ccl3, Ccl4 and Ccl7 encode chemokines that bind to CCR5, 

but CCL3 and CCL7 can also bind to other receptors. These various receptors are expressed on 

neutrophils, monocytes, macrophages, NK cells, and some T cell populations, and further 

investigations are required to determine if they drive fluctuations in leukocyte trafficking over 

the course of the estrous cycle. 

Estrus was associated with a reduction in the expression of Ccl2 and Ccl4 in the ovary. 

Macrophages, which can be derived from blood monocytes, are the most abundant leukocyte 

in the ovary, and their presence peaks during proestrus and metestrus (Petrovska, 1996).  CCL2, 

by binding CCR2, is central to monocyte trafficking in mice, and CCL4 can also contribute so 

they could contribute to cyclical changes in ovarian macrophages by driving monocyte 

recruitment. Ovarian macrophages serve a variety of functions (Wu, 2004), and their depletion 

in mice leads to disruption of ovarian vasculature (Turner, 2011). 

In conclusion, our study has revealed the complex chemokine expression profiles of 

mouse FRT tissues under homeostatic conditions. This provides a framework for future 

investigations aimed at defining critical molecular mechanisms responsible for directing the 

trafficking and localisation of specific leukocyte populations in these tissues. It is also 
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important to note that while the principal function of chemokines is to drive the migration of 

leukocytes into, within, and out of tissues, chemokines can also control other aspects of 

leukocyte behaviour and function, as well as regulating the biology of tissue-resident cells, 

such as endothelial, epithelial and mesenchymal cells, particularly when homeostasis is 

perturbed (Hughes, 2018). It will therefore be important to determine if chemokines in the FRT 

do more than direct leukocyte trafficking. The availability of experimental tools means the 

function of chemokines in the FRT will be easiest to dissect in mice, but key mechanisms are 

likely to be conserved in other species so such studies will no doubt improve understanding of 

physiological and pathophysiological processes in the human FRT. 

  



 26 

References 

 

Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk 

R, Sparre-Ulric, AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs 

R, Nomiyama H, Power CA, Proudfoot AE, Rosenkilde MM, Rot A, Sozzani S, Thelen M, 

Yoshie O, Zlotnik A. 2014. International Union of Pharmacology. LXXXIX. Update on the 

extended family of chemokine receptors and introducing a new nomenclature for atypical 

chemokine receptors. Pharmacol Rev 66(1): 1-79 

 

Bertolin, K., and Murphy, B.D. (2014) Reproductive Tract Changes During the Mouse Estrous 

Cycle. In Croy, A., et al. ed. The Guide to Investigation of Mouse Pregnancy. pp. 85-94.   

 

Blank V, Hirsch E, Challis JR, Romero R, Lye SJ. 2008 Cytokine signaling, inflammation, 

innate immunity and preterm labour - a workshop report. Placenta 29: S102-4. 

 

Bollapragada S, Youssef R, Jordan F, Greer I, Norman J, Nelson S. 2009. Term labor is 

associated with a core inflammatory response in human fetal membranes, myometrium, and 

cervix. Am J Obstet Gynecol 200: 104 e1-11 

 

Byers SL, Wiles MV, Dunn SL, Taft RA. 2012. Mouse Estrous Cycle Identification Tool and 

Images. PLoS ONE 7: e35538. 

 

Caligioni CS. 2009. Assessing reproductive status/stages in mice. Curr Protoc Neurosci 

Appendix 4. 



 27 

Campbell DJ, Butcher EC. 2002. Intestinal attraction: CCL25 functions in effector lymphocyte 

recruitment to the small intestine. J Clin Invest 110: 1079-81. 

 

Campbell, JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P, Andrew DP, Warnke R, Ruffing 

N, Kassam N, Wu L, Butcher EC. 1999. The chemokine receptor CCR4 in vascular recognition 

by cutaneous but not intestinal memory T cells. Nature 400: 776-80. 

 

Cha HR, Ko HJ, Kim ED, Chang SY, Seo SU, Cuburu N, Ryu S, Kim S, Kweon MN. 2011. 

Mucosa-associated epithelial chemokine/CCL28 expression in the uterus attracts CCR10+ IgA 

plasma cells following mucosal vaccination via estrogen control. J Immunol 187: 3044-52. 

 

Charbonnier AS., Kohrgruber N, Kriehuber E, Stingl G, Rot A, Maurer,D. 1999. Macrophage 

inflammatory protein 3alpha is involved in the constitutive trafficking of epidermal langerhans 

cells. J Exp Med 190: 1755-68. 

 

Cremel M, Berlier W, Hamzeh H, Cognasse F, Lawrence P, Genin C, Bernengo JC, Lambert, 

C, Dieu-Nosjean MC, Delezay O. 2005. Characterization of CCL20 secretion by human 

epithelial vaginal cells: involvement in Langerhans cell precursor attraction. J Leukoc Biol 78: 

158-66. 

 

Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, 

Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M. 2010. The XC 

chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to 

mouse CD8alpha+ dendritic cells. J Exp Med 207: 1283-92. 



 28 

Crozat K, Tamoutounour S, Vu Manh TP, Fossum E, Luche H, Ardouin L, Guilliams M, 

Azukizawa H, Bogen B, Malissen B, Henri S, Dalod M. 2011. Cutting edge: expression of 

XCR1 defines mouse lymphoid-tissue resident and migratory dendritic cells of the CD8alpha+ 

type. J Immunol 187: 4411-5. 

 

Dekel N, Gnainsky Y, Granot I, Racicot K, Mor G. 2014. The role of inflammation for a 

successful implantation. Am J Reprod Immunol 72: 141-7. 

 

Diener KR, Robertson SA, Hayball JD, Lousberg EL. 2016 Multi-parameter flow cytometric 

analysis of uterine immune cell fluctuations over the murine estrous cycle. J Reprod Immunol 

113: 61-7. 

 

Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Guttler S, Hutloff A, Mages HW, Ranke 

K, Schaefer M, Jack RS, Henn V, Kroczek RA. 2009. Selective expression of the chemokine 

receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. 

Immunity 31: 823-33. 

 

Feng N, Jaimes MC, Lazarus NH, Monak D, Zhang C, Butcher EC, Greenberg HB. 2006. 

Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast 

recruitment to the intestinal lamina propria after rotavirus infection. J Immunol 176: 5749-59 

 

Garlanda C, Maina V, Martinez de la Torre Y, Nebuloni M, Locati M. 2008. Inflammatory 

reaction and implantation: the new entries PTX3 and D6. Placenta 29 Suppl B: 129-34. 

 



 29 

Girard JP, Moussion C, Forster R. 2012. HEVs, lymphatics and homeostatic immune cell 

trafficking in lymph nodes. Nat Rev Immunol 12: 762-73. 

 

Gombert M, Dieu-Nosjean MC, Winterberg F, Bunemann E, Kubitza RC, Da Cunha L, 

Haahtela A, Lehtimaki S, Muller A, Rieker J, Meller S, Pivarcsi A, Koreck A, Fridman WH, 

Zentgraf HW, Pavenstadt H, Amara A, Caux C, Kemeny L, Alenius H, Lauerma A, Ruzicka 

T, Zlotnik A, Homey B. 2005. CCL1-CCR8 interactions: an axis mediating the recruitment of 

T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 

174: 5082-91. 

 

Gouon-Evans V, Pollard JW. 2001. Eotaxin is required for eosinophil homing into the stroma 

of the pubertal and cycling uterus. Endocrinology 142: 4515-21. 

 

Guerin LR, Moldenhauer LM, Prins JR, Bromfield JJ, Hayball JD, Robertson SA. 2011. 

Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation 

mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol 

Reprod 85: 397-408. 

 

Guesdon W, Auray G, Pezier T, Bussière FI, Drouet F, Le Vern Y, Marquis M, Potiron L, 

Rabot S, Bruneau A, Werts C, Laurent F, Lacroix-Lamandé S. 2015. CCL20 displays 

antimicrobial activity against Cryptosporidium parvum but its expression is reduced during 

infection in the intestine of neonatal mice. Journal of Infect Dis 212: 1332-1340. 

 



 30 

Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A, Wagner N, Muller W, 

Sparwasser T, Forster R, Pabst O. 2011. Intestinal tolerance requires gut homing and expansion 

of FoxP3+ regulatory T cells in the lamina propria. Immunity 34: 237-46. 

 

Hickey DK, Fahey JV, Wira CR. 2013a.  Estrogen receptor alpha antagonists mediate changes 

in CCL20 and CXCL1 secretions in the murine female reproductive tract. Am J Reprod 

Immunol 69: 159-67. 

Hickey, DK, Fahey JV, Wira CR. 2013b. Mouse estrous cycle regulation of vaginal versus 

uterine cytokines, chemokines, alpha-/beta-defensins and TLRs. Innate Immun 19: 121-31. 

 

Hieshima K, Kawasaki Y, Hanamoto H, Nakayama T, Nagakubo D, Kanamaru A, Yoshie O. 

2004. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA 

antibody-secreting cells. J Immunol 173: 3668-75. 

 

Homey B, Alenius H, Muller A, Soto H, Bowman EP, Yuan W, McEvoy L, Lauerma AI, 

Assmann T, Bunemann E, Lehto M, Wolff H, Yen D, Marxhausen H, To W, Sedgwick J, 

Ruzicka T, Lehmann P, Zlotnik A. 2002. CCL27-CCR10 interactions regulate T cell-mediated 

skin inflammation. Nat Med 8: 157-65. 

 

Hughes CE, Nibbs RJB. 2018. A guide to chemokines and their receptors. FEBS J 285: 2944-

71. 

 

Islam SA, Chang DS, Colvin RA, Byrne MH, McCully ML, Moser B, Lira SA, Charo IF, 

Luster AD. 2011. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-

5+ T(H)2 cells. Nat Immunol 12: 167-77. 



 31 

 

Ito M, Nakashima A, Hidaka T, Okabe M, Bac ND, Ina S, Yoneda S, Shiozaki A, Sumi S, 

Tsuneyama K, Nikaido T, Saito S. 2010. A role for IL-17 in induction of an inflammation at 

the fetomaternal interface in preterm labour. J Reprod Immunol 84: 75-85. 

 

Johansson M, Lycke N. 2003. A unique population of extrathymically derived alpha beta 

TCR+CD4-CD8- T cells with regulatory functions dominates the mouse female genital tract. J 

Immunol 170: 1659-66. 

 

Johnson LA, Jackson DG. 2010. Inflammation-induced secretion of CCL21 in lymphatic 

endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int Immunol 

22: 839-49. 

 

Kallikourdis M, Betz AG. 2007. Periodic accumulation of regulatory T cells in the uterus: 

preparation for the implantation of a semi-allogeneic fetus? PLoS One 2: e382. 

 

Kotarsky K, Sitnik KM, Stenstad H, Kotarsky H, Schmidtchen A, Koslowsk, M, Wehkamp J, 

Agace WW. 2010. A novel role for constitutively expressed epithelial-derived chemokines as 

antibacterial peptides in the intestinal mucosa. Mucosal Immunol 3: 40-8. 

 

Kunkel EJ, Kim CH, Lazarus NH, Vierra MA, Soler D, Bowman EP, Butcher EC. 2003. 

CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-

secreting cells. J Clin Invest 111: 1001-10. 

 



 32 

Lasarte S, Samaniego R, Salinas-Munoz L, Guia-Gonzalez MA, Weiss LA, Mercader E, 

Ceballos-Garcia E, Navarro-Gonzalez T, Moreno-Ochoa L, Perez-Millan F, Pion M, Sanchez-

Mateos P, Hidalgo A, Munoz-Fernandez MA, Relloso M. 2016. Sex Hormones Coordinate 

Neutrophil Immunity in the Vagina by Controlling Chemokine Gradients. J Infect Dis 213: 

476-84. 

 

Laux-Biehlmann A, d'Hooghe T, Zollner TM. 2015. Menstruation pulls the trigger for 

inflammation and pain in endometriosis. Trends Pharmacol Sci 36: 270-6. 

 

Lazarus NH, Kunkel EJ, Johnston B, Wilson E, Youngman KR, Butcher EC. 2003. A common 

mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts 

IgA plasmablasts. J Immunol 170: 3799-805. 

 

Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, van Rooijen N, Caux C, Ait-Yahia S, 

Vicari A, Kaiserlian D, Dubois B. 2006. Dendritic cells rapidly recruited into epithelial tissues 

via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24: 191-

201. 

 

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-8. 

 

Maybin JA, Critchley HO, Jabbour HN. 2011. Inflammatory pathways in endometrial 

disorders. Mol Cell Endocrinol 335: 42-51. 

 



 33 

McCully ML, Collins PJ, Hughes TR, Thomas CP, Billen J, O'Donnell VB, Moser B. 2015. 

Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. 

J Immunol 195: 96-104. 

 

McCully ML, Ladell K, Hakobyan S, Mansel RE, Price DA, Moser B. 2012. Epidermis 

instructs skin homing receptor expression in human T cells. Blood 120: 4591-8. 

 

Medina-Contreras O, Geem D, Laur O, Williams IR, Lira SA, Nusrat A, Parkos CA, Denning 

TL. 2011. CX3CR1 regulates intestinal macrophage homeostasis, bacterial translocation, and 

colitogenic Th17 responses in mice. J Clin Invest 121: 4787-95. 

 

Moldenhauer LM, Diener KR, Thring DM, Brown MP, Hayball JD, Robertson SA. 2009. 

Cross-presentation of male seminal fluid antigens elicits T cell activation to initiate the female 

immune response to pregnancy. J Immunol 182: 8080-93. 

 

Murray PJ, Wynn TA. 2011. Protective and pathogenic functions of macrophage subsets. Nat 

Rev Immunol 11(11): 723-37 

 

Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY, Ueha S, Horiuchi K, 

Tanizaki H, Kabashima K, Kubo A, Cho YH, Clausen BE, Matsushima K, Suematsu M, 

Furtado GC, Lira SA, Farber JM, Udey MC, Amagai M. 2012. Stress-induced production of 

chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol 

13: 744-52. 

 



 34 

Nomiyama H, Osada N, Yoshie O. 2013. Systematic classification of vertebrate chemokines 

based on conserved synteny and evolutionary history. Genes Cells 18: 1-16. 

 

Ogawa H, Iimura M, Eckmann L, Kagnoff MF. 2004. Regulated production of the chemokine 

CCL28 in human colon epithelium. Am J Physiol Gastrointest Liver Physiol 287: G1062-9. 

 

Ohta T, Sugiyama M, Hemmi H, Yamazaki C, Okura S, Sasaki I, Fukuda Y, Orimo T, Ishii 

KJ, Hoshino K, Ginhoux F, Kaisho T. 2016. Crucial roles of XCR1-expressing dendritic cells 

and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep 6: 23505. 

 

Ojeda-Ojeda M, Murri M, Insenser M, Escobar-Morreale HF. 2013. Mediators of low-grade 

chronic inflammation in polycystic ovary syndrome (PCOS). Curr Pharm Des 19: 5775-91. 

 

Pan J, Kunkel EJ, Gossla, U, Lazarus N, Langdon P, Broadwell K, Vierra MA, Genovese MC, 

Butcher EC, Soler D. 2000. A novel chemokine ligand for CCR10 and CCR3 expressed by 

epithelial cells in mucosal tissues. J Immunol 165: 2943-9. 

 

Petrovsk M, Dimitrov DG, Michael SD. 1996. Quantitative changes in macrophage distribution 

in normal mouse ovary over the course of the estrous cycle examined with an image analysis 

system. Am J Reprod Immunol 36: 175-83. 

 

Phillips RJ, Fortier MA, Lopez Bernal A. 2014. Prostaglandin pathway gene expression in 

human placenta, amnion and choriodecidua is differentially affected by preterm and term 

labour and by uterine inflammation. BMC Pregnancy Childbirth 14: 241. 

 



 35 

Pijnenborg R. 2002. Implantation and immunology: maternal inflammatory and immune 

cellular responses to implantation and trophoblast invasion. Reprod Biomed Online 4: Suppl 

3:14-7. 

 

Qu C, Edwards EW, Tacke F, Angeli V, Llodra J, Sanchez-Schmitz G, Garin A, Haque NS, 

Peters W, van Rooijen N, Sanchez-Torres C, Bromberg J, Charo IF, Jung S, Lira SA, Randolph 

GJ. 2004. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived 

dendritic cells to lymph nodes. J Exp Med 200: 1231-41. 

 

Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. 2001. CC chemokine receptor 

(CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte 

trafficking to inflamed skin. J Exp Med 194: 1541-7. 

 

Robertson SA, Guerin LR, Bromfield JJ, Branson KM, Ahlstrom AC, Care AS. 2009. Seminal 

fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to 

paternal alloantigens in mice. Biol Reprod 80: 1036-45. 

 

Romero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel LA, Nien JK. 2006. Inflammation 

in preterm and term labour and delivery. Semin Fetal Neonatal Med 11: 317-26. 

 

Sanguinete MMM, De Oliveira PH, Martins-Filho S, Micheli DC, Beatriz Martins Tavares-

Murta BM, Murta EFC, Nomelini RS. 2017. Serum IL-6 and IL-8 correlate with prognostic 

factors in ovarian cancer. Immun Invest. 46: 677-88 

 



 36 

Sasaki S, Nagata K, Kobayashi Y. 2009. Regulation of the estrous cycle by neutrophil 

infiltration into the vagina. Biochem Biophys Res Commun 382: 35-40. 

 

Schaerli P, Ebert L, Willimann K, Blaser A, Roos RS, Loetscher P, Moser B. 2004. A skin-

selective homing mechanism for human immune surveillance T cells. J Exp Med 199: 1265-

75. 

 

Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M. 2014. 

Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells 

of PCOS women. Mol Hum Reprod 20: 49-58. 

 

Schneider KM, Bieghs V, Heymann F, Hu W, Dreymueller D, Liao L, Frissen M, Ludwig A, 

Gassler N, Pabst O, Latz E, Sellge G, Penders J, Tacke F, Trautwein C. 201. CX3CR1 is a 

gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining 

intestinal homeostasis. Hepatology 62: 1405-16. 

 

Sheridan BS, Lefrancois L. 2011. Regional and mucosal memory T cells. Nat Immunol 12: 

485-91. 

 

Shynlova O, Nedd-Roderique T, Li Y, Dorogin A, Lye SJ. 2013. Myometrial immune cells 

contribute to term parturition, preterm labour and post-partum involution in mice. J Cell Mol 

Med 17: 90-102. 

 



 37 

Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC. 2007. DCs 

metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal 

chemokine CCL27. Nat Immunol 8: 285-93. 

 

Singh M, Loftus T, Webb E, Benencia F. 2016. Minireview: Regulatory T cells and ovarian 

cancer. Immun Invest 45: 712-20 

 

Soler D, Humphreys TL, Spinola SM, Campbell JJ. 2003. CCR4 versus CCR10 in human 

cutaneous TH lymphocyte trafficking. Blood 101: 1677-82. 

 

Sonoda Y, Mukaida N, Wang JB, Shimada-Hiratsuka M, Naito M, Kasahara T, Harada A, 

Inoue M, Matsushima K. 1998. Physiologic regulation of postovulatory neutrophil migration 

into vagina in mice by a C-X-C chemokine(s). J Immunol 160: 6159-65. 

 

Spencer RN, Carr DJ, David AL. 2014. Treatment of poor placentation and the prevention of 

associated adverse outcomes--what does the future hold? Prenat Diagn 34: 677-84. 

 

Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V, Shakhar G. 2011. DC 

mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium 

and intralymphatic crawling. J Exp Med 208: 2141-53. 

 

Thomson AJ, Telfer JF, Young A, Campbell S, Stewart CJ, Cameron IT, Greer IA, Norman 

JE. 1999. Leukocytes infiltrate the myometrium during human parturition: further evidence 

that labour is an inflammatory process. Hum Reprod 14: 229-36. 

 



 38 

Turner EC, Hughes J, Wilson H, Clay M, Mylonas KJ, Kipari T, Duncan WC, Fraser HM. 

2011. Conditional ablation of macrophages disrupts ovarian vasculature. Reprod 141: 821-31. 

 

Wolf M, Moser B. 2012. Antimicrobial activities of chemokines: not just a side-effect? Front 

Immunol 3: 213. 

 

Wu R, Van der Hoek KH, Ryan NK, Norman RJ, Robker RL. 2004. Macrophage contributions 

to ovarian function. Hum Reprod Update 10: 119-33. 

 

Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ. 2003. Many 

chemokines including CCL20/MIP-3α display antimicrobial activity. J Leuk Biol. 74: 448-455. 

 

Yip KS, Suvorov A, Connerney J, Lodato NJ, Waxman DJ. 2013. Changes in Mouse Uterine 

Transcriptome in Estrus and Proestrus. Biol Reprod 89: 13-13. 

 

Zlotnik A, Yoshie O. 2012. The chemokine superfamily revisited. Immunity 36: 705-16. 

 

 

  



 39 

Figure Legends 

 

Figure 1: Comparative expression of leukocyte markers in the tissues of the FRT.  RNA 

was isolated from the ovary (n=20), uterus (n=20), cervix (n=19) and vagina (n=20) of virgin 

C57BL/6 mice. The RNA was converted into cDNA, and QPCR was used to compare 

expression of (A) Emr1, (B) Itgax, (C) Prg2, (D) CD3g, (E) Itga2 and (F) Ngp. The proteins 

encoded by these genes are indicated in parentheses. Expression of the Gapdh control gene was 

used to normalise the data. Data show mean relative expression ± S.E.M. with expression by 

ovary set to 1. The statistical significance of differences between FRT tissues was determined 

using the Kruskal-Wallis test followed by a post hoc Dunn’s test.  *p<0.05, **p<0.01, 

****p<0.0001. 

 

Figure 2: Uterus and cervix contain diverse populations of lymphocytes and myeloid cells. 

Single cell suspensions of uterus, cervix, bone marrow and PALN from virgin C57BL/6 mice 

were immunostained with fluorescently labelled antibodies and examined by flow cytometry. 

Cell debris, dead cells and cell doublets/aggregates have been excluded from all data shown. 

(A) Myeloid cells. Left panels: Histogram plots showing expression of CD45 on live single 

cells. Middle panels: Histogram plots showing expression of CD11b by CD45+ cells. The 

dotplots show expression of F4/80 and Ly6C by CD45+CD11b+ cells (F4/80+, Ly6Chi and 

Ly6Clo populations are labelled). (B) CD3+ cells. Left panels: Histogram plots showing 

expression of CD45 on live single cells. Adjacent panels: Histogram plots showing expression 

of CD3 by CD45+ cells. The dotplots show expression of CD8 and CD4 by CD45+CD3+ cells. 

Right panels: Overlaid histogram plots showing CD25 expression by CD45+CD3+CD4+ and 

CD45+CD3+CD4-CD8- cells. In both A and B, the numbers on the histograms and dotplots 

show the percentage of cells that fall within the region indicated by the horizontal line 
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(histograms) or within each box (dotplots). Data are representative of experiments repeated on 

at least four occasions with 3 or more mice per group.  

 

Figure 3: Four chemokines show higher expression in the uterus than all other FRT 

tissues. Comparative expression of Ccl1, Ccl5, Ccl28 and Xcl1 in ovary (n=20), uterus (n=20), 

cervix (n=19), vagina (n=20), skin (n=20), colon (n=20) and small intestine (n=20) of virgin 

C57BL/6 mice.  Expression of the Gapdh control gene was used to normalise the data. Data 

show mean relative expression ± S.E.M. with expression by ovary set to 1. The statistical 

significance of differences between tissues was determined using the Kruskal-Wallis test 

followed by a post hoc Dunn’s test. Only statistically significant differences between FRT 

tissues are shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 4: Nine other chemokines show preferential expression in the uterus. Comparative 

expression of (A) Ccl2, Ccl6, Ccl9, Ccl12, Cxcl14 and Cxcl16, and (B) Ccl8, Cxcl12 and 

Cx3cl1 in ovary (n=20), uterus (n=20), cervix (n=19), vagina (n=20), skin (n=20), colon (n=20) 

and small intestine (n=20) of virgin C57BL/6 mice.  Expression of the Gapdh control gene was 

used to normalise the data. Data show mean relative expression ± S.E.M. with expression by 

ovary set to 1. The statistical significance of differences between tissues was determined using 

the Kruskal-Wallis test followed by a post hoc Dunn’s test. Only statistically significant 

differences between FRT tissues are shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 5: Thirteen other chemokines are preferentially expressed in ovary, cervix and/or 

vagina. Comparative expression of (A) Ccl3, Ccl4, Ccl7 and Ccl11; (B) Ccl17 and Ccl22; (C) 

Cxcl1, Cxcl2, Cxcl5 and Cxcl7; (D) Ccl20; and (E) Ccl21 and Ccl27 in ovary (n=20), uterus 

(n=20), cervix (n=19), vagina (n=20), skin (n=20), colon (n=20) and small intestine (n=20) of 
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virgin C57BL/6 mice.  Expression of the Gapdh control gene was used to normalise the data. 

Data show mean relative expression ± S.E.M. with expression by ovary set to 1. The statistical 

significance of differences between tissues was determined using the Kruskal-Wallis test 

followed by a post hoc Dunn’s test. Only statistically significant differences between FRT 

tissues are shown. (F) ELISA-based quantitation of CCL27 protein in lysates of ovary and 

uterus (n=12), with statistical differences determined using the Mann-Whitney test.  *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 6: Chemokine expression can vary with estrous cycle stage, particularly in the 

vagina. Comparative expression of (A) Ccl7 in the cervix; (B) Ccl2 and Ccl4 in the ovary; and 

(C) Ccl3, Ccl4, Ccl7, Ccl22, Cxcl1, Cxcl2, Cxcl5 and Cxcl7 in the vagina of virgin C57BL/6 

mice determined to be at P=Protestrus (n=5), E= Estrus (n=7), M=Metestrus (n=5) or 

D=Diestrus (n=3).  Expression of the Gapdh control gene was used to normalise the data. Data 

show mean relative expression ± S.E.M. with expression at proestrus set to 1. The statistical 

significance of differences between estrous cycle stages were examined using the Kruskal-

Wallis test followed by a post hoc Dunn’s test. *p<0.05, **p<0.01. 
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Figure 2 
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Figure 3 
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Figure 6 
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