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Abstract 

Here I describe a new function of Focal Adhesion Kinase (FAK) in driving anti-

tumour immune evasion.  The kinase activity of FAK in squamous cancer cells 

drives the recruitment of regulatory T-cells (Tregs) by transcriptionally regulating 

chemokine/cytokine and ligand-receptor networks, including the transcription of 

CCL5 and TGFβ, which are required for enhanced Treg recruitment. In turn, these 

changes inhibit antigen-primed cytotoxic CD8+ T-cell activity in the tumour 

microenvironment, permitting survival and growth of FAK-expressing tumours.  I 

show that immune evasion requires FAK’s catalytic activity, and a small molecule 

FAK kinase inhibitor, VS-4718, which is currently in clinical development, drives 

depletion of Tregs and permits CD8+ T-cell-mediated tumour clearance.  It is 

therefore likely that FAK inhibitors may trigger immune-mediated tumour 

regression, providing previously unrecognized therapeutic benefit. 
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Lay Summery 

Cancer is a disease where cells of the body become damaged, grow uncontrollably 

and form tumours. Like many diseases, the body’s immune system has evolved to 

recognise and destroy infected or damaged cells. After a cell becomes damaged, the 

immune system is turned on and destroys the damaged cell, allowing healthy cells to 

take its place. However, after the immune system has done this, it must be turned off 

to stop healthy cell coming under attack. Specialized regulatory cells called Tregs 

help to turn off the active immune system, allowing the damaged cells to be quickly 

recognised and destroyed without this ‘autoimmune response’ damaging healthy 

tissues. So why does this not happen in cancer? Tumours can hijack Tregs in order to 

turn off the immune response prematurely, before it can destroy the whole tumour. 

This allows the tumour to escape the immune response, and the tumour continues to 

grow without attack from the immune system.  

Recent work has begun to try and ‘re-activate’ the immune system in cancer. Here, 

drugs aimed at the immune cells themselves, turn the immune response ‘back on’, 

causing the tumour to become under attack from the immune cells once more. This 

approach can have some drastic side effects however, as activating the immune 

response in this way can lead to autoimmune disease, and so treatment with these 

drugs becomes a balancing act; by activating the immune system to kill the cancer by 

stopping the ability to turn itself off, treatment with these drugs hopes to destroy the 

tumour before the autoimmune response damages healthy tissue. Not only this, but 

the tumour still has the ability to hijack the regulatory Tregs, and so these types of 

treatments can be ineffective at destroying the tumour but still carry the risk of 

seriously damaging healthy tissue.   

I have discovered a way to target the tumours ability to hijack the regulatory Tregs, 

making the tumour visible to the immune system. Using drugs to target a protein that 

is found in tumour cells called Focal Adhesion Kinase (FAK), these compound stop 

the tumour from using Tregs to hide from the immune response, allowing the 

immune cells to destroy the tumour. Drugs aimed at FAK have very few side effects 

and are much safer to use. I have also shown that this not only leads to the 

destruction of tumours by the immune system in a number of different types of 
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cancer, but that this could make other drugs aimed at the immune cells safer and 

more effective at treating cancer.   
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1 Introduction 

 

Cancer is a multifactorial disease in which cells uncontrollably proliferate, invade 

and destroy surrounding tissue.  It is one of the leading causes of morbidity and 

mortality worldwide, with approximately 14 million new cases and 8.2 million 

cancer related deaths in 20121. DNA damage-induced mutations can give rise to 

cancer initiating oncogenes that drive the transformation of a single normal cell into 

a cancer cell, which in turn proliferate and grow into a tumour.  A number of factors 

contribute to the onset of transformation, the most prevalent being exposure to 

carcinogens including: 1) chemical carcinogens such as tobacco and asbestos, 2) 

physical carcinogens such as exposure to UV and ionizing radiation and 3) biological 

carcinogens including infection from parasites, bacteria or viruses such as HPV-16. 

The majority of cells damaged in this way undergo programmed cell death, however, 

a very small contingent of cells may progress to form a tumour. These initiating 

factors may interact with predisposing genetic, age-related, environmental, dietary, 

and exercise-related factors to determine a person’s susceptibility to cancer 

development. For example, a number of high-risk heritable mutations are linked to 

increased genetic susceptibility. Mutations in the BRCA1/2 genes are known to 

predispose women to an 80% and 55% chance of developing breast and ovarian 

cancer respectively by the time they are 90 years old. Mutations in the APC gene 

lead to the autosomal dominant familial adenomatous polyposis (FAP) syndrome, 

greatly increasing the risk of bowel cancer.  This complex relationship between 

genetic predisposition and exposure to a vast array of carcinogens is one of the 

reasons why cancer is such a heterogeneous disease and remains difficult to treat.  

Following the initiating event, cancer cells must acquire a number of distinct 

capabilities necessary to promote tumour growth, progression and survival as 

proposed in the seminal review by Hanahan and Weinberg2,3 (Figure 1.1).  These 

include genome instability and mutation, sustaining proliferative signals, avoiding 

immune destruction and activating invasion and metastatic progression, all of which 

a tumour must acquire to survive. The progression and development of a tumour 

compares to and even exceeds the complexity of that of a developing healthy organ. 
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The archetypal view of cancer development and tumour progression is focussed on a 

mass of transformed cells proliferating unhindered to produce a solid primary 

tumour. This mass contains a heterogeneous population of transformed cells from 

different clonal origins, each potentially harbouring distinct mutational differences. 

However, cancer is not merely an autonomous mass of mutant cells. Rather, a large 

body of work has identified that tumours contain a complex milieu of immune and 

stromal cells, sequestered by the tumour to help promote survival and progression. 

The requirements of a tumour are not sustainable by the surrounding tissue alone, 

and thus developing tumours establish a new, more permissive niche in order to 

survive, known as the tumour microenvironment. Which cells are recruited to the 

tumour microenvironment and whether they aid or hinder the development and 

progression of a tumour is the primary focus of this chapter. I will also discuss how 

the tumour influences, subverts or evades these responses. 

 

  

Figure 1.1 I The Hallmarks of Cancer. Outline of the ten Hallmarks of cancer (the original six 
(Hanahan and Weinberg, 2000) and four emerging hallmarks (Hanahan & Weinberg 2011)). 
Hanahan and Weinberg propose that cancers must acquire most if not all of these capabilities in 
order to grow, survive and progress. Adapted from Hallmarks of cancer: the next generation. 
Hanahan, D. & Weinberg, R.A, Cell, 2011 
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2 The tumour and its surrounding microenvironment 

 

In response to the unrestrained proliferation of transformed cells, and in an attempt to 

re-establish tissue homeostasis, the surrounding stroma generates an acute 

inflammatory response leading to an imbalance of immune and stromal cells4,5. 

Manipulation of this microenvironment therefore becomes imperative to tumour 

survival. Pioneering studies, in part lead by the Dvorak lab, have made the collective 

conclusion that stromal involvement in tumorigenesis resembles that of acute 

inflammatory responses such as wound healing6-9. Classical players in wound healing 

(immune cells, endothelial cells and fibroblasts) that typically coordinate to resolve 

damage after a wound, instead react paradoxically and promote tumour survival5, 

identifying cancer as ‘a wound that never heals’10. Further work has established that 

the surrounding microenvironment not only aids tumour survival, but also the 

induction, selection and expansion of neoplastic cells for malignant progression11,12. 

When you consider all the required ‘hallmarks’ of cancer, seven noticeably involve 

contributions by immune and stromal cells of the tumour microenvironment13. How 

these cells contribute to these traits is discussed below. 

 

2.1 Immune cells and their functions in cancer  

The mammalian immune system is comprised of a repertoire of different cell 

populations and mediators that co-operate to instill protection against pathogens, 

whilst simultaneously maintaining tolerance against self-antigen14 (Figure 2.1). The 

immune system is composed of two distinct compartments – adaptive and innate – 

differentiated by time of activation and antigen specificity15.  Cells of the innate 

compartment, namely macrophages, mast cells, neutrophils, natural killer (NK) cells 

and dendritic cells (DCs) are first responders to sites of injury. Macrophages, mast 

cells and DCs serve as sentinel cells, residing in tissues and monitoring their 

environment for changes in tissue homeostasis. After homeostasis is perturbed, either 

by injury, infection or transformation, macrophages and mast cells secrete a number 
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of soluble factors that induce the mobilization and infiltration of other immune cells 

(leukocytes) to the site. These factors include cytokines, chemokines, reactive 

oxygen species (ROSs), matrix metalloproteinase (MMPs) and other extracellular 

matrix (ECM) remodeling enzymes15.  This process is known as inflammation, and 

serves to mediate tissue repair mechanisms, kill any potential pathogens and 

readdress tissue homeostasis. DCs and macrophages act as antigen presenting cells 

(APCs), taking up foreign antigen and migrating to the lymph nodes in order to 

present their antigens to the adaptive immune response leading to its activation.  

  

Figure 2.1 I Leukocyte Hierarchy within the innate and adaptive arms of the 
immune response. left panel Most cells of the innate immune response are derived form a 
shared myeloid progenitor cell and are therefore referred to collectively as myeloid cells. From 
this progenitor cell is derived the CFU-G and CFU-M from which granulocytes and monocytes are 
derived respectively. right panel All cells of the adaptive immune response are derived from the 
lymphoid progenitor cell and are referred to as lymphocytes. CFU-G = granulocytic colony 
forming unit; CFU-M = monocytic colony forming unit; MDSC = myeloid-derived suppressor cell; 
EF = effector  
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The adaptive immune compartment contains T lymphocytes, namely cytotoxic CD8+ 

T-cells and CD4+ T-cells, and B lymphocytes. The primary function of these cells is 

to identify and specifically destroy pathogen-infected cells or damaged cells as 

efficiently as possible, but also play roles in the host defense against pathogens such 

ass extracellular bacteria. However, these cells firstly require activation by direct 

interactions with mature APCs14,15. Each individual B and T lymphocyte are 

antigenically committed to a specific unique antigen15, which if presented to them 

leads to the rapid clonal expansion of that T- or B-cell in order to attain the number 

of cells required to achieve an effective immune response. This delay is why the 

adaptive immune response is slower than the innate at responding to inflammation. 

Upon expansion and activation this compartment is highly sophisticated and efficient 

at destroying infected or damaged cells. This ability requires very stringent 

regulation however, as hyper-activated adaptive responses can lead to damage to 

adjacent tissues and autoimmune disease. A specialized regulatory CD4+ T-cell 

called Tregs helps to suppress the activated adaptive response. How this occurs will 

be discussed in detail below (2.1.3).  

The heightened and activated innate and adaptive immune responses are stopped by 

the resolution of inflammation. It was initially believed that inflammation was 

resolved by a passive catabolic mechanism and with the removal of the initial 

pro-inflammatory mediators the inflammation would simply ‘burn itself out’16. 

However with the discovery of anti-inflammatory agents such as IL-10 and 

adenosine, and with the discovery of the anti-inflammatory roles of nitric oxide (NO) 

in the regulation of inflammatory myeloid cell apoptosis17, it is now believed that 

inflammation is resolved through active mechanisms16,18. Key mediators of the 

resolution phase include anti-inflammatory cytokines such as IL-10, inhibitors of 

pattern recognition receptors, prostaglandins, resolvins and lipoxins16. The exact 

mechanisms by which resolution occurs, and how and when the resolution phase is 

initiated is still to be determined. However, what is clear is that the resolution of 

inflammation precedes the final stages of tissue repair, and leads to the return to 

tissue homeostasis. In normal physiological conditions, inflammation is resolved 
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shortly after tissue repair or pathogenic destruction. This is not the case in cancer, 

where inflammation is either not resolved, or is left unresolved long enough to aid 

tumour development.  

Virchow was the first to identify a link between chronic inflammation and cancer in 

186319, but since then three key lines of evidence have linked aberrant chronic 

inflammation to cancer development. Firstly, 16.1% of the global incidence of cancer 

can be attributed to inflammation-inducing infectious organisms20, notably 

Helicobacter pylori in gastric cancer21, human papilloma virus (HPV) in cervical and 

head and neck cancers22,23, and hepatitis B and C in hepatocellular carcinoma24. 

Secondly, chronic inflammatory diseases such as inflammatory bowel disease 

(IBD)25, chronic pancreatitis26 and pelvic inflammatory disease27 increase the risk of 

developing colorectal carcinoma, pancreatic cancer and ovarian cancer 

respectively28.  Finally, treatment with non-steroidal anti-inflammatory drugs 

(NSAIDs) have shown to decrease the onset of cancer; prolonged intake of aspirin is 

associated with reduction in the incidence of colorectal cancer29; treatment with 

tolfenamic acid saw reduced incidence of pancreatic, esophageal and lung cancers30; 

treatment with COX2 inhibitor NSAID Celecoxib has been approved as an 

adjunctive therapy for the reduction of polyps in FAP. The type of inflammatory 

response associated with increased cancer risk is often referred to as ‘smoldering 

inflammation’, due to its low grade and lack of overt clinical concequences31,32. 

Growing evidence that inflammation is in fact the root cause of many cancers has 

lead to pro-tumorigenic inflammation to be included as a hallmark of cancer3,32 

With growing interest in the contribution of inflammation in cancer development, 

work turned to the identification of leukocytes within the tumour microenvironment 

itself. Populations from both arms of the immune response have since been found in 

or adjacent to neoplastic tissue. Work has shown that these immune cells contribute 

to tumorigenicity in four ways; to facilitate cellular transformation, to prevent or 

regulate tumour outgrowth, to modulate tumour immunogenicity and to aid 

progression of tumour development and malignant conversion33,34. Whether a 

specific immune population will contribute to each of these functions is determined 

by the inflammatory state of the tumour, the stage of tumour development, the other 
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immune populations involved and the repertoire of tumour-associated antigens 

(TAAs) presented by APCs or expressed on tumour cells33. Thus immune cells may 

act in both a pro-tumorigenic and anti-tumorigenic capacity. Here I discuss the 

specific functions of immune cells within the tumour microenvironment, focusing on 

macrophages and DCs from the innate compartment, T-cells from the adaptive 

compartment, and the immunosuppressive cells that regulate these responses, 

myeloid-derived suppressor cells (MDSCs) and Tregs. 

 

2.1.1 Macrophages: mediators of tissue repair to promote tumour 
survival 
  

Macrophages (CD45+ CD11b+ F4/80+ cells) are critical components of the tumour 

immune milieu. Two major subtypes of macrophages exist in the tumour 

microenvironment, resident macrophages and inflammatory macrophages35. It is 

worth identifying at this point that the work within this thesis discusses mouse 

macrophages and not human, and although both mouse and human macrophages do 

have a number of similarities, they are also distinct within the markers used to 

identify them, and in some cases within their mechanism of action36. As discussed 

above, resident macrophages act as sentinel cells within tissues and contribute to the 

initiation of inflammation. Inflammatory macrophages are recruited from the 

peripheral lymphoid tissues or are differentiated from Ly6C+ inflammatory 

monocytes at the site of inflammation. Macrophages are highly plastic cells that can 

exist in two polar differentiated states, M1 (classical) macrophages and M2 

(alternative) macrophages37. M1 macrophages are a anti-tumorigenic, highly 

phagocytic, pro-inflammatory population activated by lipopolysaccharide (LPS) or 

INF-γ and characterised by the expression of ‘M1 genes’ such as Nos2, IL12b and 

Ciita37-41.  M2 macrophages show high expression of ‘M2 marker genes’ such as 

MMR, Tie2, Arg1 and Retnla, and display pro–tumorigenic functions; they reduce 

inflammation and promote mechanisms of wound-healing such the activation of 

fibroblasts and angiogenesis37-41. Both M1 and M2 macrophages are polar 

differentiated populations that exist in constant state of flux determined by the 

surrounding microenvironment, resulting in intra-tumoural macrophages with aspects 
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from both M1 and M2 phenotypes (hence the term ‘macrophage polarization’).  The 

factors that mediate macrophage polarization remain unclear. However, M1 and M2 

phenotypes are akin to TH1 and TH2 T-cell mediated inflammatory responses, 

requiring IFN-γ and IL-4 respectively.  STAT signalling appears to direct a number 

of M1 and M2 differentiation specific genes, such as Stat1, an essential mediator of 

M1 polarization in the presence of IFN-γ, and Stat6, which is required for M2 

polarization in response to IL-4and IL-1339.   

Macrophages are an abundant population of leukocytes in solid tumours35 and Ly6C+ 

macrophages appear phenotypically distinct in the tumour microenvironment from 

resident macrophages. The role of resident macrophages in cancer is unclear, but the 

roles of inflammatory macrophages have been better characterised in work 

investigating CCR2+ tumour associated macrophages (TAMs).  A large proportion of 

intra-tumoural inflammatory macrophages are CCR2+ TAMs, and increased 

infiltration or the upregulation of TAM-associated gene signatures correlates with 

poor prognosis in many human cancers31,35,38,42,43. TAMs have many functions within 

the tumour microenvironment and at the distant metastatic site, and have been shown 

to regulate both tumorigenesis and the progression of the primary tumour. 

 

2.1.1.1 Macrophages regulate inflammation that drives tumorigenesis 
Macrophages and other myeloid cells induce inflammation at sites of injury, but 

macrophages are central to the ‘smouldering inflammatory response’ seen in 

cancer44. The inflammatory state of myeloid cells is controlled by NFκB and Stat3 

mediated signalling which act in direct opposition to each other45. NFκB is a central 

signal transducer downstream of toll-like receptor (TLR) activation, which results in 

the expression of inflammatory mediating cytokines such as IL-12 and TNF-α31,46,47. 

The transcription factor Stat3 functions to suppress the inflammatory response, and 

acts as the major target of the immunosuppressive cytokine IL-1031,46. Myeloid 

specific ablation of Stat3 or NFκB signalling components induces or suppresses 

chronic inflammation respectively and has been shown to effect tumour initiation. 

Ablation of myeloid Stat3 induced inflammation in the colon results in chronic 

colitis and invasive colonic adenocarcinoma. Myeloid specific inhibition of NFκB 
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signalling by the ablation of IκB kinase α (IKKα) reduces inflammation and tumour 

progression in mouse models of intestinal cancer48.  

After the initial genotoxic-transforming event, macrophages are recruited to the 

tissue and adopt a M1 phenotype to induce an inflammatory response in order to 

restore tissue homeostasis. Part of the repertoire of inflammatory and cytotoxic 

molecules secreted by M1 macrophages, are reactive nitrogen and oxygen species 

(RNS and ROS respectively)49, which play normal physiological roles in anti-

microbial defence. However, the secretion of molecules such as ROS and RNS 

generates a mutagenic inflammatory environment in cancer49. Due to the highly 

mutagenic capacity of ROS and RNS, this environment induces mutations in 

adjacent epithelial cells and mediates genomic instability in the developing 

tumour49,50.  The requirement of macrophages in the promotion of tumorigenesis can 

also be seen in mouse models of cancer using chemical carcinogenesis. The two-

stage cutaneous DMBA (7,12-dimethylbenathracene) / TPA 

(2-O-tetradecanoylphorbol 13-acetate) skin carcinogenesis protocol51 uses a low dose 

of the carcinogen DMBA to induce an oncogenic mutation in the skin. This mutation 

is not sufficient however to initiate tumorigenesis and frequent topical application of 

pro-inflammatory TPA is required. The inflammatory response generated by TPA is 

dominated by macrophages. This pro-tumorigenic inflammatory response mediated 

by TPA is caused by TNF-α signalling through NFκB, and acts directly on epithelial 

cells and on inflammatory cells, in particular macrophages within the surrounding 

microenvironment52.  

 

2.1.1.2 Macrophage functions in the primary tumour 
As primary tumours progress and develop, intra-tumoural macrophage populations 

revert from the inflammatory phenotype seen in tumorigenesis, to trophic/M2 

macrophages seen in tissue repair and development31,53-55. After the initial stages of 

tumorigenesis, NFκB signalling in TAMs become inhibited by the constitutive 

expression of p50 homodimers, which in turn inhibits M1 inflammatory responses 

and induces a M2 macrophage phenotypic switch56. The induction of an 

M2 phenotype by p50 can be seen in vitro45, and can also be found in cancers that 
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lack the characteristic inflammatory response, such as breast cancer where 

M2 macrophages are recruited in high numbers before metastatic transition both in 

humans57 and in mouse models31,58. 

Macrophages play a number of roles in the primary tumour. M2 Macrophages induce 

angiogenesis and mediate the ‘angiogenic switch’ (an enhancement of vascular 

density observed following benign to malignant transition)59,60 (2.2.1). Evidence 

supporting this notion comes from a number of studies. Null mutations in the 

macrophage CSF1 gene reduce vascular density61, while overexpression of CSF1 

promotes a premature increase in the number of macrophages and leads to an early 

angiogenic switch that accelerates tumour malignant progression59,61,62. Work in 

mice reflects clinical observations seen in breast cancer that correlates increased 

macrophage infiltration with increased micro-vessel density and poor prognosis31,63. 

Tie2, a protein constitutively expressed on endothial cells and enriched on 

macrophages within the tumour64,65, has been observed to mark a population of 

macrophages proximal to angiogenic vessels, and transcriptional profiling of Tie2+ 

macrophages65 highlighted an enrichment of pro-angiogenic molecules66. Tie2+ 

macrophages have features of M2-polarized macrophages32, promote both tumour 

and developmental angiogenesis67,68 and are required for the formation of blood 

vessels64,65,69.  

Macrophages also function to aid tumour progression and contribute to increase 

tumour invasion, migration and intravasation. Macrophage-induced tumour cell 

invasion has been observed in the MMTV-PyMT mouse model of breast cancer 

using intravital optical imaging techniques, which correlate with work seen in human 

breast xerograph studies70. Macrophages aid tumour cell migration by a paracrine 

signalling axis that exits between tumour cells and macrophages; tumours secrete 

CSF-1, stimulating macrophage migration and secretion of epidermal growth factor 

(EGF), which in turn induces tumour cell migration71. Inhibition of either the 

macrophage restricted CSF-1 or the tumour cell restricted EGF results in the 

perturbation of migration and chemotaxis in both cell types in the tumour 

microenvironment31,71,72.  Furthermore, in study of breast cancer by Qian et el73, 

CCR2+ macrophages promote the extravasation, seeding and growth of tumour cells 
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at distant metastatic sites73. Inhibition of CCR2 signalling reduces metastatic 

progression and the recruitment of inflammatory monocytes, associate with an 

increase in survival of tumour-bearing mice74,75.  

CCR2 has also been shown to be required for the recruitment of splenic-derived 

macrophages and macrophage progenitors76. The spleen may therefor act as reservoir 

for TAM recruitment and differentiation, and data suggests that it is source of most 

TAMS within the microenvironment, continuously supplying the tumour though out 

its development76. Although select roles for splenic-derived macrophages have not as 

yet been elucidated, their mobilization increases, mediated by chemotactic signals 

such as M-CSF, GM-CSF and IL-377-80 after chemotherapy and radiotherapy, and 

may also increase resisitance to DNA-damaging chemotheraeutics81 

 

2.1.1.3 Macrophage involvement in tumour responses to anti-cancer 
therapies 

A number of published works have studied the involvement of macrophages in 

determining the outcome of anti-cancer therapies. The effects of anti-cancer agents 

on macrophage polarization, recruitment and proliferation can determine tumour 

resistance or sensitivity to therapy. However, results are conflicting, and it is 

becoming clear that whether macrophages enhance or limit responses to 

chemotherapy depends on the cytotoxic agent and the mouse model used. 

Chemosensitivity is enhanced when cytotoxic agents increase the cytotoxic capacity 

of M1 macrophages or decrease the numbers of total macrophages, monocytes or M2 

macrophages82. This can be seen in a number of mouse models; treatment with 

doxorubicin induces M1 cytotoxic activity in models immunogenic lymphoma83; 

docetaxel treatment promotes M1 macrophage expansion in 4T1 mammary 

transplantable mouse models84; trabectedin depletes protumoural monocytes and 

TAMs in 3-methylcholantrene induced and transplantable fibrosarcoma85 models. In 

all three of these studies, macrophages enhance the efficacy of the respective 

chemotherapeutic agent through different mechanisms. However, treatment of 

MMTV-PyMT transgenic model of breast cancer with doxorubicin increased tumour 

infiltration of M2-macrophages, resulting in resistance to doxorubicin in this model, 

contrasting with results in immunogenic lymphoma.  Resistance to chemotherapy 
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correlates with increased M2 macrophage tumour infiltration in a number of mouse 

models including paclitaxel, gemcitabine and 5-fluorouracil86 treated EL4 

transplantable model of lymphoma, and MMTV-PyMT transplanted and transgenic 

breast cancer models treated with paclitaxel87,88. 

High numbers of intra-tumoural TAMs also correlate with poor tumour responses to 

irradiation82,89. Following tumour-induced DNA damage, Abelson murine leukaemia 

viral oncogene homologue-1 (ABL-1) kinase activation promotes CSF1 gene 

transcription and increases levels of CSF1 within the tumour90. This in turn increases 

the recruitment of myeloid cells, including TAMs that express CSF1R, which induce 

tumour regrowth and repair following irradiation90. Inhibition of CSF1R90 or 

antibody depletion of CD11b+ myeloid cells91 increased the efficacy of irradiation 

and reduced post-therapy tumour regeneration.  

Further to this, it has since been established that M2 macrophages may help to 

stimulate tumour regrowth after chemotherapy.  Tumour relapse after therapy is a 

major clinical problem, and Hughes et al92 have identified a subpopulation of M2 

TAMs (MRC1+ TIE2+ CxCR4hi) which accumulate around blood vessels in tumours 

after chemotherapy. Here, they promote tumour revascularization and relapse by a 

mechanism, which in part involves the release VEGF, and pharmacological blockade 

of CxCR4 pathway reduce the number of M2 TAMs after chemotherapy, leading to a 

reduction in tumour revascularization and regrowth92. This offers an exciting clinical 

opportunity, and implies potentially novel roles for other immune populations in 

determining the frequency of cancer relapse.    

 

2.1.2 The impact of T-cell activation and tolerance on tumour survival 
 

T-cells (CD45+ CD3+ cells) are major contributors to the anti-tumour immune 

response. They exist in two major classes, CD8+ cytotoxic T-cells and CD4+ ‘helper’ 

T-cells. Following exposure to antigen, naïve T-cells activate and expand, becoming 

effector T-cells (CD44hi CD62Llo)93. Effector T-cells secrete chemokines and 

cytokines such as IL-2, which binds its cognate receptor IL-2R in a paracrine 

signalling axis that leads to the activation of PI3K/AKT-mTOR proliferative 
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signalling pathways94.  Effector T-cells thus begin to proliferate rapidly, reaching 

optimal density around 2 weeks after initial exposure to antigen, and subsequently 

play a number of critical functions in driving the anti-tumour immune response 

(discussed below)95. After peak effector T-cell proliferation, approximately 90-95% 

of cells undergo apoptosis, whilst the remaining effector population matures into 

memory T-cells (CD44hi CD62hi)93,96,97. Memory T-cells are a long-term cell 

population that persist for several years or even decades after initial antigen 

exposure. Upon repeat exposure to a specific antigen, memory T-cells expand and 

regain higher effector functions. This occurs more rapidly than for naïve T-cells, 

typically resulting in an asymptomatic response96,98. This archetypal T-cell response 

is the basis of most vaccinations96; controlled exposure to a non-pathogenic or 

weakened strain of the pathogen is recognised by the immune system, destroyed and 

the resultant memory T-cells provide nascent asymptomatic protection against 

subsequent re-exposure.  

Immunogenicity, the capacity to induce an adaptive immune response in vivo, has 

been widely investigated in cancer using transplantable mouse models. Cancer cell 

immunogenicity can be classified into three grades; 1) Highly immunogenic cancer 

cells that are rejected after transplantation into naïve syngeneic mice, 2) intermediate 

immunogenic cell models that require host mice to be immunized against the specific 

expressed antigen prior to transplantation in order for tumour regression, or 3) 

non-immunogenic cancer cells that are not rejected following immunization99. 

Tumours are generally weakly immunogenic due to the selective pressure of the 

immune system as the tumour progresses. Despite this, sporadic immunogenic 

tumours may still progress, indifferent to the presence of CD8+ T-cells specific for 

that transplantable antigen100. These data imply that cytotoxic immune responses can 

be converted into non-destructive T-cell responses. These responses aid in tumour 

progression and in the evasion of the anti-tumour immune response. However, this 

also implies that seemingly non-immunogenic tumours may be converted to become 

immunogenic, a process that has gained great clinical interest99.  
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2.1.2.1 Dendritic cells (DCs) orchestrate T-cell activation and anergy 
DCs are pivotal to the anti-tumour immune response as they either prime or anergize 

naïve T-cells in primary lymphatic organs, leading to either anti-tumour immunity or 

peripheral tolerance101,102. DCs, as well as macrophages, act as antigen presenting 

cells (APCs) both at peripheral lymphoid tissues and at the tumour site. APCs 

present processed antigenic peptides via the major histocompatibility complexes 

(MHC) expressed on their surface14. Presented antigen is identified by antigenically 

committed T-cells, leading to their rapid clonal expansion, raising a highly specific 

and effective adaptive immune response. The multi-molecular complex between 

APCs and naïve T-cells, called the immunological synapse is a highly regulated 

complex of surface expressed ligands and concomitant receptors that simultaneously 

act not only to activate T-cells, but to control and suppress their activity14 (called 

T-cell anergy; Figure 2.2). On the surface of APCs, MHC-presented antigen binds to 

its concomitant CD3/T-cell receptor (TCR) complex exclusively expressed on a 

specific T-cell subset. Concurrent binding of the TCR co-receptor CD8/CD4 is 

required for optimal TCR activation of CD8+ cytotoxic T-cell or CD4+ T-cells 

respectively103. DCs modulate the nature of the T-cell response within the 

immunological synapse by expressing of a series of co-stimulatory receptors that are 

required either promote a T-cell mediated immune response, or to restrict T-cell 

activity by inducing T-cell anergy and eventual apoptosis (Figure 2.2). 

APC-expressed B7 molecules CD80 and CD86 (B7.1 and B7.2 respectively) bind to 

T-cell CD28 in parallel with TCR stimulation, leading to T-cell activation and 

induction of T-cell effector functions. Induction of either CD28 or TCR signaling 

without activation of the other parallel pathway results in the induction of T-cell 

anergy. Activation of other receptor/ligand pairs directly induces T-cell anergy. 

These inhibitory pathways, called immune checkpoints are crucial for maintaining 

self-tolerance and modulating the duration and amplitude of physiological immune 

responses104 (discussed below). 

Further to antigen presentation by APCs, host cells present tolerized autologous or  

‘self’ antigen of which the immune system is educated to disregard. All cell types 

express autologous antigens by MHC molecules, and foreign antigens can be 

detected directly by T-cells eliciting the activation of a cytotoxic CD8+ T-cell 
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response. In this regard, autochthonous cancer cells have been shown to express 

repertoires of mutated or modified self-antigens and a number of these result from 

oncogenic mutations; mutant N-ras105, B-raf106 and CDK4107 have all be found as 

TAA on melanoma cells, mutant K-ras108 has been reported as a TAA on pancreatic 

ductal adenocarcinoma (PDAC) and the BCR-Abl fusion protein B3a2 has been 

shown to be expressed as four different TAA peptides in chronic myeloid 

leukemia109-111. This raises the question as to why these cancers are not destroyed by 

the adaptive immune response. T-cells with high avidity for self-TAAs are typically 

deleted during the thymic T-cell selection process112, and thus T-cells within the 

tumour microenvironment are highly susceptible to mechanisms of peripheral 

tolerance and immunosuppression.  

Downstream of TCR engagement, TCR-associated CD3 becomes phosphorylated by 

Src family kinases Fyn and Lck leading to binding of Zeta-chain-associated protein 

kinase 70 (ZAP-70)113, and downstream activation of NFκB, NFAT and Ca2+ influx 

pathways. These pathways drive a variety of different T-cell effector functions 

within the tumour microenvironment.  

  

Figure 2.2 I The immunological synapse mediates T-cell activation, anergy and 
exhaustion. Left panel APCs present antigenic peptides via MHC molecules. T-cell activation 
requires the engagement of the concomitant T-cell TCR, stabilization of this signal by lineage 
dependent co-receptors CD8 and CD4 and binding of co-stimulatory molecule CD28 with APC 
expressed CD80/86. Right panel APC expressed co-stimulatory molecules may induce T-cell 
anergy / exhaustion. Lack of CD80/86 stimulation of CD28 after TCR engagement, sequestration 
of CD80/86 and activation of CTLA4 and PD-1 binding with its ligands PD-L1/2 all induce anergy 
and exhaustion in T-cells.  
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2.1.2.2 Effector T-cell functions within in the tumour microenvironment 
Upon activation within the tumour microenvironment, CD8+ and CD4+ T-cells 

exhibit distinct effector functions (Figure 2.3).  Effector CD8+ T-cells are highly 

cytotoxic, and although all CD8+ T-cells require MHC class I–antigen–TCR 

interactions to target a cell to be killed, a CD8+ T-cell can kill a cell by engagement 

of Fas ligand with its receptor, or by the localised release of cytotoxins14 (Figure 

2.3). Direct induction of cell death occurs after surface expressed Fas ligand 

(FasL/ApoL1), which is upregulated on effector CD8+ T-cells, binds to its 

concomitant receptor (Fas/Apo1) expressed on tumour cells. This induces the 

recruitment of the death-induced signalling complex (DISC) to Fas, which results in 

the caspase cascade and subsequent tumour cell apoptosis14. CD8+ T-cells may 

induce cell death by the localized release of cytotoxins namely perforin, granzymes, 

and granulysin14. Perforin and granulysin form pores or increase the permeably of the 

target cell membrane respectively, which allows granzymes to enter the cytoplasm, 

causing the target cells serine proteases to induce the caspase cascade14,114.  

Upon activation, CD4+ T-cells differentiate into a number of distinctive 

subpopulations including TH1, TH2, TH17 and Tregs, determined by the presence of 

different chemokines and cytokines within the tumour microenvironment 

(Figure 2.3). Each of these effector CD4+ T-cell sub-states function differently 

within the tumour microenvironment, and play very different roles in enhancing or 

suppressing immune mediated tumour destruction. TH1 and TH2 are the first-defined 

and best-characterised T-cell linages. Distinct chemokines, cytokines and membrane 

expressed molecules displayed by these cell types promote matched effector 

functions of other cells of the adaptive and innate arms of the immune response115. 

TH1 lineage cells are the classical ‘T-helper’ cells, and are induced by IFN-γ and 

IL-12 mediated activation of the transcription factor T-Bet116.  Activation of T-Bet 

upregulates IFN-γ and CCL2, that acts to increase the anti-tumour immune response 

in the tumour microenvironment. TH1 cells enhance the cytotoxic activity of CD8+ T-

cells, increasing M1 macrophage activation and the recruitment of NK cells and 

macrophages to the tumour site117. TH2 lineage cells are associated with allergic 

reactions and mediate humoral immune responses. GATA-3 activation by IL-4, IL-2  
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Figure 2.3 I Effector functions of CD8

+
 and CD4

+
 T-cells following activation by 

APCs. Following antigen presentation, effector CD8
+ 

T-cells have two distinct cytotoxic 
mechanisms and may induce tumour cell apoptosis either directly by Fas ligand or indirectly by the 
secretion of granzymes, perforin and granulysin. CD4

+
 T-cells differentiate upon activation into a 

number of sub-sets with different pro-tumorigenic or anti-tumorigenic functions, depending on the 
presence of secreted inflammatory chemokines and cytokines within the tumour microenvironment. 
Each subset is regulated by a specific transcription factor that determines its phenotype. APC = 
antigen presenting cell, + = pro-tumorigenic function, - = anti-tumorigenic function, � = other 
function 
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and IL-33 induces the TH2 phenotype, which leads to the upregulation of IL-13, IL-5 

and IL-4118. The role of TH2 cells in cancer is poorly understood, but anti-tumour 

effects of IL-4 have been attributed to an increase in intra-tumoural eosinophils and 

macrophages119,120. Contrary to this, the frequency of CD4+ cells expressing IL-5 

correlates with increased melanoma and renal cell carcinoma progression121, 

suggesting that TH2 mediated effects on tumour growth may be context dependant.  

Identification and classification of T-cell subsets has helped to develop 

understanding of the functions of CD4+ T-cells within the tumour microenvironment, 

beyond the archetypal TH1 – TH2 binary polarization models, and TH17 cells and 

Tregs are examples of this. TH17 subsets depend on the transcription factor RORγt, 

and are characterized by the production of IL-17122. Induction requires stimulation by 

TGFβ and IL-6, but differentiated TH17 populations are sustained and maintained by 

IL-23123. The functions of TH17 cells within the tumour microenvironment are not 

yet fully understood, despite being identified in a number of human cancers 

including ovarian124, gastric125, prostrate126, pancreatic and renal cell carcinomas127. 

TH17 cells represent a polyfuctional CD4+ effector T-cell phenotype that may both 

aid and hinder immune cell-mediated tumour destruction. IL-17 can induce the 

expression of CCL2, CxCL7 and CCL20 which act as pro-inflammatory and 

pro-angiogenic mediators to increase tumour growth and survival128,129. But IL-17 

may also act in conjunction with IFN-γ to stimulate CxCL19 and CxCL10 

production to increase anti-tumour effector CD8+ T-cells and to stimulate TH1 CD4+ 

T-cell differentiation127,130. Some studies however have identified that the anti-

tumour capabilities of TH17 cells are in part due to genomic reprograming events that 

instil a longer life span, increased plasticity and ability to self renew in some TH17 

cells within the tumour microenvironment131. This re-programmed TH17 cell 

population reassemble stem cell-like memory cells (TSCM) which differs to other 

anti-tumour CD4+ responses that display genetic signatures consistent with terminal 

differentiation117,132. This increase in plasticity implies that the functions of TH17 

cells with the microenvironment are potentially highly context dependant, with as yet 

unknown factors determining whether they adopt a state that aids or hinders tumour 

survival.  
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Tregs are a highly immunosuppressive population that depend on the expression of 

the FoxP3 transcription factor. Tregs are highly immunosuppressive cells that exist 

in two distinct subpopulations, tTregs and iTregs. Thymic-originated Tregs (tTregs) 

are derived during T-cell maturation and education. Immature single positive CD4+ 

T-cells receive TCR stimulation from antigen presenting-APCs, and the avidity and 

response time of the TCR signal determines CD4+ T-cell fate. Upon reception of a 

high TCR signal, most CD4+ T-cells undergo apoptosis and low TCR signal induces 

maturation into a conventional CD4+ T-cell133. However, immature CD4+ T-cells that 

respond with an intermediate TCR avidity may induce FoxP3 expression and 

differentiate into tTregs in the presence of IL-2133-136. Indeed, if levels of IL-2 are 

high enough, CD4+ T-cells with high avidity can escape destruction and become 

tTregs but this is rare135,136. tTregs are recruited to sites of inflammation by 

chemoattractant CCL5/CCR5 signalling axis137, which also enhances there ability to 

suppress CD8+ T-cells138. Disruption of this axis in mice, reduces the number of 

intra-tumoural Tregs leading to increased tumour survival and growth137. 

Peripherally induced Tregs (iTregs) differentiate withih the lymph node and at sites 

of inflammation from effector CD4+ T-cells. The induction and maintenance of 

iTregs requires repeat antigenic exposure and cognate iTreg TCR activation, and also 

requires the chemokines and cytokines TGFβ and IL-10139. The effector functions of 

tTregs and iTregs appear to be the same, but tTregs can be distinguished by the 

expression of Neuropillin-1 (NRP-1) and Helios140, although it is debated whether all 

tTregs express these markers. The immunosuppressive functions of Tregs are 

discussed in detail below (2.1.3.2), but they generally act to induce T-cell anergy and 

thus promote tumour survival and the evasion of an active anti-tumour immune 

response. Other types of CD4+ regulatory T-cell also exhibit immunosuppressive 

capabilities, including Foxp3- type 1 regulatory (Tr1) cells that secrete 

immunosuppressive IL-10141.    

It is widely accepted that tumours are immunogenic, as tumour-mediated T-cell 

responses occur frequently in cancer in the autochthonous host, in both cancer 

patients and mouse models99. The behavior of T-cells in cancer is frequently 

compared with the adaptive response in chronic viral infection, which share the 

capacity to establish highly antigenic and immunosuppressive environments unseen 
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in acute conditions93. The fundamental differences between these two pathogeneses 

are that viral antigens are often exogenous and highly immunogenic, unlike the 

endogenous and weakly immunogenic TAAs. The immunogenicity of a tumour is 

dependant on the repertoire of tumour-associated antigens (TAA) expressed142 but 

also on a number antigen-independent immunomodulatory factors. In a number of 

cases is the antigen-independent immunomodulatory factors which give tumours the 

capacity to avoid an activated cytotoxic CD8+ response. 

 

2.1.2.3 Mechanism of peripheral tolerance: T-cell anergy and 
exhaustion. 

After lymphocytes encounter their cognate antigen, mechanisms of peripheral 

tolerance are critical in the restraint of the T-cell response in order to avoid 

potentially fatal autoimmune reactions. Tumours hijack these responses in order to 

evade immune mediated destruction by activated CD8+ T-cells. Lack of adequate 

signalling from CD28 co-stimulatory receptors (Figure 2.2) with persistent 

MHC-TCR-antigen signalling induce T-cell anergy143, a form of T-cell 

hyporesponsiveness characterised by the lack of IL-2 expression and downstream 

TCR activity144. An anergic state may also be induced by inhibition of mTOR145, 

required for effector cell proliferation, or by the deprivation of nutrients or energy, 

determined by the activation of deprivation pathways such as the AMPK pathway146. 

Other T-cell co-stimulatory molecules can provide direct negative signals to inhibit 

T-cell responses and induce T-cell tolerance (Figure 2.2). Immune checkpoint 

mediator programmed cell death protein-1 (PD-1) and its ligands PD-L1 and PD-L2 

are master regulators of T-cell anergy. Binding of T-cell expressed PD-1 with 

PD-L1/2 alongside concurrent TCR stimulation, increases the recruitment and 

activation of Src homology region 2 domain-containing phosphatase (SHP) 1 and 2, 

leading to the dephosphorylation of proximal signaling complexes. These 

dephosphorylation events attenuate the activation of PI3K/AKT proliferative 

pathways, reducing T-cell proliferation and inhibiting downstream mechanisms of 

TCR activation117,147. The impact of PD-1 regulation of T-cells can be see with 

genetic ablation of PD-1 (Pdcd1-/-) in mice, which live for approximately 1 year 

until they develop systemic lupus erythematosus-like autoimmune disease, 
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manifesting as glomerulonephritis or dilated cardiomyopathy on C57BL/6 and 

BALB/c backgrounds respectively148,149. Work in a number of mouse models has 

shown that PD-1 also plays critical roles in regulating T-cell effector functions and 

T-cell tolerance at later time points in peripheral tissue sites. The breakdown of PD-1 

mediated tolerance can result in a number of tissue specific pathogeneses; PD-L1 

upregulation in allogeneic pregnancies leads to fetal abortion150, PD-1 regulates 

autoimmune diabetes in the pancreas of non-obese diabetic (NOD) mice151,152 and 

experimental autoimmune encephalomyelitis (EAE) mouse models of human 

multiple sclerosis have shown that PD-1 and PD-L1/2 heavily influence EAE 

pathogenesis153.  

T-cell PD-1 expression is also indicative of T-cell exhaustion, which results after 

chronic TCR over-stimulation such as occurs in cancer147.  T-cell exhaustion is a 

hierarchal multi-step process; as antigenic load increases, T-cells progress through 

various stages of dysfunction, reducing the expression of IL-2, TNF-α and IFN-γ, 

and progressively losing cytotoxic and proliferative potential, eventually subsiding to 

apoptosis154.  This is accompanied by a progressive upregulation of 

immune-suppressive receptors, such as PD-1, LAG-3 and CD244 and secretion of 

immuno-modulating cytokines IL-10 and TGFβ154. T-cell exhaustion is especially 

prevalent in cancer due to constant exposure of T-cells to antigen within the tumour 

microenvironment, and so it is likely that T-cell exhaustion is a major mechanism 

contributing to T-cell dysfunction in cancer patients154,155. T-cell exhaustion is not a 

terminal process, and reversing it has been achieved using PD-1 blocking therapy. 

However, PD-1 expression levels on exhausted T-cells is linked to the efficacy of 

these therapeutics. T-cells expressing low and intermediate levels of PD-1 are noted 

to respond to therapy, while those expressing higher levels of PD-1 did not156. 

Combinations of PD-1 and LAG-3 blocking therapies have shown better efficacy. 

However, again T-cells expressing high levels of PD-1 and LAG-3 were still 

unaffected155, stressing the importance of early clinical intervention in achieving 

optimal response to therapy.  

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) is another well-characterised 

immune checkpoint protein that acts to regulate the amplitude of early T-cell 
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activation and also regulates T-cell exhaustion. Although CTLA4 and PD-1 belong 

to the same family of molecules and are both co-inhibitory, evidence suggests they 

use distinct non-redundant mechanisms to inhibit T-cell activation. CTLA4 knockout 

mice die after 4 weeks from a lethal hyper-lymphoproliferative disorder resulting in 

multi-organ tissue failure157, compared with the less severe lupus-like symptoms seen 

after 1 year in PD-1 knockout mice. CTLA4 shares identical ligands with CD28 

(CD80 and CD86) but with much higher affinity, thus outcompeting CD28 and 

reducing CD28-medaited T-cell activation (Figure 2.2). Downstream of CTLA4 

activation, recruitment of SHP1/2 leads to the dephosphorylation of proximal 

signaling complexes as with PD-1, but the recruitment phosphatase PP2A is unique 

to CTLA4, which acts directly to inhibit AKT phosphorylation104. Thus, CTLA4 

expression acts with dual-immunosuppressive capabilities, both to sequester cognate 

ligands of CD28 and to down-regulate T-cell proliferative and survival signalling 

pathways. Further more, CTLA4 is a target gene for the transcription factor FoxP3104, 

a critical factor in determining Treg lineage and is constitutively expressed on the 

surface of Tregs.  

 

2.1.3 Tregs and MDSCs suppress anti-tumour immune response 
 

Mechanisms of peripheral tolerance and the two-signal requirement for T-cell 

activation appear insufficient to counter the threat of autoimmune reactions, without 

the need for immunosuppressive cells. Acting in trans, Tregs and myeloid derived 

suppressor cells (MDSCs) suppress immune responses and aid in the active 

resolution of inflammation at sites of injury and distally within peripheral lymphoid 

tissues. In cancer, both these cell types provide tumours with the means of escaping 

immune mediated destruction, and tumour cells use a number of distinct mechanisms 

in order to subvert the physiological functions of Tregs and MSDCs to aid cancer 

survival and progression.  
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2.1.3.1 MDSCs inhibit anti-tumour immune responses 
There are two populations of MDSCs that have been characterised; 

Granulocyte-derived MDSCs (G-MDSCs) and Monocyte-derived MDSCs 

(M-MDSCs)158. G-MDSCs are the most prevalent in tumour-bearing mice, but are 

only weekly immunosuppressive and suppress immune cells by secretion of 

ROS159,160. M-MDSCs suppress the anti-tumour T-cell response primarily by 

enzymes ARG1 and inducible nitric acid synthase (iNOS) as well as through the 

secretion of ROS159,160. Arg1 and iNos both induce T-cell proliferative arrest by 

inhibition of PI3K/mTOR signalling pathways. In human tumours, the levels of 

intra-tumoural M-MDSCs, but not G-MDSCs correlate with immune suppression 

and poor prognosis161.   

 

2.1.3.2 Tregs and Treg-mediated T-cell suppression  
Tregs (CD4+ CD25+ FoxP3+ cells) are characterized by the expression of the 

transcription factor FoxP3 that drives the upregulation of IL-2, IL10, TGFβ and other 

immunosuppressive associated factors. Genetic deletions, or loss-of-function 

mutations in FoxP3, result in hyper-lymphoproliferative disorder leading to 

multi-organ tissue failure in both humans and mice162,163. Tregs are highly 

immunosuppressive cells that exist in two distinct subpopulations, tTregs and iTregs 

described above (2.1.2.2). The transcriptional program of FoxP3 drives the 

immunosuppressive functions of Tregs, and maintenance of FoxP3 expression is 

critical to Treg linage stability139. FoxP3 suppresses the expression of 

pro-inflammatory mediators such as IL-2, TNF-α, IFN-γ, IL-17 and IL-4 by 

Tregs139,164-166, and induces the constitutive expression of CD25 (a subunit of the 

IL-2 receptor), CTLA4, IDO, CD39 and CD73139,167. The understanding of the 

molecular mechanisms of Treg immune suppression is still limited, but some 

putative mechanisms have been described (Figure 2.4). IL-2 is required for T cell 

proliferation, and high levels of Treg-expressed CD25 may act to sequester and 

deprive T-cells of IL-2, subsequently inhibiting T-cell proliferation168. CTLA4 has 

also been implicated in Treg-mediated immune suppression. Treg-specific genetic 

deletion of CTLA4 in BALB/c mice results in greatly increased numbers of activated 

Tregs under inflammatory conditions, yet the immunosuppressive activity of the 
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CTLA4-deleted Tregs was greatly impaired139,169,170. The reduction of Treg 

immunosuppressive function was associated with increased DCs171, due to 

CTLA4-deleted Tregs inability to down-regulate DC-expressed CD80 and CD86 by 

trans-endocytosis (Figure 2.4)170,172. Furthermore, Tregs can induce the expression 

of indoleamine 2,3-dioxygenase (IDO) on DCs, which catalyzes the degradation of 

tryptophan to N′-Formylkynurenine, leading to starvation of effector T cells and 

direct cell cycle arrest167,173,174. However, BALB/c mice are known to be susceptible 

to various immune-mediated disorders. Treg-specific genetic deletion of CTLA4 in 

C56Bl/6 mice did not result in increased numbers of DCs and only partially impaired 

Treg immunosuppressive capacity139, thus CTLA-4 contribution to Treg functions 

can be significantly modified on different genetic backgrounds. Other FoxP3 

 
Figure 2.4 I The molecular mechanisms of Treg immunosuppression. Tregs can 
suppress effector CD8

+ 
T-cells (effCD8

+
) either directly or indirectly. The hydrolysis of ATP and 

ADP to adenosine by CD39/73, secretion of immunosuppressive cytokines IL-10 and TGFβ, 
catabolism of tryptophan to N’-formylkynurenine by IDO and sequestration of IL-2 by CD25 
suppresses effCD8

+
 cytotoxic functions directly. Treg surface-expressed CTLA4 may reduce the 

APC surface expression of co-stimulatory molecules CD80 and CD86 and may induce the 
expression of IDO, both of which act to inhibit effCD8

+
 activity indirectly 
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mediated CD25/CTLA4 independent mechanisms of Treg suppression have been 

described. Cell-surface molecules CD39 and CD73 are two ectoenzymes that are 

highly expressed on Tregs.  These molecules hydrolyse extracellular ATP and ADP 

to adenosine, and as a result not only directly inhibit effector T-cell proliferation but 

also negatively impact on the function of DCs (Figure 2.4)175,176. Furthermore, Treg 

secreted cAMP may directly inhibit effector T-cell and DC fuction177.  

In cancer, Tregs have been found within tumours and peripheral draining lymph 

nodes in patients with liver178, lung179, head and neck180, breast181, pancreatic181,182, 

gastrointestinal183 and ovarian cancers184,185. Increased levels of Tregs are not 

necessarily indicative of poor prognosis, but rather the ratio between the number of 

effector CD8+ T-cells and intra-tumoural Tregs (effCD8:Treg), where by a low ratio 

correlates with poor prognosis184-186. Tumour cells have developed a number of ways 

to recruit, induce and maintain Tregs (2.4) 
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2.2 Stromal contributions to the tumour microenvironment 

 

2.2.1 Endothelial cells and angiogenesis within the tumour 
microenvironment 

 

The availability of oxygen, nutrients and serum-derived growth factors are 

prerequisites for all tissues. The extensive vascular network has evolved to supply 

these demands and facilitate immune surveillance. The remodelling of established 

vessels and the production of new ones is a complex program of multiple 

mechanisms, referred to collectively here as angiogenesis. In adult tissues, quiescent 

endothial cells form a monolayer interconnected by juctional molecules such VE-

cadherin and claudins187. This forms a hollow tube ensheathed by pericytes, a 

specialized cell type that maintains vessels and regulates endothelial cell (EC) 

proliferation. When the quiescent ECs sense a pro-angiogenic signal such as vascular 

endothelial growth factor (VEGF), angiopoietin-2 (ANG-2) or fibroblast growth 

factors (FGFs), pericytes detach themselves from the vessel walls and secrete 

proteases such as MMPs to degrade the basement membrane. Juctional adhesions 

between ECs begin to loosen and the nascent vessel dilates. The secretion of VEGF 

by the surrounding milieu increases vascular permeability allowing plasma proteins 

to extravasate and lay down a temporary extracellular matrix (ECM) scaffold187. In 

response to integrin activation by the newly assembled ECM, ECs migrate out and 

begin to remodel the ECM and surrounding milieu to establish a new niche, ready to 

support a developing vessel187,188. One EC is selected to become a tip cell, which 

drives the directional migration of the newly developing vessel in response to VEGF, 

neuropilins and FGFs. The remaining ECs assume subsidiary positions as stalk cells, 

which divide to elongate the developing vessel, and which form the vessel lumen187-

189. Finally, for the newly developed vessel to become functional ECs resume a 

quiescent state, platelet-derived growth factor (PDGF) and TGFβ signaling recruits 

pericytes to ensheath the new vessel and EC juctional adhesions are established187-

189. The matured vascular structure is maintained and protected from insult by VEGF, 
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NOTCH, angiopoietin-1 (ANG-1) and FGFs, emanating from supporting pericytes, 

proximal fibroblasts or autocrine signalling loops directly from ECs187,190,191.  

Established vessels also express oxygen-sensing mechanisms such as 

hypoxia-inducible factor-2α (HIF-2α) and prolyl hydroxylase domain 2 (PHD2) 

which precipitate vascular re-modelling to optimise blood flow to hypoxic 

areas187,188. This is most prevalent in cancer192, where tumours are inherently hypoxic 

and often contain activated fibroblasts and immune cells which secrete 

pro-angiogenic factors. This induction of angiogenesis or ‘angiogenic switch’ 

increases tumour cell proliferation and metastatic progression193,194. Constitutive 

pro-angiogenic signalling in tumours results in a neoplastic vasculature architecture 

that is irregular, unstable and leaky195,196. The lack of matured vessels in tumours can 

impede immune cell function and the distribution of oxygen and anti-cancer 

therapeutics189,197.     

In adults, angiogenesis in the most part occurs only in neoplastic tissue and therefore 

has become the prime subject of microenvironment-targeted anti-cancer therapies.  

Treatment with monoclonal antibody antagonists of VEGF presented promise as an 

anti-tumour therapy in mice, but showed disappointing efficacy in the clinic. 

Numerous preclinical studies (ref. to 198 for full list) has shown a 25 – 90% inhibition 

of tumour growth in mice treatment with A.4.6.1, a monoclonal VEGF antibody. 

These results could not be replicated in humans however, and treatment with the 

human equivalent of A.4.6.1, Bevacizumab (trade name Avastin®) in clinical trails 

of non-small cell lung cancer (NSCLC)199 and metastatic renal cancer200 only showed 

modest improvement in patient outcome201.  The lack of efficacy in human trials has 

been attributed to secondary angiogenic mechanisms which re-establish tumour 

vasculature after VEGF-depletion. In a number of cases the reoccurring vessels 

exceeded the pre-existing vasculature in both vessel quality and tumour coverage, 

increasing both tumor survival and progression189,196. The mechanisms of tumour 

vascular normalization are still unclear. However, angiopoietin receptor Tie2 

expressing macrophages have been shown to improve neovascularization202 and ECs 

can themselves produce other VEGF-independent angiogenic factors. These results 

highlight the fundamental requirement of a vascular network to support tumour 
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survival, growth and progression. Further work focuses on understanding the 

functional redundancy of VEGF in neovascularization and possible therapeutic 

combinations aimed at both VEGF and components of tumour normalization.    

 

2.2.2 The ECM and fibroblasts in cancer  
 

The extracellular matrix (ECM) was believed to be an inert structure involved in the 

compartmentalisation of cells for the delineation of tissue architecture11. It has since 

been shown to be a complex signalling mediator consisting of fibrillar collagens, 

fibronectins, hyaluronic acid and proteoglycans203, which together provide contextual 

information for the surrounding cells204. This is especially the case in cancer as 

neoplastic ECM is distinct from normal tissue ECM205, and contextualises 

transformed cells as ‘tumour cells’. Without tumour-generated ECM, transformed-

cells can integrate into normal tissue206,207 and form tissue-specific structures in 

culture, losing their hyper-proliferative state and function as part of the tissue, 

effectively behaving as a ‘normal’ cell204. These cells still retain the capacity to 

behave as transformed cells (once removed from co-culture they proliferate rapidly 

and formed tumours in vivo) but in the presence of non-tumour ECM they are 

effectively non-tumorigenic204.  

Beyond providing contextual information to the tumour, both quality and quantity of 

ECM has been reported to influence tumour survival, proliferation and 

migration208,209. Tumour cells greatly influence their surrounding ECM both 

quantitatively, by increasing the deposition of matrix, and qualitatively by regulating 

the rigidity of the 3D matrix210. Three major components of the ECM distinctly 

regulate these properties: 

 

i. Collagens are critical components of the ECM involved in modulating ECM 

stiffness and rigidity210. Tumour fibrillar collagen is linearized and matured 

in a mechanism that requires the covalent cross-linking of collagen by lysyl 

oxidase (LOX), expressed initially by fibroblasts but also later by 
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carcinomas in hypoxic conditions211,212. Matured fibres enhance both tumour 

cell migration and invasion, and inhibition of LOX family has been shown to 

reduce tumour growth, migration, invasion and progression213.   

Furthermore, LOX inhibition reduced metastatic spread in a number of 

different models, suggesting that LOX may act at distant metastatic sites to 

predispose the metastatic niche to seeding of circulating tumour cells213,214.  

Collagens within the ECM also mediate the migration, recruitment and 

activation of a number of stromal cells within the tumour microenvironment. 

It has been reported that linear fibrillar type I collagen induced invadosome 

structures on tumour cells, endothelial cells, fibroblasts and macrophages212. 

Invadosomes (referring collectively to invadopodia and podosomes) are actin 

based molecular complexes involved in ECM degradation associated with 

increased cellular migration and invasion210,215.  

 

ii. Fibronectins have been reported to be ligands for a number of integrin 

family members, including α5β1 integrin216, and regulate a number roles 

involved in cell adhesion, migration and growth210,217. Upregulation of 

fibronectins has been associated with increased metastasis of A431 tumour 

cells218, and has been shown to increase metastatic progression of ovarian 

cancer by promoting an association between α5β1 integrin and c-Met, 

leading to a ligand-independent activation of c-Met210,219.  

 

iii. Hyaluronic acid (Hyaluronan) expression has been shown positively 

regulate tumour neovascularisation and EC proliferation by increasing the 

recruitment of tumour-associated macrophages (TAMs)220.  

 

Although most cell types can produce ECM component proteins, fibroblasts are the 

major producers of both ECM components and ECM modulating enzymes. ‘Normal’ 

fibroblasts are typically embedded in the ECM of connective tissue. Upon tissue 

injury, fibroblast activation is induced by secreted growth factors released from 

injured epithelial cells or by infiltrating monocytes and macrophages221. These 

factors include transforming growth factor β (TGFβ), hepatocyte growth factor 
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(HGF) and PDGF221. Activation of fibroblasts in this way is characterised by the 

expression of smooth muscle actin (α-SMA), and these ‘myofibroblasts’ produce 

extensive ECM components and ECM remodelling enzymes. To facilitate this 

increase in protein translation, myofibroblasts undergo a morphological switch from 

the typical fusiform morphology of inactive fibroblasts, to a spindle cell morphology 

containing increased rough endoplasmic reticulum, peripherally located 

smooth-muscle type myofilaments, Golgi apparatus producing collagen-secretion 

granules and fibronexus junctions222. In this manner, myofibroblasts are distinct from 

other fibroblasts and can be identified pathologically. Myofibroblast infiltration has 

been associated with nodular pseudosarcomatous fasciits, inflammatory 

myofibroblastic tumours, dermatofibrosarcoma protuberans, myofibroblastic 

sarcoma, malignant fibrous histiocytoma and spindle-cell carcinoma223. 

A number of different fibroblastic cell types can be present within the developing 

tumour niche, referred collectively as cancer-associated fibroblasts (CAFs); 

tissue-resident fibroblasts proximal to the developing tumour can be recruited 

directly or become activated, alongside mesenchymal stem cells and 

myofibroblasts203. CAFs show distinct phenotypic differences to normal fibroblasts 

within the tumour microenvironment. These include the de novo expression of 

α-SMA and fibronectin as seen in myofibroblast activation, but unlike myofibroblast 

activation, cannot be de-activated and are much longer lived (are not removed 

through apoptosis)210. In breast cancer, normal fibroblasts promote an epithelial-like 

phenotype that suppresses metastasis; whereas CAFs induce a mesenchymal-like 

phenotype and enhance metastasis of both premalignant and malignant mammary 

epithelial cells224,225. CAFs can stimulate anti-apoptotic responses in tumour cell 

through the modulation of the ECM as CAF-derived ECM remodelling proteases 

have the capacity to generate ligands for anti-apoptotic integrins. Furthermore, CAFs 

have been shown to stimulate tumour cell proliferation through the secretion of 

growth factors such as the FGF, HGF, epithelial growth factors (EGFs) and 

insulin-like growth factors 1 and 2 (IGF1/2)13,210,226,227. CAFs may also secrete a 

range of pro-inflammatory cytokines228 that can indirectly act as mitogenic signals by 

recruiting and activating pro-tumorigenic immune populations. 
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2.3 Remodelling the tumour microenvironment to promote tumour 
rejection 

 

Given the influence of the tumour microenvironment on cancer biology and clinical 

outcome, the development of effective therapies that target components of the 

microenvironment is becoming increasingly important. Therapies that promote 

anti-tumour immune responses have shown great promise over the last few years, 

none more so than antibody-based therapies targeting immunosuppressive molecules 

CTLA4 and PD-1. CTLA4 antagonist Ipilimumab has been clinically assessed in a 

number of different cancer models, most notably metastatic melanoma. Anti-CTLA4 

therapy has the potential to target and suppress the immunosuppressive functions of 

Tregs (2.1.3.2) and to re-activate anergic or exhausted T-cells. Ipilimumab 

monotherapy produced objective responses in approximately 15% of patients with 

metastatic melanoma, which include 3 patients who demonstrated complete 

responses229. However, in other instances, Ipilimumab caused severe autoimmune 

complications. Treatment schedules and dose escalation studies have identified 

optimal responses at the highest doses230, which escalates the risk of developing 

autoimmune conditions, manifesting primarily as immune-related toxicity to the skin 

and gastrointestinal tract231. However the benefits to patient survival with 

Ipilimumab treatment in metastatic melanoma, a disease with very few effective 

front line therapies and an average patient-survival rate of 5-10%, vastly out-weigh 

the risk of developing chronic, unmanageable side effects.  

Anti-PD1 therapy also targets exhausted and anergic T-cells to re-activate the anti-

tumour cytotoxic CD8+ T-cell response. PD-1 targeted anybody Nivolumab showed 

moderate success as a monotherapy, but excelled in combination with Ipilimumab. In 

a recently published study232, 53 patients with advanced metastatic melanoma 

received concurrent therapy with Nivolumab and Ipilimumab, and 33 received 

sequential treatment. 53% of patients had an objective response and all showed a 

reduction in tumour size in excess of 80%.  
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The success of immunotherapy has been attributed, in part to the low-immunogenic 

nature of some cancers. The availability of TAA-specific CD8+ T-cells is becoming 

accepted as an essential prerequisite for an objective response to immune checkpoint 

therapies; without the capacity for a CD8+ T-cell response against a TAA, 

reactivation of immune cells by targeting immune checkpoints would not necessarily 

lead to immune-mediated destruction of tumours. The heterogeneity of TAA 

expression, including intratumoral variation and variation across different patients, 

may begin to explain why typically up to 40% of patients respond to immune 

checkpoint inhibitors, and a significant number do not. Although at this point little 

evidence exists to support this hypothesis, work involving immune checkpoint 

inhibition in combination with tumour vaccinations, both by the implantation of 

primed dendritic cells and the injection of tumour-specific antigenic peptides have 

begun to show promise in pre-clinical studies104,233,234.     

 

2.4 Tumour cells and the tumour microenvironment 

 

When I consider ‘the hallmarks of cancer’, there are relatively few tumour cell 

autonomous properties (genome instability and mutation, and enabling replicative 

immortality). To survive and progress, the tumour must recruit, manipulate and 

subvert crucial cell populations. Transformed cells contribute to the generation of the 

tumour microenvironment by secreting signalling molecules or by direct cell:cell or 

cell:ECM contact. Tumour secreted growth factors and chemokines, such as TGFβ, 

PDGF, FGF and MCP1, activate CAFs present in the tumour 

microevironment225,235,236, and tumour cell secreted VEGF can initiate angiogenesis.  

Secreted factors originating for the tumour cell allow the tumour to generate a more 

permissive niche as quickly and efficiently as possible.  

In order to mount an effective adaptive immune response, T-cells require APC 

presented antigen. Tumour cells that undergo apoptosis may generate an antitumor 

immune response through different mechanisms collectively called immunogenic 

programmed-cell death (Figure 2.5). Apoptosis is a mechanism by which the cell in 

response to stress signalling or DNA damage can induce programed cell 
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death237(Figure 2.5a). Activation of the mitochondrial BAX/BAK pathway leads to 

the generation of the cytosolic apoptosome complex, and subsequently the activation 

of caspase 9, triggering the caspase cascade and the induction of apoptosis. A 

consequence of the induction of apoptosis is the up regulation of proteolysis, which 

under certain conditions can lead to the generation novel TAAs. TAAs can then be 

found in the ‘cell blebs’, extracellular vesicles formed in the final phase of apoptosis, 

which can be phagocytised by APCs and the TAAs presented238 (Figure 2.5b). 

 
Figure 2.5 I Mechanisms of immunogenic cell death. Immunogenic cell death is a form of 
apoptosis that induces and primes an immune response. a Intrinsic apoptotic mechanisms 
generate new antigenic peptides. b New antigenic peptides may be released via cell blebbing and 
subsequently phagocytosed and presented by APCs. c Increased permeability of nuclear and cell 
membranes releases DNA, RNA and PTX3 which act to stimulate and regulate the maturation of 
DCs. d Finally further breakdown of cell membranes releases pro-inflammatory molecules into the 
microenvironment which act to increase anti-tumorigenic immune responses 
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Furthermore, increased proliferation, recruitment and differentiation of APCs can be 

seen at sights of chemotherapy-induced apoptosis, in part due to the release of factors 

from dying cancer cells, such as ATP and DNA which induce DC maturation and 

RAN and PTX3 which stimulate and active DCs respectively239 (Figure 2.5c). 

Furthermore, in the final stages of apoptosis as the cell and nuclear membrane begin 

to break down and cellular components are released, HSP70, uric acid and HSP90 

can induce DC maturation, CD8+ T-cell mediated pro inflammatory responses and 

the stimulation of NK cells240 (Figure 2.5d).  

Tumour cells hijack and manipulate both arms of the immune response in order to 

promote tumour survival and evade immune cell-mediated destruction (Figure 2.6). 

Secretion of chemokines and cytokines into the tumour microenvironment can act on 

multiple immune cell populations simultaneously, to increase pro-tumorigenic and 

immunosuppressive functions and suppress cytotoxic activity. Tumour-secreted 

TGFβ acts to polarize intra-tumoural neutrophils to adopt a more pro-tumorigenic 

phenotype, whilst alongside IL-10, induces Treg expansion from CD4+ effector cells, 

maintains intra-tumoural Treg populations and suppresses CD8+ cytotoxic effector 

functions241-243.  IL-10 also acts with IL-1β, IL-6, IL-11 and VEGF to modulate 

MDSCs, macrophages and DCs. Each molecule may act alone or together to induce 

the expansion of MDSCs and increase their immunosuppressive capacity, polarize 

macrophages into a pro-tumorigenic immunosuppressive M2 phenotype and inhibit 

DC activation, all of which act to increase tumour survival242.  Other tumour-secreted 

factors include IFN-γ and IL1-α that enhance iNOS and ARG1 immunosuppression 

by MDSCs and macrophages. Furthermore, GM-CSF, drives expansion of MDSCs, 

while IL-4 and IL-13 contribute to the recruitment and immunosuppressive capacity 

of MDSCs and macrophages respectively242.  Furthermore, tumour cells can express 

TCR co-stimulatory molecules CTLA4, PD-1, PD-L1/2 and CD80/86, which act to 

induce effector T-cell anergy and exhaustion241. 
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Figure 2.6 I Tumours subvert immune responses to aid tumour growth and
survival. Tumour cell expressed and secreted molecules modulate aspects of the adaptive
(top) and innate (bottom) arms of the immune response. Tumour cells may increase the
expansion, recruitment or immunosuppressive capacity of pro-tumorigenic populations such as
M2 macrophages, Tregs, MDSCs and polarized neutrophils and directly evade anti-tumour CD8+
T-cell responses by the suppression of CD8+ effector functions, the induction of T-cell anergy /
exhaustion or by the inhibition of DC-mediated antigen presentation. top Tumour cell may
express co-stimulatory molecules such as PD-1 and CTLA4 which act to induce T-cell anergy
and exhaustion. Secreted factors such as IL-10, TGFβ and CCL5 act to suppress effector CD8+
T-cell functions and increase the recruitment and the immunosuppressive capacity of Tregs.
bottom Some factors act synergistically with both arms of the immune response, namely TGFβ
and IL-10 which not only act to modulate the adaptive immune response, but may also enhance
the pro-tumorigenic polarization of neutrophils and macrophages. Factors such as IL-1, IL-4, IL-6
and IL-11 act to increase the recruitment, expansion and immunosuppressive functions of
MDSCs and M2 macrophages. Others may act to inhibit DC activation and thereby inhibit the
CD8+ T-cell response. MDSC =myeloid-derived suppressor cell; DC= dendritic cell
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3 FAK is a central molecule in the regulation of key cancer cell 
phenotypes. 

FAK is a non-receptor protein tyrosine kinase localised primarily at focal adhesions, 

where it acts a pivotal signalling integrator downstream of integrins and growth 

factor receptors. It consists of 3 functional protein domains; an N-terminal 

Four-point-one, Ezrin, Radixin, Moesin (FERM) domain, a central kinase domain 

and a C-terminal Focal Adhesion Targeting (FAT) domain244 (Figure 3.1). 

Autophosphorylation of tyrosine residue 397 (Y397) reveals a high affinity SH2 Src 

family-binding domain. Upon Src binding, a transactivation mechanism results in the 

phosphorylation of other key tyrosine residues (Y576, Y577, Y862 and Y925), fully 

activating FAK and forming the FAK-Src signalling complex. Further to FAKs 

association with Src, other FAK binding partners include Arp2/3, talin and paxillin, 

VE-cadherin, PI3K/AKT, GRB2 and p53 (Figure 3.1). Through both 

kinase-dependant and independent protein:protein interactions such as these, FAK 

regulates a number of signalling pathways associated with tumour growth and 

metastasis (Figure 3.2) including regulation of invasion245, cell morphology and 

polarization246-248, motility249-251, cell cycle progression252 and proliferation253,254. 

Studies investigating the role of FAK in cancer have thus far identified elevated 

levels of FAK expression in a range of tumours, including breast255-257, colon255,256, 

prostate258, oral259, laryngeal260, skin245, and squamous cell carcinomas261.  Thus 

FAK presents a therapeutic target that is both upregulated in a number of cancer 

models and is critically important in an array of cancer cell processes.  

Tumour cell:ECM contact provides both contextual and survival signals to tumour 

cells. The ECM is commonly deregulated and disorganized in cancer which 

promotes cellular transformation and metastatic progression262. Tumour cells interact 

with the ECM at sites of integrin clustering, known as focal adhesions. Here, 

integrins mediate bi-directional signaling across the plasma membrane by virtue of 

their association with intra-cellular macro-molecular complexes, of which FAK is a 

key component. Downstream of integrins, FAK is known to regulate multiple 

processes in tumour biology, including the invasion, migration and metastasis, and 

tumour survival and growth.  
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3.1 FAK promotes tumour cell invasion and metastasis 

 

Dynamic changes in focal adhesions and in cytoskeletal organisation and 

polymerisation allow tumour cells to polarize, transition to a motile state and invade. 

Canonical FAK signalling is associated with the maturation and turnover of focal 

adhesions263-265. The loss of FAK in cells increases the number of immature focal 

adhesions correlating with decreased cell migration266. Through the recruitment and 

activation of key adaptor proteins such as paxillin267 and talin268, and through an 

association with proteolysis complex CPN2 and Caspase-8269, FAK regulates both 

the disassembly and maturation of focal adhesions at the cell leading and trailing 

edges (Figure 3.2b).   

 

Figure 3.1 I The structure of FAK and key binding partners. The structure of FAK 
consists of three modular domains; an N-terminal four-point-one, ezrin, radixin, moesin (FERM) 
domain, a central kinase domain and a C-terminal focal adhesion targeting (FAT) domain. 
Activation of FAK requires the autophosphorylation of tyrosine (Y) 397, and the subsequent 
phosphorylation of key residues (as shown). Lysine (K) 454 is a critical molecule in the kinase 
activity of FAK and mutation of this residue generates a kinase-deficient FAK analogue. FAK 
complexes with a number of proteins involved in cell motility (dark blue), cell survival (light blue) or 
both functions (dark blue/light blue). Roles involving FAK activation are shown in grey, and 
important contributions to the tumour environment are shown in green. Figure adapted from FAK in 
cancer: mechanistic findings and clinical applications. Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D. 
Nature reviews Cancer, 2014  
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FAK further contributes to migration and cellular polarization by regulating 

cytoskeletal dynamics through interactions with complexes involved in actin 

polymerisation and Rho family signalling modulation263. In a kinase independent 

manner, the FAK-FERM domain binds the Arp2/3 complex, enhancing 

Arp2/3-depandant actin polymerisation. This results in increased protrusive 

lamellipodia formation and cell spreading248. In addition FAK regulates the 

activation of Rho family GTPases; GTPase regulator associated with FAK (GRAF, 

part of the RhoGAP family) and ARHGEF28 (also known as p190RhoGEF) bind to 

the c-terminal domain of FAK, and act to inhibit and activate Rho mediated 

signalling respectively263. Why FAK interacts with complexes that both activate and 

Figure 3.2 I Signaling pathways of FAK that regulate tumour growth and 
metastasis. FAK enhances tumour growth and metastasis through kinase-dependent (blue) or 
kinase-independent (red) functions. Dashed lines represent processes that have yet to be fully 
characterized. a FAK is activated downstream of receptor tyrosine kinases (RTKs), integrins, G-
protein coupled receptors (GPCRs) and cytokine receptors. b Activated FAK increases tumour cell 
invasion and metastasis by remodeling the cytoskeleton, turnover of focal adhesions and the 
transcriptional upregulation and presentation of matrix metalloproteinases (MMPs). c FAK kinase-
independent scaffolding functions interact with endophilin A2 increasing the expression of markers 
of endothelial-to-mesenchymal transition (EMT). d FAK activation increases the levels of cyclin D1 
expression and enhances the inhibition of apoptosis subsequently increasing tumour cell survival 
and growth. e Under conditions of cellular stress, FAK may translocate to the nucleus where is acts 
as a scaffold for the p53/MDM2 complex, targeting p53 for polyubiquitination (Ub) and increasing 
tumour survival and growth. Figure taken from FAK in cancer: mechanistic findings and clinical 
applications. Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D. Nature reviews Cancer, 2014  
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inhibit Rho signalling is not yet understood, but it raises an interesting hypothesis 

that FAK may act to both spatially and temporally regulate actin dynamics by 

alternately associating with both RhoGAPs and RhoGEFs263,270.   

What these data suggest is that FAK is a critical molecule in the regulation of cell 

polarization, motility and invasion. Epithelial to mesenchymal phenotype (EMT) is 

required for the migration and metastatic progression of some caner cells, where as 

come cells migrate collectively. FAK signalling promotes EMT-like transcriptional 

programmes and both TGFβ-271 and SNAIL1-induced272 EMT requires FAK 

expression. Moreover, inhibition of FAK or Src regulates E-cadherin internalization 

in vivo249, stabilizing E-cadherin cell surface expression resulting in a suppression of 

E-cadherin-dependent collective cell migration249,273. Thus FAK plays an important 

role in EMT, invasion and metastatic progression, providing the basis for the 

development of a number of FAK kinase inhibitors as discussed in detail below.  

 

3.1.1 FAK promotes tumour cell survival and growth 
 

FAK promotes tumour cell survival through kinase dependant and independent 

mechanisms (Figure 3.2d). Those that require kinase activity include FAK signalling 

through the PI3K-AKT pathway274. Tumours can prevent death-inducing signals by 

the integrin-mediated activation of the FAK-AKT pathway275. Tumour cells may also 

activate this pathway in times of adhesion stress and inhibit the onset of anoikis274.  

Studies using a kinase deficient mutant of FAK have identified that FAK kinase 

activity is also a requirement for the anchorage-independent 3 dimensional growth of 

squamous cell carcinoma (SCC) cells in vitro, and their growth as xenografts in CD1 

nude mice276.  

FAK activity also regulates cell cycle progression. Loss of FAK decreases levels of 

cyclin D1, and consequently genetic deletion of FAK in tumour cells inhibits G1 to S 

phase transition, reducing tumour cell growth277.  FAK regulates levels of Cyclin D1 

through three separate pathways. Firstly, FAK signals through ERK in a 

Src-dependant manner, and ablation or inhibition of FAK reduces Src-mediated 

p130CAS activation and signalling through ERK in models of breast cancer278,279. 
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Activation of ERK leads to its nuclear translocation and the transcription of CCND1 

(gene encoding Cyclin D1)280.  Secondly, FAK induces the expression of the 

transcription factor KLF8 through the activation of PI3K-AKT pathway, which leads 

the transcription of KLF8 by SP1281. KLF8 directly transcribes CCND1 enhancing 

cell cycle progression, but is also critical in EMT and oncogenic transformation281. 

Finally, FAK can increase levels of Cyclin D1 though interactions with JNK. 

 

3.1.2 FAK and the nucleus 
 

 In addition to its signaling role at focal adhesions, FAK has also been shown to 

display nuclear localization and have distinct functions in the nucleus. The 

emergence of kinase-independent functions of FAK fueled investigation into other 

domains, leading to the discovery of a Nuclear Localization Sequence (NLS) within 

the FAK FERM domain and revealing some of FAK’s nuclear functions282.  It has 

been shown that nuclear FAK forms a tri-molecular complex with p53 and the E3 

ubiquitin ligase mdm2, targeting p53 for degradation, promoting cell cycle 

progression283 (Figure 3.2e). Further nuclear specific studies have shown FAK also 

targets GATA-4 for degradation284, a transcription factor associated with the 

expression of pro-inflammatory protein VCAM-1 amongst others284. This 

relationship between nuclear FAK and transcription factors brings into focus 

numerous potential roles for FAK in direct transcriptional regulation. 	

 

3.1.3 FAK and Pyk2 
 

Proline-rich tyrosine kinase 2 (Pyk2) is a closely related non-receptor tyrosine kinase 

to FAK, and shares approximately 60% sequence homology. Pyk2 and FAK share 

the same modular domain structure, an N-terminal FERM domain, central kinase 

domain and C-terminal FAT domain, with the phosphorylation of critical Pyk2 

tyrosine residues Y402, Y579/580 and Y880 functioning synonymous to FAK Y397, 

Y576/577 and Y925 respectively285. However, Pyk2 displays perinuclear distribution 

and localization, and is only weakly present at focal adhesions. Both proteins do 



 

 53 

share common protein binding partners, including Grb2, and are associated in a 

trans-activation mechanism with Src family kinases286. FAK is thought to be 

expressed a various levels in most tissues, whereas Pyk2 expression appears 

restricted to epithelial cells, neurons and hematopoietic cells287-291. Pyk2 has a small 

number of unique binding partners, such as the actin associated protein gelsolin, and 

Talin only associates with FAK C-terminal domain and not Pyk2. Pyk2 may act in a 

compensatory manner to FAK, although their expression and regulation are 

distinct292. Due to their sequence similarity many FAK kinase inhibitors also target 

Pyk2 with greater or lesser affinities.  

 

3.2 FAK signalling within the microenvironment  

 

Alongside FAKs roles in tumour cell biology, it is also a central molecule in a 

number of stromal cells within the microenvironment (summarized in Figure 3.3). 

A series of non-cellular microenvironmental cues that influence tumour growth, 

survival, progression and metastasis may act by increasing FAK activity in stromal 

cells in the tumour microenvironment265. Increases in pH correlate with the 

upregulation of FAK Y397 autophosphorylation and focal adhesion maturation293, 

and increased FAK activation has been observed downstream of VEGF binding to its 

receptor. Upregulation of FAK expression in stromal cells can also be controlled by 

these factors. FAK gene expression is regulated in part by active NF-κB294. Signals 

related to cellular stress such as reactive oxygen species (ROS), TNFα295, growth 

factors, and chemokines and cytokines such as IL-1β and IL-8296 activate NF-κB, 

leading to the transcriptional upregulation of FAK. Thus, the influence of FAK 

signalling on tumour cell biology extends beyond the tumour cells themselves and 

into the stromal compartment of the microenvironment as discussed below. 
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Figure 3.3 I The roles of FAK in the tumour microenvironment. FAK play numerous
roles in the each compartment of the tumour microenvironment. In the immune compartment
FAK is required for macrophage, natural killer (NK) cell and neutrophil migration and tumour
recruitment (3.2.1). It may also play a role in signal transduction downstream T-cell receptor
(TCR) activation on T-cells. In endothial cells FAK is involved in increasing angiogenesis,
vascular permeability and tumour cell intravasation (3.2.2). FAK is also required for fibroblast
migration, growth and survival, activation by LOXL2 and cancer associated fibroblast (CAF)
recruitment into the tumour microenvironment (3.2.3). Adapted from FAK in cancer:
mechanistic findings and clinical applications. Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D.
Nature reviews Cancer, 2014
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3.2.1 FAK signaling in immune cells  
 

FAK is expressed in a number of cells from both the adaptive and innate immune 

lineages, including macrophages, neutrophils and T-cells297. Macrophages and 

neutrophils are cell populations of the myeloid lineage, central in mediating the 

immune response at sites of heightened inflammation such as cancer. Typically, the 

first cells to respond to changes in inflammation, they act to phagocytose cell debris 

and aid in angiogenesis and tissue repair. In terms of cancer, the most extensively 

characterised of these cells are macrophages. FAK is upregulated in differentiating 

myeloid cells following GM-CSF stimulation297, and macrophage motility requires 

FAK signaling downstream of α5β1 for haptotaxis toward fibronectin and for 

directional chemotaxis toward M-CSF1298. FAK knockout in macrophages also 

decreases monocyte recruitment to inflammatory sites in vivo299. Treatment with a 

FAK inhibitor in mouse models of breast cancer results in decreased levels of tumour 

associated macrophages (TAMs) and a reduction in primary tumour size300,301.  

Additionally in models of PDAC, without effecting angiogenesis, necrosis or 

apoptosis, FAK inhibition also resulted in a decrease in TAM recruitment302.  

The role of FAK in other myeloid lineages is controversial. In mice with a myeloid 

specific FAK deletion (a Lyzsozyme 2 knock-in cre; B6.129P2-Lyz2tm1(cre)Ifo/J)303, 

neutrophils demonstrated accelerated  spontaneous cell death and reduced phagocytic 

activity303. Other work disputes the role of FAK in myeloid cell differentiation, 

indicating that FAK is decreased in haematopoietic stem cells before commitment 

toward a myeloid lineage, and this shift in haematopoietic homeostasis is linked to 

increased metastasis304.   Furthermore, in a study of acute myeloid leukaemia (AML), 

FAK expression was upregulated in CD34+ AML cells but not in CD34+ normal 

cells305, contradicting previous work identifying FAK upregulation in early myeloid 

progenitors297. Many of the problems associated with addressing the role of FAK in 

myeloid cells, and hence the conflicting data, are due to the involvement of Pyk2. In 

a number of studies involving myeloid cells, FAK upregulation correlates with an 

upregulation of phosphorylated Pyk2 (Y881)305. Therefore, the effects of Pyk2 
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activation need to be further dissected before the role of FAK in myeloid cells can be 

addressed definitively. 

In T-cells, TCR signal transduction involves the Src family kinases Fyn and Lck 

(2.1.2.1), and therefore could imply due to the close association between FAK and 

Src family kinases, that FAK may play an important role in TCR signal transduction. 

However, some data suggests that FAK negatively regulates TCR signalling and 

FAK-/- Jurkat cells upregulate IL-2 production associated with increase ZAP70 

phosphorylation306. In this purposed mechanism, FAK activation recruits C-terminal 

Src kinase (CSK) to the membrane, impairing CSK activation of Lck, and thus 

inhibiting TCR signalling down-stream of Lck306. FAK kinase inhibition with 

PF-562,271 reduces CD4+ T-cell TCR activation, and reduced in the phosphorylation 

of ZAP70 downstream Erk1/2 activation, which was associated with a reduction in 

the proliferation of both murine and human T-cell was reduced following treatment 

with PF-562,271307. However, the conditional deletion of FAK in CD4+ T-cells does 

not impair proliferation, and therefor the mechanism of PF-562,271 could be due to 

inhibition Pyk2.  

What brings many of these finding in to question, is that most of these studies were 

performed in Jurkat cells, and to what extent cell signalling has been effected by the 

immortalisation of these cells has not yet been addressed.  These concerns are 

heightened by primary and in vivo data in which FAK appears not to be expressed in 

T-cells. Furthermore, Pyk2 has distinct and better characterized roles in T-cells.Pyk2 

overexpression in immortalised CD4+ Jurkat cells identified that TCR- and 

CD28-induced JNK and p38 MAPK activation, and subsequent IL-2 production, was 

partially dependant on Pyk2308. T-cell specific deletion of Pyk2 reduced the 

proliferative capacity of T-cells in vitro, and reduced IL-2 and IFN-γ production in 

CD8+
 T-cells309. However, similar effects were not as evident in vivo, potentially 

linked to FAK upregulation upon T-cell activation306 and subsequent compensation 

for loss of Pyk2. Pyk2 is also reported to mediate actin cytoskeletal dynamics 

downstream of TCR stimulation, and to play a role in the re-organisation of T-cell 

morphology during the formation of the immunological synapse309,310.  
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3.2.2 FAK destabilizes EC cell junctions and promotes EC migration 
and angiogenesis 

 

FAK in ECs is considered a therapeutic target for the treatment of vascular diseases 

including cancer265. Treatment with a FAK inhibitor reduces tumour angiogenesis in 

animal models of colon311, hepatocellular312 and ovarian carcinoma313,314. A number 

of animal models have identified that conditional knockout of FAK315-317 or 

conditional knock-in of a kinase dead (KD) FAK314,318 reduces tumour 

neovascularization, vascular permeability and angiogenesis. Both approaches 

resulted in early embryonic lethality due to multiple vascular defects.  Primary ECs 

isolated from these mice exhibited defects in tubulogeneis, sprouting, migration, 

proliferation and survival in vitro. Further in vitro work identified that RACK1 and 

vimentin associate with FAK during endothelial migration through a 3D collagen 

matrix, and this RACK1-vimentin-FAK signalling complex is hypothesised to 

regulate EC polarization, motility and focal adhesion turnover during the initial 

phases of neovascularization319. Furthermore, FAK mRNA and protein levels are 

upregulated in cancer associated ECs320 concomitant to an increase in FAK Y397 

phosphorylation314. Thus FAK in ECs plays a critical role in establishing the 

neovascular architecture in a developing tumour.   

As described above (2.2.1), the generation of the neovasculature leads to increased 

tumour progression and metastasis. For tumours to progress after local invasion, 

tumour cells must then enter the vasculature in order to circulate and metastasise to 

distant sites in the body. This intravasation requires increased vascular permeability, 

achieved by the dissociation of tight endothelial cell-cell junctions formed by the 

vascular endothial cadherin (VE-cadherin) complex (Figure 3.4). In ECs, FAK 

becomes phosphorylated and activated downstream of integrins and growth factor 

receptor signalling, forming the FAK-Src signalling complex. Following rapid 

localisation of this complex to cell-cell junctions, the FAK FERM domain binds to 

the cytoplasmic tail of VE-cadherin. FAK in turn directly phosphorylates Y142 of 

VE-cadherin associated β-catenin321, leading to the breakdown of the 

VE-cadherin-β-catenin complex and the dissociation of EC adhesion junctions. The 

dissociation of EC adhesion junctions increases vascular permeably and concomitant 
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tumour cell intravasation. FAK inhibition reduces the phosphorylation of β-catenin 

and also inhibits the association of FAK to VE-cadherin321. Although the FERM 

domain of FAK mediates this association in a kinase independent-manner, the 

conformational change following FAK phosphorylation is required for 

VE-cadherin-FAK binding, which is blocked following FAK kinase inhibition.  

Further to FAKs role in increasing vascular permeability, FAK mediates 

VEGF-induced angiogenesis in ECs via a paracrine signalling axis involving the 

MAPK pathway (Figure 3.4). Binding of Grb2 to FAK Y925 leads to the formation 

of the Grb2-RAS-RAF-SOS signalling complex and the activation of the MAPK 

pathway, upstream of ERK activation and nuclear translocation. Amongst other 

Figure 3.4 I The roles of FAK in endothelial cells. FAK plays multiple roles in 
endothelial cells in order to increase neovascularization, vascular permeability and 
tumour cell intravasation. a FAK is activated downstream of VEGF stimulation of VEGFR, 
leading to the formation of the FAK-Src signaling complex. FAK-Src signaling complex 
rapidly associates with VE-cadherin at cell-cell junctions, leading to the breakdown of the 
VE-cadherin-β-catenin complex and the dissociation of EC adhesion junctions. b 
activation of the FAK-Src signaling complex generated the formation of the Grb2-RAS-
RAF-SOS signing complex, c resulting in the activation of the MAPK pathway and the 
nuclear translocation of active ERK. d activated ERK upregulates the transcription and 
secretion of VEGF, which e forms a paracrine signaling axis, binding to VEGFR and 
increasing the activation of FAK. 
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nuclear targets of activated ERK, VEGF is transcriptionally upregulated leading to 

increased VEGF secretion into the surrounding microenvironment. Secreted VEGF 

may then bind to its receptor (VEGFR) increasing levels of FAK phophorylation322. 

In this mechanism, ECs can initiate VEGF-directed angiogenesis quickly following 

the amplification of relatively small amount of VEGF, thus repairing damaged 

vessels or indeed establishing neovasculature, as efficiently as possible. Other 

nuclear targets of the ERK signalling cascade include vascular cell adhesion 

molecule 1 (VCAM1) following GATA4-dependant transcription284, and 

E-selectin323, proteins involved in immune cell and tumour cell binding to ECs 

respectively. Although the role of VCAM1 expression on ECs is unclear, E-selectin 

binds tumour cells to ECs mediating tumour cell intravasation. Although work 

continues in order to understand the role of FAK in ECs, what is clear is that FAK 

plays a substantial role in both the development of neovascular architecture and in 

linking tumour cells to ECs, both aiding tumour survival and progression through 

metastasis.  

 

3.2.3 FAK is essential to fibroblast biology, fibroblast activation and 
CAF recruitment. 

 

Much of what is currently known about the role of FAK in stromal cell biology 

originates from work in fibroblasts. In fibroblast cell models, FAK was shown to 

mediate migration, polarisation, cell cycle progression and survival in a manner akin 

to tumour cells (3.1). Fibroblasts exist in multiple different activated states within the 

tumour microenvironment (2.2.2) and FAK is involved in fibroblast differentiation 

and activation. Secreted proteins and growth factors mediate the regulation of 

nascent fibroblast activation resulting in the upregulation of α-SMA expression. 

Lysyl oxidase-like 2 (LOXL2) activates fibroblasts and promotes expression of 

α-SMA in a FAK dependant manner through activation of the AKT pathway213,324. 

Inhibition of LOXL2 greatly reduced metastasis and primary tumour cell invasion in 

both orthotropic and transgenic mouse mammary carcinoma models324. Although this 

study did not investigate these effects in FAK-/- fibroblasts, FAK inhibition was 

shown to reduce AKT activation and α-SMA production, and integrin-mediated FAK 
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Y397 phosphorylation increased in fibroblasts following treatment with recombinant 

LOXL2324. Other studies have shown that FAK may also regulate the ‘deactivation’ 

of myofibroblasts and their differentiation back into fibroblasts by enhancing FGF 

signalling which ultimately decreases α-SMA expression325, which implies that the 

role of FAK in myofibroblast differentiation may be context dependant.. Further to 

FAKs role in fibroblast activation, the recruitment of CAFs into the tumour 

microenvironment is also dependant on FAK. FAK mediates the migration of 

fibroblasts downstream of α5β1 integrin engagement and inhibition of FAK in 

pancreatic ductal adenocarcinoma (PDAC) was associated with a reduction in CAF 

recruitment, associated with a reduction in tumour growth and metastasis302.  

 

3.3 Conclusion 

 

As described in detail above, the role of FAK downstream of integrins has been, and 

continues to be, investigated in a number of cell types, many of which contribute to 

the composition of the tumour microenvironment. Thus, therapeutic targeting of 

FAK has the potential to impact directly on tumour cells, endothelial cells, 

fibroblasts, and some immune cells. However, little has been done to address 

whether FAK signalling in cancer cells has any influence over the composition or 

activation status of cells within the tumour microenvironment. Recently, FAK has 

been identified to translocate to the nucleus under conditions of stress, where its 

function remains largely unknown. Preliminary studies suggest that FAK may be 

able to influence the transcription of some secreted factors, including TGFβ, VEGF, 

angiopoeitin 1, and interleukin-6, implying that it may have an unappreciated 

function in regulating aspects of paracrine signalling between cell types. I therefore 

set out to test whether FAK signalling in tumour cells was involved in the regulation 

of chemokines and cytokines by tumour cells, and if so, whether this could influence 

the immune cell composition of the tumour microenvironment and ultimately tumour 

growth and survival.  
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4 Materials and methods 

 

4.1 Materials 

 

4.1.1  Cell culture reagents  
 

Supplier: ECRC Central Services  

Sterile PBS  

Sterile PE 

 

Supplier: Life Technologies, Loughborough, UK 

HBSS  

DMEM  

GMEM  

IMDM 

MEM vitamins  

MEM non-essential amino acids  

200 mM L-glutamine  

2.5% trypsin solution  

Dispase II  

Fetal bovine serum (FBS) 

 

Supplier: Merck Millipore, Hertfordshire, UK 

Hygromycin B 

0.45 µM Millex-HA filter 
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Supplier: Qiagen, Crawley, UK  

Miniprep DNA Kit  

Maxiprep DNA Kit  

RNAeasy Kit + On-column DNase addition 

Gel purification Kit  

PCR purification Kit  

 

Supplier: Sigma Chemical Co, Poole, UK  

Polybrene  

Sodium pyruvate  

Doxorubicin hydrochloride 

 

Supplier: ATCC, LGC Standards, Middlesex, UK 

TIB-207 

TIB-210  

 

4.1.2 Cell culture plastic-ware  
 

Supplier: Becton Dickinson Biosciences, Oxford, UK  

Falcon vented tissue culture flasks (T25, T150 and T175) 

Falcon tissue culture dishes (60 mm, 90 mm and 120 mm)  

Cell strainers (40 and 70 µm)  
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4.1.3 Cell Culture medium 
 

4.1.3.1 SCC and Mel31 
1x GMEM supplemented with  

10% FBS  

2 mM L-glutamine  

1% Non Essential Amino Acids  

1% MEM vitamins  

1% Sodium Pyruvate  

 

4.1.3.2 Panc043, Panc047, Panc117 and Met01 
1x DMEM supplemented with 

10% FBS 

2 mM L-glutamine  

 

4.1.3.3 HEK293FT  
1x DMEM supplemented with 

10% FBS 

2mM L-glutamine  

1% Non Essential Amino Acids  

 

4.1.3.4 Phoenix Ecotropic 
1x DMEM supplemented with 

10% FBS 

2mM L-glutamine 
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4.1.3.5 TIB-207 
1 x IMDM supplemented with 

2% FBS 

 

4.1.3.6 TIB-210 
1x DMEM supplemented with 

2% FBS 

 

4.1.3.7 Trypsin  
0.25% trypsin in sterile PE 

 

4.1.4 Animal experiments  
 

Supplier: Sigma Chemical Co, Poole, UK  

Tween 80 

Carboxymethyl cellulose (CMC) 

 

Supplier: Verastem, MA, USA 

VS-4718 

 

Supplier: Charles River, Kent, UK  

FVB/Ncrl (FVB/N) mice 

BALB/cAnNCrl (BALB/c) Mice 

C57BL/6NCrl (C57BL/6) mice 

Crl:CD1-Foxn1nu (CD-1 nude) mice 

All mice were supplied as age matched, 5-week old females and isolated for one 

work after delivery.  
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4.1.5 Immunofluorescence  
 

Supplier: Sigma Chemical Co, Poole, UK  

Formaldehyde  

 

Supplier: Thermo Fisher, Loughborough, UK 

Circular 19mm glass cover slip 

Prolong gold anti-fade mounting media 

 

Supplier: NIH  

ImageJ software  

 

Supplier: Olympus UK Ltd, Hertfordshire, UK  

Olympus FV1000 Confocal microscope  

 

4.1.6 Western Blotting and electrophoresis 
 

Supplier: Bio-Rad Laboratories Ltd, Hertforshire, UK 

4–15% Mini-PROTEAN® TGX™ Precast Protein Gels 

Precision Plus Protein™ WesternC™ Standards 

Trans-Blot® Turbo™ Midi Nitrocellulose Transfer pack 

Mini-PROTEAN® Tetra Cell gel electrophoresis tank 

Trans-Blot® Turbo™ Transfer System 

Clarity™ Western ECL Blotting Substrate 

ChemiDoc MP Imaging System 
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Image LabTM image acquisition and analysis software 

10x TGS buffer 

 

Supplier: Beckman Coulter, Luton, UK 

Beckman DU 650 spectrophotometer  

 

Supplier: Chemicon International, Harrow, UK  

Re-blot kit  

 

Supplier : Sigma Chemical Co, Poole, UK 

Triton X-100 

Sodium Chloride (NaCl) 

Tris base 

Sodium deoxycholate 

Sodium dodecyl sulphate (SDS) 

2-mercaptoethanol 

Gycerol 

Bromophenol blue 

Tween 20 

 

Supplier: Thermo Fisher, Loughborough, UK 

Micro BCA protein assay kit  

 

Supplier: Merck Millipore, Hertfordshire, UK 

Bovine serum albumin (BSA)  
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Supplier : Roche, Hertfordshire, UK 

protease inhibitor cocktail  

phosphatase inhibitor cocktail  

 

4.1.7 Western Blotting and electrophoresis buffers 
 

4.1.7.1 RIPA buffer  
50 mM Tris/HCl, pH 7.6 

150 mM NaCl  

1% Triton X-100  

0.5% Sodium deoxycholate  

0.1% sodium dodecyl sulphate (SDS)  

Protease inhibitor cocktail  

Phosphatase inhibitor cocktail  

 

4.1.7.2 2x Sample buffer  
800 µl 2-mercaptoethanol  

1.3 ml Tris pH 6.8  

2 ml glycerol  

5 ml 10% SDS  

1.3 ml H2O  

Bromophenol blue to colour  

 

4.1.7.3 Wash buffer  
0.2% Tween 20 in Tris Base Solution  
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4.1.8 Western Blotting antibodies  
 

Supplier: New England Biolabs, Hertfordshire, UK  

Anti-mouse/horseradish peroxidase conjugate  

Anti-rabbit/horseradish peroxidase conjugate  

Anti-mouse Bcl-2 

Anti-mouse PARP 

Anti-mouse β-Actin 

Anti-mouse Caspase 3 

 

4.1.9 Antibody purification 
 

Supplier: Thermo Fisher, Loughborough, UK 

Melon™ Gel IgG Purification Kit 

SnakeSkin™ Dialysis Tubing, 10K MWCO, 22 mm 

 

Supplier: Sigma Chemical Co, Poole, UK 

Whatman® qualitative filter paper, 110mm, Grade 1 

 

4.1.10 FACS analysis 
 

Supplier: Becton Dickinson Biosciences, Oxford, UK 

BD FACS Aria II 

Falcon® Round-Bottom Tubes, Polystyrene 

10x Pharm Lyse red blood cell lysis buffer 

70 µm Cell strainers 
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Supplier: Thermo Fisher, Loughborough, UK 

Countess automated cell counter 

Countess automated cell counter slide 

0.4% Trypan Blue stain  

RPMI 

DMEM 

FBS 

Dispase II 

 

Supplier: ECRC Central Services  

Sterile PBS  

 

Supplier:  StarLabs UK Ltd, Milton Keynes, UK 

Sterile 1.2ml Microtubes in Rack  

 

Supplier: Roche, Hertfordshire, UK 

Collagenase D 

 

Supplier: Sigma Chemical Co, Poole, UK 

Hyaluronidase 

Sodium Azide 
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4.1.11 FACS analysis buffers 
 

4.1.11.1 FACS buffer  

Sterile PBS 

1% FBS 

0.1% Sodium Azide 

 

4.1.11.2 Fc Block 
1 in 200 CD16/CD32 (Fc Blocking anybody) 

 in FACS buffer 

 

4.1.12 FACS analysis antibodies 
 

Supplier: eBioscience, Hatfield, UK 

Anti-mouse CD16/CD32 (Fc Blocking antibody) 

eFluor® 506 conjugated fixable viability dye 

Anti-mouse CD45 – eFluor 450 conjugated 

Anti-mouse CD45 – eFluor 780 conjugated 

Anti-mouse F4/80 – FITC conjugated 

Anti-mouse F4/80 – PE-Cy7 conjugated 

Anti-mouse CD11b – PerPC-Cy5.5 conjugated 

Anti-mouse MMR – APC conjugated 

Anti-mouse Tie2 – PE conjugated 

Anti-mouse Ly6C – eFluor 450 conjugated 

Anti-mouse CD3 – FITC conjugated 

Anti-mouse CD8 – PE conjugated 
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Anti-mouse CD4 – eFluor 647 conjugated 

Anti-mouse CD62L – PE-Cy7 conjugated 

Anti-mouse CD44 – PerCP-Cy5.5 conjugated 

Anti-mouse Gr1 – FITC conjugated 

Anti-mouse PD-L1 – PE conjugated 

Anti-mouse PD-L2 – PE conjugated 

Anti-mouse CD80 – eFluor 780 conjugated 

 

Supplier: Biolegend, London, UK 

Mouse Treg Flow™ Kit (FOXP3 Alexa Fluor® 488/CD4 APC/CD25 PE) 

 

4.1.13 Quantitative RT2-PCR analysis 
 

Supplier: Miltenyi Biotec Ltd, Surry, UK 

Treg isolation kit (130-091-041) 

LD columns 

MidiMACS Separation Kit 

 

Supplier: Qiagen, Crawley, UK  

RotorGene qRT2-PCR System 

RotorGene qRT2-PCR analysis software 

RNAeasy Kit + On-column DNase addition 

RT² Profiler™ PCR Array Mouse Cytokines & Chemokine (PAMM-150Z) 

RT² Profiler™ PCR Array Mouse Chemokines & Receptors (PAMM-022Z) 
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Supplier: Thermo Fisher, Loughborough, UK 

SuperScript first-strand cDNA synthesis kit 

 

Supplier: Bioline Reagents Limited, London, UK 

SensiFAST™ SYBR® Hi-ROX Kit 

 

Supplier:  StarLabs UK Ltd, Milton Keynes, UK 

96-well semi-skirted PCR plate 

 

4.1.14 Quantitative RT2-PCR Primers 
 

Supplier: Thermo Fisher, Loughborough, UK 

CCL5 forward = CCCTCACCATCATCCTCACT  

CCL5 reverse = CCTTCGAGTGACAAACACGA.   

CxCL10 forward = CCCACGTGTTGAGATCATTG  

CxCL10 reverse =  CACTGGGTAAAGGGGAGTGA.  

B2M forward = GGGAAGCCGAACATACTGAA  

B2M reverse = TGCTTAACTCTGCAGGCGTAT 

 

Supplier: Qiagen, Crawley, UK  

RT² qPCR Primer Assay for Mouse Tgfb2 (PPM02992A) 

 

4.1.15 shRNA mediated knockdown 
 

Supplier: Thermo Fisher, Loughborough, UK 

Lipofectamine 2000 
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Supplier: Sigma Chemical Co, Poole, UK  

Polybrene  

 

Supplier: Merck Millipore, Hertfordshire, UK 

0.45 µM Millex-HA filter 

 

Supplier: GE Healthcare, Hertfordshire, UK 

pLKO lentiviral TRC library TGFβ2 shRNA (RMM4534-EG21808) 

pLKO lentiviral TRC library CCL5 shRNA (RMM4534-EG20304) 

 

4.2 Methods 

 

All animal experiments were carried out in accordance with the United Kingdom Animal 

Scientific Procedures Act (1986). 

 

4.2.1 Cell lines 
 

4.2.1.1 SCC 
SCC cells were previously developed in the lab by A. Serrels et al276 following the 

two-stage 7,12-dimethylbenz[a]anthracene (DMBA) / 12-O-tetradecanoylphorbol-

13-acetate (TPA) chemical carcinogenesis protocol51,326. Briefly, SCCs were induced 

in the skin of K14CreER FAKflox/flox transgenic FVB/N mice. Six-week-old mice 

were subjected to a single topical application of DMBA followed by twice weekly 

topical applications of TPA for a period of 20 weeks. Benign papillomas were 

observed approximately 6-10 weeks following the first treatment of TPA, with a 

small proportion of papillomas progressing to invasive SCC succeeding 15 weeks 
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onwards. Following surgical excision of carcinomas, small tissue pieces were 

adhered to plastic tissue culture plates and cells were allowed to grow out onto the 

surrounding plastic surface. Tumour pieces and cells were maintained in MEM at 

37 °c / 5% CO2. Outgrowth of cells was observed following one week under normal 

tissue conditions. The genetic knockout of FAK was achieved following treatment 

with 15 µM 4-OHT for 24 hours (SCC FAK-/- cells). Purity of the SCC population 

and efficiency of FAK knockout was determined by PCR and Western Blot analysis 

as shown in 276 (Figure 5.1). SCC FAK-/- cells re-expressing FAK-wt or a kinase 

dead form of FAK (FAK-kd) were generated using retroviral transfection. Phoenix 

Ecotropic cells were transfected with FAK-wt or FAK-kd constructs using 

lipofectamine 2000 (Thermo Fisher) as per manufacturers instructions, as described 

in 276. 24 hours post transfection, cell culture supernatant was removed, filtered 

through a 0.45 µM Millex-HA filter (Merck Millipore), diluted at a 1:1 ratio with 

normal SCC cell culture medium, supplemented with 5 µg/ml polybrene and added 

to FAK-/- SCC cells for 24 hours. A total of two rounds of infection were performed 

to generate each cell line. Cells were cultured at 37 °C / 5% CO2 in Minimum 

Essential Medium (MEM; Life Technologies) supplemented with 2 mM L-

glutamine, MEM vitamins, 1 mM, MEM amino acids, and 10% fetal bovine serum 

(all Life Technologies), and sodium pyruvate (Sigma) and maintained under 

selection using 0.25 mg/ml hygromycin (Merck Millipore. Western blot analysis of 

partental SCC 7.1, SCC FAK-wt, FAK-/- and FAK-kd cells identified a reduction in 

FAK pY397 (see Figure 3.1), indicative of a reduction in kinase activity in SCC 

FAK-kd cells, validating published data idenifing this mutant and kinase dead 

(Figure 5.1c)254,327.  

SCC FAK-wt and SCC FAK-/- cell lines over-expressing GFP-tagged Bcl2 were 

generated using retroviral transfection as described above.  The GFP-Bcl2 construct 

was a kind gift from Lesley Forrester (Center for Inflammation Research, University 

of Edinburgh). 
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4.2.1.2 Other cell lines 
Mel31, Panc043, Panc047 and Panc117 cell lines were a kind gift from Owen 

Samson (The Beatson Institute for Cancer Research, Glasgow). Met01 were a kind 

gift from Bin-Zhi Qian (Centre for Reproductive Health, University of Edinburgh, 

Edinburgh). 

Mel31 cells were cultured at 37 °C / 5% CO2 in Glasgow Minimum Essential 

Medium (GMEM) supplemented with 2 mM L-glutamine, MEM vitamins, 1 mM 

,MEM amino acids, and 10% FBS (all Life Technologies) and  sodium pyruvate 

(Sigma) 

Panc043, Panc047, Panc117 and Met01 cells were cultured at 37 °C / 5% CO2 in 

Dulbecco’s Minimum Essential Medium (DMEM) supplemented with 2 mM L-

glutamine and 10% FBS (all Life Technologies) 

4T1 cells were cultured at 37 °C / 5 % CO2 in RPMI medium supplemented with 

10% FBS (Life Technologies) 

TIB-207 hybridoma cells (ATCC) were cultured at 37 °C / 5 % CO2 in Iscove's 

Modified Dulbecco's Medium (IMDM) supplemented with 2% FBS (Life 

Technologies) 

TIB-210 hybridoma cells (ATCC) were cultured at 37 °C / 5 % CO2 in Dulbecco's 

Modified Eagle's Medium (DMEM) supplemented with 2% FBS (Life 

Technologies). 

 

4.2.2 Western blot analysis 
 

To prepare whole cell lysates, cells were washed x2 in ice cold PBS and lysed in 

radioimmuno-precipitation assay (RIPA) buffer (50 mmol/L Tris (pH 7.6), 150 

mmol/L sodium chloride, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, protease 

inhibitor cocktail (Roche), phosphatase inhibitor cocktail (Roche)). Lysates were 

cleared by centrifugation at 13000 rpm for 15 minutes at 4 °C. Protein concentration 

was then determined using Micro BCA protein assay kit (Thermo Fisher). 

Absorbance was measured with a Beckman DU 650 spectrophotometer (Beckman 
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Coulter, Luton, UK) at 562 nm. A total of 20 µg of each sample were aliquoted and an 

appropriate volume of 2x Sample buffer was added and incubated at 95 °C for 5 

minutes. Lysates were resolved by 4 - 15% Bis-Tris gel electrophoresis (Biorad) and 

proteins transferred to (Biorad) using Trans-Blot® Turbo™ Transfer System 

(Biorad). Membranes were then blocked (5% BSA/PBST) for 1 hour at room 

temperature and probed with either anti-Bcl2 (1:1000 in 5% BSA/PBST, Cell 

Signaling Technology), anti-PARP (1:1000 in 5% BSA/PBST, Cell Signaling 

Technology) or anti-caspase3 (1:1000 in 5% BSA/PBST, Cell Signaling 

Technology) primary antibodies over-night at 4 °C. After over-night incubation, 

membranes were washed 3x with PBST and bound antibody was detected by 

incubation with anti-rabbit or anti-mouse HRP-conjugated secondary antibody 

(1/5000 in 5% BSA/PBST; Cell Signaling Technology) for 1 hour at room 

temperature. Following 3x washes with PBST, membranes were prepared for 

chemiluminescent visualization by incubation for 1 minute in Clarity™ Western 

ECL Blotting Substrate (Biorad) and visualized using a ChemiDoc MP Imaging 

System (Biorad). Membranes were rinsed with TBST and distilled water before 

stripping with re-blot plus mild solution (Chemicon International). After washing 

with distilled water, stripped membranes were re-probed with 1:10000 anti-actin 

(Sigma) to check protein loading. 

 

4.2.3 Confocal Immunofluorescence microscopy 
 

SCC FAK-wt and SCC FAK-/- Bcl2-GFP expressing cells were grown on glass 

coverslips, rinsed in PBS and fixed with 3.7% (v/v) formaldehyde for 15 min. Cells 

were examined using an Olympus FV1000 confocal microscope (Olympus UK Ltd). 

 

4.2.4 Purification of CD4 and CD8 depleting antibodies 
 

Anti-mouse CD4 (GK1.5, ATCC TIB-207) and CD8 (2.43, ATCC TIB-210) 

depleting antibodies were purified in-house from conditioned supernatant using a 

Melon Gel IgG purification kit  (Thermo Fisher) as per manufactures instructions. 
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Cells were removed from supernatants by centrifugation (1300 rpm at 4 °C for 

3 minutes). 1 litre of conditioned supernatants were concentrated using 20 mL 

Pierce™ Protein Concentrators (9K MWCO; Thermo Fisher) to a final volume of 

100 ml and dialyzed into 1x Melon Gel purification buffer by 2x 1 hour exchanges 

into fresh 1x Melon Gel purification buffer (SnakeSkin™ Dialysis Tubing, 10K 

MWCO, 22 mm; Thermo Fisher). 1x sample volume of Melon IgG Purification 

Support was equilibrated to room temperature, then added to conditioned 

supernatants and incubated at room temperature for 5 minutes. Mixture of Melon IgG 

Purification Support and conditioned supernatants were then applied to a Buchner 

flask with a pre-soaked 110mm Whatman® qualitative filter paper (Sigma), vacuum 

was applied and the eluted purified antibody was collected. 

Antibody purification was validated by protein visualisation using TGX stain-free 

gel electrophoresis (Biorad). Samples were resolved by 4 – 15% TGX Bis-Tris gel 

electrophoresis (Biorad) and UV light was applied to each gel and gels were 

visualized using a ChemiDoc MP Imaging System (Biorad). 

 

4.2.5 Animal experiments 
 

4.2.5.1 Subcutaneous tumour growth 
Cells were injected subcutaneously into both flanks of either CD-1 nude mice (2.5 x 

105 cells) or FVB/N, BALB/c or c57BL/6 mice (1 x 106 cells) and tumour growth 

measured twice-weekly using calipers. Animals were sacrificed when tumours 

reached maximum allowed size, or more commonly when signs of ulceration were 

evident. Group sizes ranged from 3 – 5 mice each bearing two tumours, and tumour 

volume calculated in Excel using the formula v = 4/3πr3. Statistics and graphs were 

calculated using Prism (Graphpad). For studies involving treatment with VS-4718, 

drug was prepared in 0.5% carboxymethyl cellulose (CMC) + 0.1% Tween 80 

(Sigma) and mice treated at 75 mg/kg BID by oral gavage. Animals were visually 

monitored for signs of toxicity and weighed prior to each dose with VS-4718. No 

signs of toxicity were observed. 
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4.2.5.2 Tumour growth following re-challenge 
1 x 106 SCC FAK-/- cells were injected subcutaneously into the left flank of FVB/N 

mice and tumour growth measured twice weekly as described above. Following 

tumour regression, mice were left for 7 days before being challenged with 1 x 106 

SCC FAK-wt or SCC FAK-/- cells injected subcutaneously into the right flank. 

Tumour growth was measured twice-weekly using calipers. Control groups were 

injected subcutaneously into both flanks at day 28 using mice that had not been 

pre-challenged with SCC FAK-/- cells. Tumour volume was calculated in Excel 

using the formula v = 4/3πr3. Statistics and graphs were calculated using Prism 

(Graphpad). 

 

4.2.5.3 CD4+, CD8+ and CD25+ T cell depletion  
Anti-mouse CD4 (GK1.5, ATCC TIB-207) and CD8 (2.43, ATCC TIB-210) 

depleting antibodies were purified in-house (3.2.3) or purchased from eBioscience. 

Rat IgG isotype control antibody and CD25 depleting antibody was both purchased 

from eBioscience. T-cell depletion was achieved following intra-peritoneal (IP) 

injection of 150 µg of depleting antibody (same for all antibodies) into female age-

matched FVB/N mice for 3 consecutive days, and maintained by further IP injection 

at 3 day intervals until the study was terminated. 1 x 106 SCC FAK-wt or 

SCC FAK-/- cells were injected subcutaneously into both flanks 6 days after initial 

antibody treatment and tumour growth measured twice weekly using calipers. The 

extent of T-cell depletion was determined at the end of the study using FACS 

analysis from disaggregated spleen and thymus tissue (see below)  

 

4.2.6 FACS analysis of tissues 
 

Tumours established following injection of 1 x 106 SCC cells into both flanks of an 

FVB/N mouse were removed at day 7 into RPMI (Sigma) supplemented with 10% 

fetal bovine serum (Life technologies).  Tumour tissue was mashed into a pulp using 

a scalpel and re-suspended in DMEM (Sigma) supplemented with 2 mg/ml 

collagenase D (Roche). Samples were incubated for 1 hour at 37 °C, pelleted by 
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centrifugation at 1600 rpm for 5 minutes at 4°C, and re-suspended in 5 ml of 1x red 

blood cell lysis buffer (Pharm Lysis Buffer, Becton Dickinson). Samples were 

incubated for 5 minutes at 37 °C, then pelleted by centrifugation at 1600 rpm for 5 

minutes at 4 °C, re-suspended in PBS and passed through a 70 µm cell strainer 

(Becton Dickinson). The resulting single cell suspension was pelleted by 

centrifugation at 1600 rpm for 5 minutes at 4 °C and re-suspended in FACS buffer 

(PBS + 1% FBS + 0.1% sodium azide). This step was repeated a total of three times. 

A sample of the suspension was counted using trypan blue exclusion and the 

remaining cell suspension pelleted by centrifugation at 1600 rpm for 5 minutes at 

4 °C and re-suspended in FACS buffer at a concentration of 1 x 106 viable cells/ml. 

100 µl of each sample was pipetted into each well of a 96-well plate and the plate 

centrifuged at 1600 rpm for 5 minutes at 4 °C. Cell pellets were re-suspended in 50 

µl of Fc block (1 in 200 dilution of Fc antibody (eBioscience) in FACS buffer) and 

incubated for 15 minutes at 4 °C. 50 µl of antibody mixture was added to each well 

and the samples incubated for 30 minutes in the dark at 4 °C. All antibodies were 

from eBioscience and used at a concentration of 1 in 200. The plate was then 

centrifuged at 1600 rpm for 5 minutes at 4 °C and the cells re-suspended in FACS 

buffer and analyzed using a BD FACS Aria II (Becton Dickinson).  

Treg staining was performed using a Treg staining kit (Biolegend) as per 

manufacturers instructions. Tumours were disaggregated and incubated in Pharm 

lysis buffer (Becton Dickinson) as above. Samples were then re-suspended in 1x 

FOXP3 Fix/Perm buffer and incubated in the dark for 20 minutes at room 

temperature. Samples were then washed 3 times by centrifuged at 1600 rpm for 5 

minutes at 4 °C and re-suspension in 1x FoxP3 Perm buffer. Samples were then 

stained with antibody cocktail containing anti-mouse FOXP3 Alexa Fluor® 488, 

CD4 APC and CD25 PE conjugated antibodies for 1 hour in the dark at room 

temperature. Stained samples were washed 3x in FACS buffer prior to analysis using 

a BD FACS Aria II (Becton Dickinson).   

Staining of spleen and thymus tissue was performed as above.  

Data analysis was performed using FlowJo software. Statistics and graphs were 

calculated using Prism (Graphpad).  
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For absolute counting, the same protocol as above was used, except tumours were 

weighed following surgical removal, and prior to FACS analysis samples were 

resuspended in varying volumes of FACS buffer (dependent on weight) containing 

CountBright Absolute Counting Beads (Life Technologies). 

 

4.2.7 FACS analysis of cultured cells 
 

Cells were cultured in 90 mm Falcon tissue culture dishes (Becton Dickinson). Cells 

were removed using 1x non-enzymatic cell dissociation solution (Sigma) and 

pelleted by centrifugation at 1600 rpm for 5 minutes at 4 °C, re-suspended in PBS 

and passed through a 70 µm cell strainer (Becton Dickinson). The resulting single 

cell suspension was pelleted by centrifugation at 1600 rpm for 5 minutes at 4 °C and 

re-suspended in FACS buffer (PBS + 1% FBS + 0.1% sodium azide). This step was 

repeated a total of three times. A sample of the suspension was counted using trypan 

blue exclusion and the remaining cell suspension pelleted by centrifugation at 1600 

rpm for 5 minutes at 4 °C and re-suspended in FACS buffer at a concentration of 1 x 

106 viable cells/ml. 100 µl of each sample was pipetted into each well of a 96-well 

plate and the plate centrifuged at 1600 rpm for 5 minutes at 4 °C. Cell pellets were 

re-suspended in 50 µl of Fc block (1 in 200 dilution of Fc antibody (eBioscience) in 

FACS buffer) and incubated for 15 minutes at 4 °C. 50 µl of antibody mixture was 

added to each well and the samples incubated for 30 minutes in the dark at 4 °C. All 

antibodies were from eBioscience and used at a concentration of 1 in 200. The plate 

was then centrifuged at 1600 rpm for 5 minutes at 4 °C and the cells re-suspended in 

FACS buffer and analyzed using a BD FACS Aria II (Becton Dickinson).  

Data analysis was performed using FlowJo software. Statistics and graphs were 

calculated using Prism (Graphpad).  
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4.2.8 Gene expression profiling 
 

RNA was prepared from SCC FAK-wt and SCC FAK-/- cells using an RNAeasy kit 

(Qiagen) according to the manufacturer’s instructions. RNA was analyzed using the 

GeneChip Mouse Genome 430 2.0 Array (Affymetrix). Array data were background 

corrected, quantile normalized and log transformed. Data for differentially expressed 

genes (P < 0.01) were median centered and subjected to unsupervised agglomerative 

hierarchical clustering on the basis of Euclidean distance computed with a 

complete-linkage matrix using Cluster 3.0 (C Clustering Library, version 1.37) 328. 

Clustering results were visualized using Java TreeView (version 1.1.1) 329. 

Functional enrichment analysis against the mouse genome background was 

performed using ToppGene 330. 

 

4.2.9 Quantitative RT2-PCR array analysis of cytokine, chemokine, and 
chemokine receptor expression 

 

RNA was isolated and purified using RNeasy kit with on column DNAse digestion 

(Quiagen). RNA prepared from SCC cells using and was analyzed using the mouse 

cytokine and chemokine RT2 Profiler PCR Array (PAMM-150Z; Qiagen) and that 

from isolated Tregs (isolated using Treg isolation kit, 130-091-041; Miltenyi 

Biotech) was analyzed using the mouse chemokine and receptor array (PAMM-22Z; 

Qiagen) according to the manufacturer’s instructions. Relative gene expression 

(2−ΔCt) values were log transformed, median centered and subjected to hierarchical 

clustering as for microarray analysis. For interaction network analysis, an 

interactome of chemokine ligands and receptors was constructed using the 

IUPHAR/BPS Guide to Pharmacology database 331,332 and curated from the literature 
333, onto which expression data for detected genes were mapped and visualized using 

Cytoscape (version 3.0.2) 334.  

In addition, expression of selected cytokine and chemokine genes was assessed by 

standard quantitative RT-PCR. cDNA was prepared from RNA using SuperScript 

first-strand cDNA synthesis kit, as per manufactures instructions. cDNA reaction 
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mix consisted of 5 µg of RNA, 1 µL random hexamer primers (50 ng/µL), 1 µL of 10 

mM dNTP stock mix, 4 µL of 25 mM MgCl2,  2 µL of 0.1 M DTT, 1 µL of 

RNaseOUT (40 U/µL) and 1 µL SuperScript® III RT (200 U/µL) + 1x RT buffer to a 

final volume of 20 µL.  Reactions were incubated for 10 minutes at 25 °C followed 

by 50 minutes at 50 °C. Reactions were terminated by incubation at 85 °C for 5 

minutes, followed by the addition of 1 µL of RNase H to each tube and a final 

incubation for 20 min at 37 °C, after which cDNA reaction were stored at -20 °C 

until used. 

TGFβ2 specific primers were purchased from Qiagen (Cat Number PPM02992A).  

CCL5 primers used were: forward, CCCTCACCATCATCCTCACT and reverse, 

CCTTCGAGTGACAAACACGA.  Cxcl10 primers used were: forward, 

CCCACGTGTTGAGATCATTG and reverse, CACTGGGTAAAGGGGAGTGA. 

B2M primers used were: forward, GGGAAGCCGAACATACTGAA and reverse, 

TGCTTAACTCTGCAGGCGTAT.  Briefly, a reaction mix consisting of 10 µl 

SensiFAST SYBR Hi-ROX reagent (Bioline), 0.4 µl of 10 µM stock forward primer, 

0.4 µl of 10 µM stock reverse primer, 4.4 µl water, and 4 µl of 20 ng/µl stock random 

hexamer primed cDNA was run on a Rotorgene qRT-PCR machine using the 

following cycling conditions: 94°C for 10 minutes; 40 cycles of 94°C for 10 seconds, 

57°C for 20 seconds, 72°C for 20 seconds; and 72°C for 7 minutes.  Analysis was 

performed using rotorgene software and expression relative to B2M calculated using 

Microsoft Excel. 

 

4.2.10 Treg Isolation 
 

Single cell suspensions were generated from both SCC FAK-wt tumours and mouse 

Thymus as described above. A sample of the suspension was counted using trypan 

blue exclusion and the remaining cell suspension pelleted by centrifugation at 1600 

rpm for 5 minutes at 4 °C and re-suspended in FACS buffer at a concentration of 1 x 

107 viable cells/40 µL.  Tregs were isolated using Treg isolation kit (130-091-041; 

Miltenyi Biotech) as per manufacturers instructions, using LD columns and 

MidiMACS Separation Kit (Miltenyi Biotech). 
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4.2.11 shRNA mediated TGFb2 and CCL5 knockdown 
 

To generate lentiviral particles 2 x 106 HEK293FT cells were transfected with a 

mixture of 10 µg shRNA (TGFβ2 = RMM4534-EG21808; CCL5 = 

RMM4534-EG20304; GE Healthcare), 6.5 µg HIV, and 3 µg VSVG plasmid DNA 

using Lipofectamine 2000 (Thermo Fisher) as per manufacturers protocol. 24 hours 

post transfection, media was removed and filtered through a 0.45 µM Millex-AC 

filter (Millipore) and mixed at a 1:1 ratio with normal SCC growth media.  This 

mixture was supplemented with polybrene to a final concentration of 5 µg/ml and 

added to the SCC for 24 hours.  Cells were subject to two rounds of lentiviral 

infection prior to selection with puromycin at a final concentration of 2ug/ml. All 

shRNA constructs used were part of the pLKO lentiviral TRC library (GE 

Healthcare). 

 

4.2.12 Statistical analysis 
 

To determine the number of mice required to reach statistical significance in tumour 

growth experiments, preliminary data for SCC FAK-wt and SCC FAK-/- tumour 

growth were used in power calculations. 1 x 106 SCC FAK-wt and SCC FAK-/- cells 

were implanted into both flanks of FVB animals (n=5) and tumour growth was 

measured twice weekly, and tumour volume was calculated as described in 4.2.5.1.  

The means of SCC FAK-wt (mean = 237.3 mm3) and SCC FAK-/- 

(mean = 47.3 mm3) tumours, with a standard deviation of 47.1 were compared using 

a 2-sample, 2-sided equality power calculation (see 335). Sample size was calculated 

as 3 mice when using a power of 0.99 and a Type I error rate of 1%.   

The number of mice required to reach statistical significance in drug-treated and 

antibody-treated experiments were determined as above, with a final calculated 

sample size of 5. The number of experiment repeats in all cases equal 2.  
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All statistical analysis was calculated using GraphPad Prism 6.0c for Mac. Normality 

of data was determined using D’Agostino and Pearson omnibus normality test. For 

FACS analysis, unmatched, ordinary, one-way Anova with Sidak’s multiple 

comparison test was used to determine statistical significance involving three or 

more populations (stacked bar graphs), or between SCC FAK-wt, SCC FAK-/- and 

SCC FAK-kd populations. When analyzing only two populations, an unpaired, 

parametric t test with Welch’s correction was used. For growth curves, matched, 

two-way Anova with Tukey’s multiple comparisons test was used to determine 

statistical significance. P values = Not significant>0.05, * <0.05, **<0.01, 

***<0.001, ****<0.0001. 
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5 Identification of a novel role of FAK in enabling tumour cell 
evasion of an anti-tumour immune response 

 

5.1 Introduction 

 

I set out to investigate whether FAK signalling in tumour cells influences the 

immune compartment of the tumour microenvironment. To address this, I used a 

syngeneic mouse model of squamous cell carcinoma (SCC) previously developed in 

the lab by A. Serrels et al276. SCCs were induced in the skin of K14CreER 

FAKflox/flox mice by the two-stage 7,12-dimethylbenz[a]anthracene (DMBA) / 

12-O-tetradecanoylphorbol-13-acetate (TPA) chemical carcinogenesis protocol51,326. 

These mice were developed on an FVB/N background due to the increased 

susceptibility of FVB/N mice to DMBA/TPA treatment336. DMBA is a topical 

carcinogen, which when applied to the skin induces an irreversible A to T 

transversion on codon 61 of proto-oncogene Harvey-ras (Ha-Ras). Treatment with 

DMBA alone is not sufficient to induce tumours and requires the repeat application 

of tumour-promoting agents such as TPA. The pro-inflammatory phorbol-ester TPA, 

binds and activates protein kinase C (PKC)337 and induces the expression of 

pro-inflammatory cytokine IL-1α338. With repeated application after DMBA 

treatment, TPA activates stromal fibroblasts, increases macrophage and neutrophil 

recruitment and results in the generation of benign papillomas that, in some cases 

progress to carcinoma. 

The coding exons of the fak gene span over 225 kb, and so it was not feasible to 

delete the entirety of the fak gene339. K14CreER FAKflox/flox mice were developed so 

that loxP sites flank a critical codon in the FAK kinase domain (amino acids 

413-444), and Cre-mediated excision results in a frame shift mutation in the adjacent 

exon, that precludes the production of a functional FAK protein339. A K14 

skin-specific promoter drives the expression of a modified estrogen receptor–Cre 
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fusion protein (CreER) that translocates to the nucleus only after exposure to 

4-hydroxytamoxifen (4OHT). Previous studies in the lab have showed that 

DMBA/TPA treatment does not induce papillomas after the deletion of fak in 

K14CreER FAKflox/flox mice in vivo339, and therefore to develop an SCC FAK-/- cell 

line, SCC cells were derived and fak deleted in vitro. Following DMBA/TPA 

treatment, carcinomas were surgically excised and SCC cells were derived using 

selective cell culture conditions276. SCC cells were then cultured in the presence of 

4OHT for 48 hours, single cell cloned and screened for FAK deletion by 

immunoblotting and PCR276. FAK constructs were then re-expressed back into SCC 

FAK-/- clones and a clone pair was selected that stably expressed FAK in a manner 

similar to exogenous levels determined by immunoblotting and PCR. This approach 

produced two syngeneic cell lines that were genetically identical apart for the 

expression of FAK, called SCC FAK-wt and SCC FAK-/-. This approach also allows 

other FAK constructs to be expressed in SCC FAK-/- cells, in order to investigate the 

effects of mutant FAK protein, on an identical genetic background.  

 

5.2 Aims 

 

• To investigate whether SCC FAK-wt and SCC FAK-/- tumours exhibit 

host-dependant characteristics 

• If so, to identify whether components of the adaptive immune system are 

involved in regulating tumour growth 

• To determine whether FAK kinase activity is required for any growth 

differences observed 
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5.3 Results 

 

5.3.1 SCC FAK-/- cells exhibit host-dependent growth characteristics 
 
SCC cells were generated by A. Serrels as described in 4.2.1.1. The purity and 

efficiency of FAK knockout in the selected SCC FAK-/- clone was determined by 

PCR (Figure 5.1a) and Western Blot anlysis (Figure 5.1b). A kinase-deficient form 

of FAK was first described and characterised by Schlaepher et al340, and 

subsequently SCC FAK-kd cells were made as described above. The loss of kinases 

activity was determined by Western blot anlysis of FAK pY397 (Figure 5.1c). 

Using the SCC cell model described above I first set out to determine the growth 

characteristics of SCC FAK-wt and SCC FAK-/- cells in both CD-1 nude 

immuno-deficient mice and immuno-competent FVB/N mice. 2.5 x 105 and 1 x 106 

SCC FAK-wt and SCC FAK-/- cells were implanted using bilateral subcutaneous 

injection into CD-1 nude (Figure 5.2a) and FVB/N mice (Figure 5.2b) respectively, 

and tumour growth was measured twice weekly using callipers. Tumour volume was 

calculated using the formula 4/3πr3.  

 

Figure 5.1 I Validation of SCC FAK-wt, SCC FAK-/- and SCC FAK-kd cell lines. 
a PCR of Cre and FAK in SCC 7.1 and SCC FAK-/- cells following 4OHT treatment. 
GAPDH was sued as a loading control. b Western blot of ACC FAK 7.1 and SCC FAK-/- 
cells. c Validation of the expression of FAK in SCC FAK-wt and SCC FAK-kd cells and 
the loss of pY397 FAK in SCC FAK-kd cells. Tubulin was used as a loading control 
Figure taken from The role of focal adhesion kinase catalytic activity on the proliferation 
and migration of squamous cell carcinoma cells. Serrels et al. Int J Cancer, 2012.   
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In CD1-nude mice (Figure 5.2a), SCC FAK-wt tumour growth reached an average 

tumour volume of 190.28 ± 24.246 mm3 10 days post implantation, and a final 

average tumour volume of 407.35 ± 53.182 mm3 after 14 days at which point the 

mice were sacrificed due to signs of ulceration. In comparison, SCC FAK-/- tumours 

showed a significant growth delay by day 10 and day 14 (average tumour volume = 

93.759 ± 8.6705 mm3, p value = 0.0091 and 207 ± 28.058 mm3, p value = <0.0001 

respectively), and continued to grow eventually reaching the same size as the SCC 

FAK-wt tumours (Figure 5.2a).  

In contrast, bilateral subcutaneous injection of SCC FAK-wt or SCC FAK-/- cells in 

immune-competent FVB/N mice revealed a striking difference in tumour growth 

kinetics (Figure 5.2b). SCC FAK-wt tumours grew until day 14 reaching an average 

volume of 246.03 ± 55.544 mm3, but also showing signs of ulceration requiring this 

experimental group to be terminated. In contrast, SCC FAK-/- tumours grew for an 

initial period of 7 days reaching an average volume of 71.745 ± 8.1837 mm3, after 

which tumour growth stalled and complete regression occurred by day 21 

(Figure 5.2b). No tumour regrowth was observed following monitoring of these 

animals for a further 6 months (data not shown). 

The observed difference in growth kinetics between SCC FAK-wt and 

SCC FAK-/- tumours on immune-competent and immune-deficient hosts suggested a 

potential role for the host immune status in dictating tumour outcome. CD-1 nude 

mice, via disruption of the FOXN1 gene, are rendered athymic and as a consequence 

lack functional T-cells but retain functional B-cells, NK-cells and myeloid cells341. In 

contrast, FVB/N mice are fully immune-competent. Therefore, I hypothesised that 

FAK expression in SCC tumour cells may enable them to evade T-cell detection / 

destruction by one of 3 mechanisms; 1) FAK expression may protect cells from 

undergoing apoptosis leading to a reduction in the available antigen released into the 

microenvironment, 2) FAK may regulate the expression of tumour associated antigen 

(TAA) or 3) FAK expression in cancer cells may somehow influence the 

composition of the immunosuppressive milieu within tumours.   
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Figure 5.2 | SCC FAK-/- tumours show host-dependent growth characteristics. a 
SCC FAK-wt and SCC FAK-/- tumour growth in CD1-nude mice.  2.5 x 10

5
 SCC FAK-wt and SCC 

FAK-/- cells were implanted into CD1-nude mice by bilateral subcutaneous injection (n = 6). SCC 
FAK-wt tumours grew until day 14 at which point the animals were sacrificed due to signs of 
ulceration. SCC FAK-/- tumours showed a significant growth delay compared to the SCC FAK-wt 
tumours. b SCC FAK-wt and SCC FAK-/- tumour growth in FVB/N mice. 1.0 x 10

6
 SCC FAK-wt and 

SCC FAK-/- cells were implanted into FVB/N mice by bilateral subcutaneous injection (n = 6). SCC 
FAK-wt tumours grew until day 14 at which point signs of ulceration were observed and the animals 
were sacrificed. SCC FAK-/- tumours grew until day 7 at which point tumour growth stalled and was 
followed by complete regression by day 21. Tumours did not reoccur within 6 months post-
regression (data not shown). Statistical significance was determined by matched, two-way Anova 
with Tukey’s multiple comparisons. Data are represented as mean ± s.e.m. P-value = Not 
significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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5.3.2 SCC FAK-/- tumour clearance is not due to increased 
Bcl-2-dependent apoptosis 

 

FAK is known to promote cell survival under different conditions of adhesion 

stress264,327, and apoptotic cell death can under certain conditions elicit an immune 

response (2.4). I therefore hypothesised that SCC FAK-/- cells may be subject to 

increased apoptosis, resulting in greater availability of TAAs within the 

microenvironment. A key ‘point of no return’ during apoptosis is the release of 

Cytochrome C from the mitochondrial membrane through large pores generated by 

the oligomerization of BAX/BAK proteins. This is antagonised by the anti-apoptotic 

protein Bcl-2342,343. Thus, to test our hypothesis I stably overexpressed a Green 

Fluorescent Protein (GFP) tagged Bcl-2 in both SCC FAK-/- and SCC FAK-wt cells 

using retroviral transfection and antibiotic selection (Figure 5.3). The extent of 

GFP-Bcl-2 overexpression was visualised by confocal imaging (Figure 5.3a) and 

expression levels determined using immunoblotting (Figure 5.3b). To confirm that 

Bcl-2 overexpression was able to protect SCC cells from apoptosis, cells were treated 

with increasing concentrations of doxorubicin, a cytotoxic DNA intercalating agent, 

for 24 hours and the induction of apoptosis measured by immunoblotting for 

caspase 3 activation and PARP cleavage (Figure 5.3c). These results showed that 

treatment with doxorubicin increased levels of active caspase 3 and cleaved PARP in 

both SCC FAK-wt and SCC FAK-/- cell lines compared to untreated controls, and 

further highlighted that SCC FAK-/- cells exhibit greater sensitivity to doxorubicin-

induced apoptosis, supporting the observations of others regarding the anti-apoptotic  

functions of FAK344,345. Bcl-2 over-expression in both cell lines resulted in a marked 

reduction in caspase 3 activation and PARP cleavage at all doxorubicin 

concentrations tested (Figure 5.3c). Thus, overexpression of Bcl-2 protected both 

SCC FAK-wt and FAK-/- cells from doxorubicin-induced apoptosis. Despite this, 

there were no differences observed in the tumour growth kinetics in FVB/N mice 

from either SCC FAK-wt or SCC FAK-/- Bcl-2 overexpressing tumours when 

compared to controls (Figure 5.3d). Furthermore, Fluorescent Activated Cell Sorting 

(FACS) of disaggregated SCC FAK-wt and SCC FAK-/- tumours formed at day 7 in 

FVB/N mice revealed no differences in cell viability (mean ± s.e.m. = FAK-wt,  
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Figure 5.3 | Generation and characterization of GFP-Bcl-2 expressing SCC FAK-wt 
and SCC FAK-/- cells. a Representative confocal images of SCC FAK-wt and SCC FAK-/- cells 
expressing GFP-Bcl-2. b Western blot of endogenous Bcl-2 expression (26 KDa) and exogenous 
GFP-Bcl-2 (53 KDa) in SCC FAK-wt and SCC FAK-/- cells. c Validation of apoptotic protection of 
GFP-Bcl-2 expression in SCC FAK-wt and SCC FAK-/- cells after doxorubicin treatment. SCC FAK-
wt, SCC FAK-/- and GFP-Bcl-2 expressing SCC FAK-wt and SCC FAK-/- cells were treated with 
increasing concentrations of doxorubicin. Doxorubicin-induced apoptosis was determined by 
immunoblotting for active caspase 3 and cleaved PARP. SCC FAK-wt and SCC FAK-/- cells 
expressing GFP-Bcl-2 showed lower levels of active-caspase 3 and cleaved PARP after 
doxorubicin treatment compared to controls. d GFP-Bcl-2 expression did not rescue SCC FAK-/- 
tumour clearance in FVB/N mice. 1.0 x 10

6
 SCC FAK-wt, SCC FAK-/- and GFP-Bcl-2 expressing 

SCC FAK-wt and SCC FAK-/- cells were implanted into FVB/N mice by bilateral subcutaneous 
injection (n = 6). Tumour diameter was measured twice weekly and tumour volume calculated using 
the formula 4/3πr

3
. Statistical significance was determined by matched, two-way Anova with 

Tukey’s multiple comparisons. Data are represented as mean ± s.e.m. 
  
. 
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63.67% ± 0.6199; FAK-/-, 64.18% ± 0.3457), as measured by the uptake of an 

eFluor® 506 conjugated fixable viability dye (Figure 5.4). These data imply that 

Bcl-2-antagonized apoptosis is not responsible for, or a contributing factor to, the 

observed tumour regression characteristics of SCC FAK-/- tumours.  
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Figure 5.4 | Loss of FAK expression did not effect cell viability in vivo. FAK 
expression did not influence cell viability in early SCC FAK-wt and SCC FAK-/- tumours. 1.0 x 10

6
 

SCC FAK-wt and SCC FAK-/- cells were implanted into FVB/N mice by bilateral subcutaneous 
injection. SCC FAK-wt and SCC FAK-/- tumours were disaggregated at day 7, stained with fixable 
viability dye eFluor® 506 and analyzed by FACS (n = 12). Data are represented as mean ± s.e.m. 
SCC FAK-wt, 63.67% ± 0.6199; SCC FAK-/-, 64.18% ± 0.3457. Statistical significance was 
determined by an unpaired, parametric t test with Welch’s correction.  P-value = Not significant 
>0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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5.3.3 CD8+ T-cells drive SCC FAK-/- tumour regression 
 

Having ruled out Bcl-2-antagionised apoptosis, I next sought to definitively 

determine the role of T-cells in the clearance of SCC FAK-/- tumours. To do so, I 

utilised antibodies targeting CD8+ and CD4+ T-cells to deplete these populations in 

tumour bearing mice, and measure the impact on SCC tumour growth.   

 

5.3.3.1 Purification and dose-optimization of T-cell depleting antibodies 
Anti-mouse CD8 and CD4 depleting antibodies were purified from supernatants of 

rat hybridomas GK1.1 (ATCC TIB-207) and 2.41 (ATCC TIB-210) respectively 

using Melon IgG purification columns (Thermo Scientific) as described in the 

methods section. Briefly, hybridoma culture supernatant containing secreted 

antibody was concentrated, dialysed into ‘binding buffer’ and incubated with Melon 

IgG resin. Melon IgG resin contains a proprietary ligand that retains proteins found 

in cultured supernatants, allowing enrichment of IgG passing over it. Incubation of 

the beads in ‘elution buffer’ elutes a fraction containing purified IgG. The eluted 

fraction was collected and the efficiency of purification assessed using TGX stain-

free protein gels (Biorad). These gels contain trihalo-compounds that react with 

tryptophan residues resulting in a fluorescent signal when activated by UV-exposure. 

Aliquots from each purification stage were visualised alongside concentrated 

supernatant and a commercially available Low Endotoxin Azide Free (LEAF) 

purified antibody control for both CD8 and CD4. A serial dilution BSA 

concentration standard was used to determine final antibody concentration. The 

resulting gels showed that both CD8 (Figure 5.5a) and CD4 (Figure 5.5b) 

antibodies were enriched in the final eluted fraction compared to the concentrated 

media in each case. Neither antibody was detected in the wash elutes (FT1, FT2 or 

FT3), and the final concentration as determined by the BSA gradient was 

approximately 1 mg/ml. However, comparison of the eluted fractions with the 

commercial control antibody showed that purified elutes contained a number of high 

molecular weight species not found in the commercial preparations. To determine  
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Figure 5.5 | Purification of anti-mouse CD8
+
 and CD4

+
 depleting antibodies. Image 

of UV activated TGX stain-free protein gel to determine the efficiency of the purification of a CD8
+ 

and b CD4
+
 antibodies from cultured supernatants. Gels show each stage in the purification; 

concentrated media, flow through (FT) 1, 2 and 3 and the final eluted fraction. Also shown; BSA 
gradient to assess protein concentration, Control CD8

+
 and CD4

+
 antibodies (Ab) to determine 

correct protein size respectively and protein molecular weight markers (M). Both CD8
+
 and CD4

+
 

antibodies purified alongside a number of high molecular weight species 
 

[BSA, mg/ml] 
2.0 1.0 0.5 0.25 0.05 

[BSA, mg/ml] 
2.0 1.0 0.5 0.25 0.05 
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whether the antibody preparations were functionally active and sufficient for 

purpose, or whether further purification would be required, I compared their capacity 

to deplete CD8 and CD4 T-cells with that of the commercial preparations. FVB/N 

Mice were treated for 3 consecutive days (Figure 5.6) with a single intraperitoneal 

(IP) injection of 150 µg of either commercial or purified individual antibodies, or a 

duel treatment of both CD4 and CD8 antibodies. Following a 2-day rest period, mice 

were culled and FACS analysis of disaggregated spleen and thymus used to 

determine the levels of CD45+ CD3+ CD4+ CD8- and CD45+ CD3+ CD4- CD8+ cells 

(Figure 5.7). Both the commercial and purified antibodies selectively depleted their 

target population from the spleen, without disrupting T-cell development in the 

thymus. The CD4 purified antibody depleted more CD4+ cells in the spleens than the 

commercial antibody (Figure 5.7 red arrow). The CD8 purified antibody lead to the 

substantial reduction of CD8+ cells in the spleen but did not deplete the entirety of 

the CD8+ cells unlike the commercial CD8 antibody (Figure 5.7 green arrow). Also 

a CD8+ CD4+ T-cell population was retained after depletion with CD8 purified 

antibody (Figure 5.7 blue arrow). I concluded that our own purified antibodies 

behaved similarly to the commercially available antibodies with respect to the 

depletion of T-cell sub-populations and thus I continued to use purified antibody for 

the remainder of our experiments. I hypothesised that the differences observed 

between the commercial and purified antibodies was likely due to the inaccuracies in 

determining the final concentrations of our purified antibodies. 

  

Removal of 
Spleen and 

thymus 

FACS 
analysis of 

T-cells 
Day 1 Day 2 Day 3 

2-day rest period 

150 μg IP of antibody 

Day 6 

Figure 5.6 | Schematic describing the treatment schedule and dose validation 
for functional comparison of CD8

+
 and CD4

+
 depleting antibodies. Cohorts of 

FVB/N mice were treated for 3 consecutive days with 150 μg of CD8
+
 or CD4

+
 depleting 

antibodies, or a combination of both by IP injection. Antibodies were either purified in house or 
purchased commercially. After a 2 day rest period, the spleens and thymus were removed from 
each mouse and the number of each T-cell population was quantified using FACS.  
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Figure 5.7 | Validation of CD8
+
 and CD4

+ 
antibodies antibody-mediated T-cell 

depletion in FVB/N mice from both commercially available antibodies and in-
house purified antibodies. FACS analysis of spleen and thymus tissue from non-tumor 
bearing animals 6 days after commencing antibody treatment. Cohorts of FVB/N mice (n = 5) 
were treated for 3 consecutive days with 150 μg of CD8

+
 or CD4

+
 depleting antibodies, or a 

combination of both, by IP injection. After a 2 day rest period, the spleens and thymus were 
removed and processed for FACS analysis. Both commercially available and in-house purified 
CD8

+ 
and CD4

+
 antibodies selectively depleted each T-cell population respectively and in 

combination depleted all circulating T-cells in the spleen without affecting T-cells in the thymus; 
green arrows CD8

+
 T-cells; red arrows CD4

+ 
T-cells; blue arrow CD8

+ 
CD4

+
 cells 

 



 

 97 

5.3.3.2 Effects of T-cell depletion on SCC tumour growth 
Using purified antibody preparations, I set out to address whether T-cell depletion in 

FVB/N mice could rescue SCC FAK-/- tumour growth. Mice were treated for 3 

consecutive days with a single IP injection of 150 µg of CD8, CD4 or a combination 

of both depleting antibodies, or with a rat IgG Isotype control antibody (eBioscience; 

Figure 5.8). After a 2-day rest period, 1 x 106 SCC FAK-wt or SCC FAK-/- cells 

were implanted by bilateral subcutaneous injection in to both flanks of FVB/N mice 

and tumour growth measured twice weekly. T-cell depletion was maintained by IP 

injection of 150 µg of antibody every 3 days. Sustained T-cell depletion was 

validated after each study had terminated by FACS analysis of the spleen and thymus 

of tumour bearing animals (Figure 5.9). Depletion of CD4+ and CD8+ T-cells was 

less in tumour-bearing mice than in non-tumour bearing animals seen previously, 

possibly due to the heighted inflammatory response induced following tumour cell 

implantation. However comparison of CD4 and CD8 depleting antibody-treated mice 

with untreated controls showed that a substantial proportion of both CD4+ and CD8+ 

T-cells were depleted (Figure 5.9).  

  

        

untreated ‘control’ group 

SC injection of 
SCCs 

monitor tumour volume 

Day 1 Day 2 Day 3 

2-day rest period 

150 μg IP of antibody 

Day 6 

monitor tumour volume 

Every 3 Days 
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FACS analysis of 
spleen and thymus 

Figure 5.8 | Schematic describing the treatment regime for FVB/N antibody-
mediated T-cell depletion during a tumour growth experiment. To determine whether 
CD8

+
 and CD4

+
 T-cells influence SCC tumour growth, cohorts of FVB/N mice were treated daily 

for 3 consecutive days with 150 μg of CD8
+
 and CD4

+
 depleting antibodies or a combination of 

both by IP injection. After a 2 day rest period, 1 x 10
6
 SCC FAK-wt or SCC FAK-/- cells were 

implanted by bilateral subcutaneous injection into each flank. Tumour diameter was measured 
twice weekly and tumour volume calculated using the formula 4/3πr

3
.
 
T-cell depletion was 

maintained by 150 μg IP injection of antibody every 3 days until the end of the experiment, at 
which point T-cell depletion was confirmed following FACS analysis of disaggregated spleen and 
thymus of each animal. SC = subcutaneous. 
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In FVB/N mice treated with CD4 depleting antibodies SCC FAK-/- tumour growth 

was unaltered (Figure 5.10a). In contrast, depletion of CD8+ T-cells alone or in 

combination with CD4+ T-cells was sufficient to restore SCC FAK-/- tumour growth. 

Therefore I conclude that CD8+ T-cells are responsible for the clearance of SCC 

FAK-/- tumours (p value = <0.0001; Figure 5.10a), and that CD4+ T-cells are not 

required for SCC FAK-/- immune clearance.  

T-cell depletion in FVB/N mice bearing SCC FAK-wt tumours (Figure 5.10b) 

highlighted two observations; 1) CD8+ depletion alone or in combination with CD4+ 

T-cell depletion significantly increased SCC FAK-wt tumour growth when compared 

to either the Isotype treated or untreated control groups at day 14 (p value = 

<0.0001), and 2) depletion of CD4+ T-cells alone resulted in the clearance of SCC 

FAK-wt tumours in a manor akin to SCC FAK-/- tumour clearance. These data 

indicate that SCC FAK-wt tumours are under negative pressure from CD8+ T-cells 

and are thus likely subject to an underlying immune response. Further, they imply a 

role for the CD4+ T-cell compartment in conferring protection of SCC FAK-wt 

tumours from the cytotoxic CD8+ T-cell response. 
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Figure 5.9 | Validation of sustained CD8 and CD4
 
T-cell depleting antibodies in 

tumour bearing FVB/N mice. FACS analysis of T-cell populations from spleen (top) and 
thymus (bottom) tissue from tumour bearing animals at the end of T-cell depletion studies 
described in Figure 5.10; green arrows CD8

+
 T-cell depletion; red arrows CD4

+ 
T-cell depletion. 
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Figure 5.10 | SCC tumour growth +/- CD8
+ 

and CD4
+
 T-cell depletion. a SCC FAK-/- 

and b SCC FAK-wt tumour growth in T-cell depleted FVB/N mice. Cohorts of FVB/N mice (n = 5) 
were treated with either CD8

+
, or CD4

+
 depleting antibody, or with both CD8

+
 and CD4

+ 
antibodies 

in combination as per the dosage scheduled referred to in Figure 5.8. Both untreated and isotype 
control treated groups were included. 1 x 10

6
 SCC FAK-wt or SCC FAK-/- cells were implanted by 

bilateral subcutaneous injection into each flank. Tumour diameter was measured twice weekly and 
tumour volume calculated using the formula 4/3πr

3
. Statistical significance was determined by 

matched, two-way Anova with Tukey’s multiple comparisons. Data are represented as mean ± 
s.e.m. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
 

b 



 

 100 

5.3.3.3 SCC FAK-/- tumour cells induce immunological memory that 
does not permit regrowth of SCC FAK-/- or SCC FAK-wt 
tumours after rechallenge 

Having characterised that SCC FAK-/- tumour regression was CD8+ T-cell 

dependent, and that increased apoptosis was not a contributing factor in priming the 

anti-tumour immune response, I set out to test whether FAK expression resulted in 

regulation of TAA that could enable SCC FAK-wt cells to evade immune 

recognition. To do so, I took advantage of the SCC FAK-/- tumour regression 

characteristics, and performed a rechallange experiment in animals following SCC 

FAK-/- tumour clearance (Figure 5.11). I hypothesised that following SCC FAK-/- 

tumour clearance the host would remain immunised against further challenge with 

tumour cells expressing the same antigen, and as a consequence would mount a 

strong and fast secondary response that would not permit tumour growth. Thus, if 

Rechallenge with  
SCC FAK-wt 

Rechallenge with  
SCC FAK-/- 

subcutaneous injection 
of 1 x 10

6
 SCC FAK-/- 

cells 

7 day rest after complete 
regression of SCC FAK-/- 

tumour 

Day 1 ~ Day 21 
SCC FAK-/- tumours progress 

until clearance by ~Day 21 Monitor tumour 
 volume 

Monitor tumour 
 volume 

Monitor tumour 
 volume 

SC injection with either   
SCC FAK-/- or SCC FAK-wt 

Control Cohorts 

Rechallenged Cohorts 

Figure 5.11 | Schematic detailing SCC FAK-/- rechallenge experimental setup. FVB/N 
mice were split into rechallenged and control cohorts for SCC FAK-wt and SCC FAK-/-. 
Rechallenged cohorts were first implanted with 1 x 10

6
 SCC FAK-/- cells by subcutaneous 

implantation in to the left flank of each mouse. SCC FAK-/- tumours were allowed to grow and 
completely regress (by ~ Day 21). After 7 days tumour-free rest period, these cohorts were 
rechallenged with either 1 x 10

6
 SCC FAK-wt (n = 5) or SCC FAK-/- cells (n = 5) by subcutaneous 

implantation in to the right flank. Resulting tumour volume was measured twice weekly. Control 
cohorts were not exposed to initial SCC FAK-/- tumour implantation. 1 x 10

6
 SCC FAK-wt (n = 5) or 

SCC FAK-/- cells (n = 5) were implanted by subcutaneous implantation into the left flank. Resulting 
tumour volume was measured twice weekly. SC = subcutaneous. 
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SCC FAK-wt cells share a common antigen with SCC FAK-/- cells, then growth of 

these tumours will not be permitted in animals immunised using a primary challenge 

with SCC FAK-/- cells. To test this, I subcutaneously implanted 1 x 106 SCC FAK-/- 

cells into the left flank of FVB/N mice, and allowed the tumours to undergo 

complete regression. I then re-challenged these mice with either 1 x 106 SCC 

FAK-wt cells or 1 x 106 SCC FAK-/- cells on the right flank and monitored tumour 

growth (Figure 5.12). After the initial regression of the primary SCC 

FAK-/- tumour, and following a tumour-free period of 7 days, animals re-challenged 

with SCC FAK-wt (middle graph, Figure 5.12) or SCC FAK-/- cells (bottom graph, 

Figure 5.12) did not develop tumours. SCC FAK-wt and SCC FAK-/- cells 

implanted into unchallenged mice at day 28 grew as expected (top graph, Figure 

5.12). In all cases except the SCC FAK-wt controls, animals were subsequently 

monitored for a further 6 months for tumour growth, and no tumour reoccurrence 

was observed (data not shown).  

  

Figure 5.12 | Tumour rechallenge implies common antigen between SCC FAK-wt 
and SCC FAK-/- cells. Growth of rechallenged SCC FAK-wt and SCC FAK-/- tumours in FVB/N 
mice after clearance of SCC FAK-/- tumours. Experimental outline referred to in Figure 5.11.. Top 
and center panels Tumour growth of FVB/N mice rechallenged with SCC FAK-wt or SCC FAK-/- 
cells. 1 x 10

6
 SCC FAK-/- cells were implanted into cohorts of FVB/N in the left flank by 

subcutaneous injection (day 0) and resultant tumours were allowed grow and regress (day 21). 
After a 7 day rest period, 1 x 10

6
 SCC FAK-wt (top; n = 5) or SCC FAK-/- (center; n = 5) cells were 

implanted into the right flank by subcutaneous injection (day 28). Bottom panel SCC FAK-wt and 
SCC FAK-/- tumour growth controls. 1 x 10

6
 SCC FAK-wt (n = 5) or SCC FAK-/- (n = 5) cells were 

implanted by bilateral subcutaneous injection in to the flanks of FVB/N mice at day 28 Tumour 
diameter was measured twice weekly and tumour volume calculated using the formaula 4/3πr

3
. 

Data are represented as mean ± s.e.m. 
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Together, these data imply that both SCC FAK-wt and SCC FAK-/- tumours share a 

common antigen. The heightened immune mediated clearance of SCC FAK-wt and 

SCC FAK-/- tumour cells after initial exposure to SCC FAK-/- cells, and the 

subsequent lack of any tumour-reoccurrence after 6 months, also suggests that 

regression of SCC FAK-/- tumours results in the generation of immunological 

memory that recognises both SCC FAK-/- and SCC FAK-wt cells.  

 

5.3.4 FAK kinase activity is required for SCC tumour survival 
 

FAK is a non-receptor protein tyrosine kinase of current clinical interest due to its 

role in regulating a number of tumour promoting processes, including proliferation, 

apoptosis, migration, invasion, EMT and angiogenesis. Small molecule FAK kinase 

inhibitors are being developed, with a number already being tested in early (phase 1 

and 2) clinical trials. Hence, I set out to determine whether the survival of SCC 

FAK-wt tumours required FAK kinase activity and could therefore potentially be 

targeted with FAK kinase inhibitors. To address this, I used a previously reported 

lysine (K) 454254,327 kinase-deficient mutant of FAK, re-expressed in SCC 

FAK-/- cells (SCC FAK-kd cells). 1 x 106 SCC FAK-wt, SCC FAK-/- and SCC 

FAK-kd cells were implanted by bilateral subcutaneous injection in to both flanks of 

FVB/N mice and tumour growth was measured twice weekly (Figure 5.13). SCC 

FAK-wt and SCC FAK-/- tumours grew in a similar manner to previous 

experiments; however, SCC FAK-kd tumours grew in a manor akin to SCC 

FAK-/- tumour growth. These data suggest that FAK kinase activity is required for 

sustained SCC FAK-wt tumour survival and growth, and therefore treatment with a 

FAK kinase inhibitor may result in immune mediated tumour regression. 
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5.4 Conclusion 

 

In immune-competent FVB/N mice, SCC FAK-/- tumours undergo 

immune-mediated tumour regression in a manner dependent on CD8+ T-cells. 

Further, following complete regression host mice remain immunised against further 

tumour challenge, including when this secondary challenge is with SCC FAK-wt 

cells, implying expression of a common antigen that is independent of FAK 

expression levels. FAK kinase activity is required for SCC cells to evade immune 

mediated tumour clearance, raising the possibility that FAK kinase inhibitors may 

drive FAK-wt tumour regression.  

The primary model used in this thesis is the DMBA/TPA generated model of SCC276. 

As described in 276, 4.2.1.1 and 5.1, SCC FAK-/- and SCC FAK-wt cells originate 

from the same clone of a heterogeneous parental SCC population, which generates a 

genetically identical background into which FAK-wt is stably expressed at 
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Figure 5.13 | FAK kinase activity is required for SCC tumour growth and survival. 
Tumour growth of SCC FAK-wt, SCC FAK-/- and SCC FAK-kd tumours in FVB/N mice. 1 x 10

6
 

SCC FAK-wt, SCC FAK-/- or SCC FAK-kd cells were implanted by bilateral subcutaneous injection 
into both flanks of FVB/N mice (n = 6). Tumour diameter was measured twice weekly and tumour 
volume calculated using the formula 4/3πr

3
. Statistical significance was determined by matched, 

two-way Anova with Tukey’s multiple comparisons. Data are represented as mean ± s.e.m. P-value 
= Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001 eekly and tumour volume 
calculated using the formaula 4/3πr

3
. Data are represented as mean ± s.e.m. 
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comparable levels to endogenous expression. The selection and purification of the 

parental SCC population is achieved by selective cell culture conditions, which aim 

to sustain the growth of the transformed population, and not the un-transformed 

stromal populations such as fibroblasts, endothelial cells etc. Although this technique 

is well characterised and has led to a large number of publications with this model, 

more stringent purification could have been achieved using FACS. However, due to 

the length of time required not only to generate but also to maintain cells in culture, it 

is highly unlikely that an untransformed population could have survived within the 

parental population. Furthermore, the single cell cloning of the SCC FAK-/- and 

FAK-wt cells further increases the likelihood of a pure SCC population within both 

the SCC FAK-/- and SCC FAK-wt cell lines. 

One potential caveat regarding the generation of the SCC FAK-wt and SCC FAK-/- 

cells is that a sham transfection was not undertaken when expressing the FAK-wt 

construct. A sham transfection exposes SCC FAK-/- cells to the same transfection 

protocol as the resulting FAK expressing cells, without the expression of FAK. This 

controls for possible phenotypic changes induced by the transfection reagent or 

transfection protocol that would not have occurred in untreated SCC FAK-/- cells. 

Although it is therefore a valid assumption that the phenotypic defences observed 

between SCC FAK-wt and SCC FAK-/- cells could be as a result of SCC FAK-wt 

cell transfection and not due to the expression of FAK, SCC FAK-kd cells have 

undergone transfection, and appear to mimic the SCC FAK-/- phenotype in all 

experiments undertaken throughout this thesis. Although it would have been more 

scientifically sound to produce sham transfected SCC FAK-/- cells, in this case, the 

contribution of FAK kinase activity to tumour growth and survival appear genuine.       

Although the clonal nature of this model increases the confidence of a pure SCC 

population, one criticism of this technique is that the cell culture conditions and 

single cell cloning may be selective for the more aggressive SCC clones. These 

clones would be more likely to survive in time of stress (the transition to cell 

culture), at times of low confluence (during single cell cloning) and would be the 

first population to migrate out onto plastic cell culture plates. Heterogeneity within 

the isolated clones must also be considered, and thus a single clone may not be 
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representative of the heterogeneous population. Multiple clones from the parental 

population should be taken forward to compare the response to our SCC model, or 

alternatively other inducible transgenic models may offer the opportunity to study the 

of roles of FAK in an autochthonous host. 

One further complication with the DMBA/TPA SCC model involves whether the 

resultant chemically induced SCC tumours are atypical of non-chemical induction. 

As stated above, TPA is a phorbol ester which induces a macrophage-dominated 

inflammatory response required to induce tumorigenesis in this model. TPA also acts 

to inhibit macrophage metabolic activity, which in turn reduces the phagocytic 

activity of macrophages346. The phagocytic activity of macrophages not only acts to 

kill tumour cells, but is also required for macrophage APC activity through the 

phagocytic ingestion and presentation of antigen14. This raises the question as to 

whether the clonal and antigenic heterogeneity of the DMBA/TPA model is less 

restricted than in other non-chemical models which may contain phagocytic 

macrophages. Without the selective pressure ensued by a competent macrophage 

response, both in its anti-tumour activity and in the presentation of antigen to the 

innate immune response, immunogenic neoantigens could survive in in a 

DMBA/TPA induced microenvironment, but not in a non-chemically induced 

microenvironment. Although macrophage APC activity is sustainably less than that 

of DCs which are unaffected by TPA, the potential for the selection of an atypically 

immunogenic cell line should be considered.   

Furthermore, the restriction of neoantigen through single-cell cloning of this model 

may enhance the anti-tumour efficacy of immunomodulatory therapies. The 

evolution of tumour neoantigen heterogeneity determines how the immune system 

responds to tumour cells throughout tumour development and the efficacy of 

immunotherapy347; a more restricted range of immunogenic neoantigens increases 

the chance of an effective response to immunotherapy, where as a more diverse 

range creates a more resilient tumour. This is due to the evolution of neoantigens 

within a developing tumour, and the retention of mutated proteins which provide 

survival benefits for tumour cells, but which may also be recognized by an immune 

response347. This response is based on APC presentation of antigens early within 



 

 106 

tumour development, therefore limiting the number of tumour cells that can rebuff 

the anti-tumour immune response. In this regard, it could also be possible that SCC 

tumours from this model appear more immunogenic due to the restriction of 

neoantigen through single cell cloning. This could be investigated by returning to the 

parental SCC cell line form which the SCC FAK-wt and SCC FAK-/- cell originate 

(SCC 7.1) and determining how this cell line responds to the potential 

immunomodulatory effects of FAK inhibition.         

Using the SCC model, SCC FAK-wt and SCC FAK-/- tumours display different 

immune-mediated host-dependant growth kinetics. It should be noted that although 

CD1-nude mice are considered immune-deficient animals, partly due to the fact that 

this model mirrors immune-suppressed patients, CD1-nude mice still retain the 

capacity for an innate immune response. As SCC FAK-/- tumour growth is 

characterised by a growth delay in this host, contrasting the tumour regression 

observed in an FVB/N animal, the involvement of the innate immune system in 

immune-mediated regression of SCC FAK-/- tumours should not be disregarded. 

Cross-talk between the innate and adaptive immune responses has been shown to be 

required for optimal activation of both arms of the immune response, and as such the 

innate immune response could play a significant role in the immune-mediated 

clearance of SCC FAK-/- tumours. Furthermore, CD1-nude mice lack functional 

B-cell responses due to the lack of T-cell involvement in B-cell activity, which 

should also be considered when assessing tumour growth characteristics in 

CD1-nude mice.  

Generation of the SCC model on a FVB/N background has the advantages of being 

more efficient, due to the highly susceptible nature of FVB/N mice to DMBA/TPA 

treatment compared to other genetic backgrounds such as c57BL/6 mice, which are 

inherently resistant to DMBA/TPA treatment. One disadvantage to using FVB/N 

mice however is the lack of available genetic and inducible knockout models for 

immune cell populations, such as the diphtheria toxin-inducible knockout systems 

that are almost exclusively on a c57BL/6 background. Although antibody-mediated 

depletion used throughout this thesis is a competent method of depletion as shown in 

Figure 5.9, it should still be noted that antibody-mediation depletion is not specific. 
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As such depletion of CD8+ and CD4+ population may not only deplete CD8+ and 

CD4+ T-cells, but may also deplete DCs, which have been shown to express both 

CD8 and CD4348. One may expect that depletion of DCs would cause tumour to 

survive, as a lack of DCs would reduce antigen presentation and therefor inhibit 

CD8+ T-cell activation. The clearance of SCC FAK-/- tumours following CD4 

antibody treatment indicates that CD4+ DCs are not involved in this phenotype 

however, but CD8+ DCs cannot be disregarded.  Treatment with an anti-CD3 

antibody would deplete both CD8+ and CD4+ T-cells simultaneously, but also would 

provide a control for the possible involvement of CD8+ DCs.  

Further to this, following antibody-mediated depletion of CD8+ and CD4+ T-cells, 

CD8+ cells were shown to be responsible for the clearance of SCC FAK-/- tumours, 

independent of CD4+ cells. Considering the role of CD4+ T-cells in facilitating and 

increasing the effectiveness of the cytotoxic CD8+ T-cell response, it was surprizing 

that CD4 depletion did not affect SCC FAK-/- tumour clearance. Although 

CD8+ T-cell activation is not dependant on CD4+ T-cell involvement349, these data 

may indicate that CD8+ T-cells help themselves, or interact with pre-activated DCs 

activated directly by SCC cells without CD4+ T-cell involvement350.  CD8+ T-cells 

can self-activate by responding to antigen presented on MHC class I. Following the 

subsequent observation of CD8 directly binding to MHC class I proteins351, it has 

become accepted that that the colligation of CD8 with the TCR alone, independent of 

DC or CD4+ T-cell activation, can augment the effectiveness of CD8+ T-cell TCR 

engagement and subsequent activation352. However, as determined in Figure 5.12, 

FAK does not regulate the expression of antigen and it would therefore seem 

unlikely that FAK would regulate CD4-independant activation of DCs, a process 

highly regulated by, and dependant on the availability of antigen. Also, although 

FAK may regulate MHC class I proteins, this also seems unlikely, both by the 

selective pressure of CD8+ T-cells to SCC FAK-wt tumours and their requirement for 

the immune-mediated clearance of SCC FAK-/- tumours (Figure 5.10), and the 

clearance of SCC FAK-wt tumours in SCC FAK-/- challenge mice (Figure 5.12). 

Therefor it appears that the CD8+ T-cell responses seen in both SCC FAK-wt and 

SCC FAK-/- tumours are activated by CD4+ T-cell independent mechanisms, most 
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likely due to the direct binging of antigen primed MHC class I molecules to CD8+ 

T-cells, a process that is independent of FAK expression.   

Furthermore, considering the requirement for CD4+ T-cells in SCC FAK-wt tumour 

growth, and that the depletion of CD8+ T-cell alone or in combination with CD4+ 

T-cells increased SCC FAK-wt tumour growth, these data indicate that the selective 

pressure by the immune system on SCC FAK-wt tumours is dependant on CD8+ 

T-cells, and the presence of CD4+ T-cells does not increase CD8+ T-cell activity, but 

drastically inhibits it.  These results identify a novel role for FAK in regulating the 

anti-tumour immune response, and highlight the need to investigate the composition 

of the immune cell infiltrate within the tumour environment. Thus, further work 

focused on the generation and optimisation of a tumour disaggregation and staining 

protocol for FACS, which included a number of multicolour FACS stains targeting a 

wide range of adaptive and innate immune populations. 
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6 Optimisation of a tumour disaggregation and staining protocol 
for FACS analysis of immune populations in SCC tumours 

 

6.1 Introduction 

 

Fluorescence activated cell sorting (FACS) is a specialized type of flow cytometry 

that provides a method of sorting a heterogeneous mixture of cells, one cell at time, 

based on the specific fluorescent and light-scattering properties of each cell. Each 

cell that passes through the flow cytometer will scatter light from an incoming laser 

by different degrees, in different directions, proportional to the dimensions of that 

cell; large round cells will scatter more light in all directions than smaller round cells, 

but elliptical cells will scatter more light in only one dimension than small round 

cells. In this regard, cells can be analysed based on size alone, but this is not 

sufficient to identify specific cell populations from a heterogeneous mixture of cells. 

Thus, cells are stained with fluorescently labelled antibodies that corresponded to 

specific lineage expressed proteins or proteins expressed upon cell activation 

(Table 6.1). In terms of immune cells, all leukocytes express CD45 and can be 

differentiated by this marker. Others include CD3 that is primarily expressed on 

lymphocytes, and CD11b, a marker for monocytic cells. Using this strategy it is 

possible to identify a variety of cell populations within each sample and quantified 

their abundance and relative proportions, enabling comparisons between different 

sample conditions, such as different tumours or different time points within tumour 

progression.  

One caveat of FACS analysis is that samples must be prepared and disaggregated 

into single cell suspensions. There a number of possible methods for tissue 

disaggregation; mechanical disaggregation involves samples being forced through 

filters, enzymatic disaggregation involves the digestion of a sample by proteases that 

degrade key proteins found in the ECM, or a mixture of both. Mechanical 

disaggregation is the more gentle approach, but often leaves large sections of sample 
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whole. Enzymatic disaggregation is much more efficient and disaggregates the entire 

sample, but proteases may also cleave cell surface expressed molecules which in 

some instances might not be desirable. Therefore I set out to optimise a 

disaggregation protocol based on a combination of mechanical and enzymatic 

disruption for FACS analysis of SCC FAK-wt, SCC FAK-/- and SCC FAK-kd 

tumours for subsequent analysis of immune cell populations. 

 

6.2 Aims 

 

• To evaluate and optimise tumour disaggregation protocols  

• Design multi-colour FACS stains that cover a wide range of immune 

populations  

• Determine a time point for further tumour studies by measuring inherent 

changes in immune cell infiltration over time 

 

6.3 Results 

 

6.3.1 Collagenase D treatment of FVB/N spleens required for CD11b+ 
cell detachment 

 

In order to optimise a tissue disaggregation protocol suitable for FACS analysis of 

immune cell populations I used the spleens of naïve mice. Initially I tested 

mechanical disaggregation by mashing spleens from FVB/N mice through 70 µm 

filters to generate single cell suspensions. These suspensions were stained with 

fluorescent antibodies for CD45, CD11b, F4/80, CD3, CD8 and CD4, in order to 

identify a number of immune cell populations from both the adaptive and innate 

immune systems (Table 6.1). Samples were then analysed by FACS  (Figure 6.1).  

Using this protocol I observed a number of CD45+ CD3+ CD8- and CD45+ CD3+ 

CD8+ T-cells in the FVB/N spleens. However, only a small number of CD45+ 
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CD11b+ monocytes, and no CD45+ CD11b+ F4/80+ macrophages, were detected 

(Figure 6.1). Thus, either FVB/N spleens contained few CD11b+ monocytes and no 

CD11b+ F4/80+ macrophages, or alternatively, additional disaggregation methods 

were required to release these cell populations from the spleen.  

Enzymatic disaggregation with Collagenases degrades collagen fibres leading to the, 

helping to release myeloid cells into suspension353. Of the available Collagenases, 

Collagenase D has the lowest tryptic activity, a key property that needs to be 

considered when staining for surface exposed proteins and retaining cell viability354. 

Indeed, tryptic activity is known to cleave some cell surface markers, and if not 

carefully validated could inadvertently yield misleading results. Thus, I tested a 

combination of mechanical and enzymatic disaggregation. Spleens from FVB/N 

Population Markers
Monocyte CD45+ CD11b+

Macrophage CD45+ CD11b+ F4/80+

T-cell CD45+ CD3+

CD4+ T-cell CD45+ CD3+ CD8-

CD8+ T-cell CD45+ CD3+ CD8+

Table 6.1 | Markers used for FACS analysis to determine how different tissue 
disaggregation protocols affected immune cell recovery.  
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Figure 6.1 | Mechanical disaggregation was not sufficient to release monocytes 
and macrophages from FVB/N mice spleens. FVB/N spleens were mashed through a 70 
μm filter to generate single cell suspensions, and stained for CD45, CD11b, F4/80, CD3 and CD8 
(Table 6.1). FACS analysis determined the number of monocytes (CD45

+
CD11b

+
), macrophages 

(CD45
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+
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released from the spleen after disaggregation. 
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mice were filtered through 70 µm filters, and samples split into two groups: 1) an 

untreated control group, and 2) a group treated with 2 mg/ml Collagenase D for 1 

hour at 37 °C. Both treated and untreated samples were stained with fluorescent 

antibodies for CD45, CD11b, F4/80, CD3, CD8 and CD4, (Table 6.1) and samples 

analyzed by FACS (Figure 6.2).  I observed substantially higher levels of 

CD45+ CD11b+ monocytes and CD45+ CD11b+ F4/80+ macrophages in the 

Collagenase D treated samples when compared with untreated controls. Levels of 

CD45+ CD3+ CD8- and CD45+ CD3+ CD8+ T-cells were unaffected by enzymatic 

treatment. Thus, I conclude that a combination of mechanical and Collagenase-D-

based enzymatic disaggregation results in improved release of immune cells from the 

spleen.  
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Figure 6.2  | Collagenase D treatment released monocytes and macrophages from 
FVB/N spleens. FVB/N spleens (n = 3) were mashed through 70 μm filters and treated with 2 
mg/ml Collagenase D for 1 hour at 37 °C. Controls (n = 3) were mashed through 70 μm filters only. 
Both collagenase D treated and untreated samples were stained for CD45, CD11b, F4/80, CD3 
and CD8 (Table 6.1). FACS analysis determined the number of monocytes (CD45

+
CD11b

+
), 

macrophages (CD45
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CD11b
+ 

F4/80) CD8
+
 T-cells (CD45

+ 
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+
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) and CD4

+
 T-cells (CD45
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+
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-
) released from the spleen after disaggregation with and without collagenase D 

treatment.  
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6.3.2 Disaggregation of FVB/N spleen and thymus with Collagenase D, 
Dispase and Hyaluronidase resulted in the loss of T-cell markers.  

 

As described in the introductory section 2.2.2, tumours contain a complex network of 

extracellular matrix (ECM) proteins including collagen, fibronectin and hyaluronic 

acid. Treatment with Collagenase D, Dispase, and Hyaluronidase has been shown to 

degrade these, and provide an efficient method of tumour disaggregation355. Thus, I 

sought to determine the impact of this disaggregation cocktail on immune cell release 

and surface marker retention using both spleen and thymus tissue from FVB/N mice. 

Tissues were mashed through 70 µm filters then treated with either 2 mg/ml 

Collagenase D + 4 mg/ml Dispase + 0.1% Hyaluronidase, or 2 mg/ml Collagenase D 

alone, and incubated for 1 hour at 37 °C. Samples were then stained with 

fluorescently conjugated antibodies for CD45, CD11b, F4/80, CD3, CD8 and CD4, 

(Table 6.1) and analysed by FACS (Figure 6.3). Treatment of both the spleen and 

thymus with a cocktail of Collagenase D, Dispase and Hyaluronidase resulted in a 

marked reduction in CD3+ T-cells, resulting in no CD45+ CD3+ CD4+ CD8- (Figure 

6.3 blue arrows) or CD45+ CD3+ CD4- CD8+ T-cells (Figure 6.3 red arrows) being 

detected when compared to the Collagenase D only treated controls. CD45+ CD11b+ 

monocytes and CD45+ CD11b+ F4/80+ macrophages were unaffected (Figure 6.3). 

Thus, I conclude that treatment with a cocktail of Collagenase D, Dispase and 

Hyaluronidase results in cleavage of important surface exposed T-cell markers, and 

that a combination of mechanical disaggregation alongside 2 mg/ml Collagenase D 

treatment represents a more optimal strategy for tissue disaggregation prior to 

immune cell FACS staining. 
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Figure 6.3 | Tissue disaggregation with Collagenase D, Dispase and 
Hyaluronidase reduced CD3, CD4 and CD8 expressing cells. FVB/N spleens 
and thymus (n = 3) were mashed through a 70 μm filter and treated with either 2 mg/ml 
collagenase D, 4 mg/ml dispase and 0.1% hyaluronidase (a) or 2 mg/ml Collagenase D 
(b). Samples were stained for CD45, CD11b, F4/80, CD3 and CD8 (Table 6.1). green 
arrow CD3

+
 , red arrow  CD8

+
 and blue arrow CD4

+ 
T-cells 
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6.3.3 FACS analysis of SCC FAK-wt tumours indicate an inflammatory 
switch 10 days post implantation  

 

Tumour ulceration represents a recognized stage of SCC progression, occurring after 

increased necrosis causes the primary tumour nodule to slough, forming an ulcer 

which commonly does not heal356. I observed that SCC FAK-wt tumours appeared 

redder in colour around day 10, and that signs of ulceration began to show at day 14. 

Thus, I set out to investigate whether SCC progression and ulceration influenced the 

tumour immune infiltrate, and if so to identify any changes that correlated with the 

visual onset of ulceration. This information was important, as no ulceration was 

visually evident in SCC FAK-/- tumours at days 10 and 14.  Therefore it was 

important to define a time-point with the following criteria: 1) little to no ulceration 

in any tumour samples, 2) sufficiently developed to contain an established and 

activated T-cell population, and 3) large enough in size to enable sufficient cell 

numbers to be released for FACS analysis.  This was so that enough of each sample 

could be collected and processed, and comparisons could be made between SCC 

FAK-wt and SCC FAK-/- tumours. Furthermore, I wanted to expand our analysis to 

Table 6.2 | Immune populations  and the markers used to identify them by FACS 
analysis.   

Population Markers

Blood	Monocyte CD45+ CD11b+ F4/80- Ly6C-

Inflammatory	Monocyte CD45+ CD11b+ F4/80- Ly6C+

Inflammatory	Macrophage
(polarization)

CD45+ CD11b+ F4/80+ Ly6C+
(Tie2hi/lo MMRhi/lo)

Macrophage
(polarization)

CD45+ CD11b+ F4/80+ Ly6C-
(Tie2hi/lo MMRhi/lo)

CD4+ T-cell CD45+ CD3+ CD4+ CD8-

CD4+ Central	 Memory	T-cell	 CD45+ CD3+ CD4+ CD8- CD62L+ CD44+

CD4+ Effector	Memory	T-cell CD45+ CD3+ CD4+ CD8- CD62L- CD44+

CD8+ T-cell CD45+ CD3+ CD4- CD8+

CD8+ Central	 Memory	T-cell	 CD45+ CD3+ CD4- CD8+ CD62L+ CD44+

CD8+ Effector	Memory	T-cell CD45+ CD3+ CD4- CD8+	CD62L- CD44+
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include a number of activation states for each population of immune cells 

(Table 6.2). Incorporation of Ly6C, MMR and Tie2 allowed us to differentiate 

between different monocyte populations and to investigate changes in macrophage 

polarization. The inclusion of CD62L and CD44 allowed us to determine any 

potential differences in T-cell effector, central memory and naïve activation states. 

Thus, I implanted 1 x 106 SCC FAK-wt cells by bilateral subcutaneous injection in to 

both flanks of FVB/N mice, and sacrificed cohorts of animals 7 days, 10 days or 14 

days post implantation. Tumours were removed, disaggregated, and stained with 

Stains 1 and 2 (Table 6.3). Cell viability marker eFluor® 506 conjugated fixable 

viability dye was also included enabling dead cells to be excluded from the analysis; 

due to the break down of surface proteins, dead cells can adhere to antibodies 

resulting in false positive staining and so must be excluded. Samples were then 

analysed by FACS. Due to the more complex nature of the FACS analysis, a 

hierarchal gating strategy was required for both Stains 1 and 2 (Figure 6.4 and 6.5 

respectively).  

  

Stain	1

Fluorophore

Viability Viability	e506

CD45 e780

F4/80 FITC

CD11b PerCP-Cy5.5

MMR APC

Tie2 PE

Ly6C e450

Stain	2

Fluorophore

Viability Viability	e506

CD45 e450

CD3 FITC

CD8 PE

CD4 e647

CD62L PE-Cy7

CD44 PerCP-Cy5.5

Table 6.3 | FACS stains used to identify immune populations described in Table 
6.2. Stain 1 (left panel) was used to determine the number of blood monocytes, inflammatory 
monocytes, inflammatory macrophages and resident macrophages. Both inflammatory and 
resident macrophage polarization was determined using MMR and Tie2 expression (MMR

lo
 Tie2

lo
 

= M1 macrophage; MMR
hi
 Tie2

hi
 = M2 macrophage). Stain 2 (right panel) was used to determine 

the number CD8
+
 and CD4

+
 T-cells and the activation status (effector memory and central 

memory) of both populations.  
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Figure 6.4 | Gating strategy and FMO controls for FACS analysis of myeloid 
cells and their polarization status. a Gating strategy applied to Stain 1 (Table 6.3), which 
was used to determine the number of blood monocytes, inflammatory monocytes, inflammatory 
macrophages and resident macrophages. Both inflammatory and resident macrophage 
polarization was determined using MMR and Tie2 expression (MMR

lo
 Tie2

lo
 = M1 macrophage; 

MMR
hi
 Tie2

hi
 = M2 macrophage). See Table 6.2 for full list of immune populations and their 

respective markers markers. b FMO control samples used to determine macrophage sub-
populations. Each FMO control sample contains every marker in Stain 1 (Table 6.3) except for 
the named marker. FMO controls were used to determine the correct gating positions in FACS 
analysis to exclude false positive results. FMO = Fluorescence minus one; SCC  = side scatter; 
FSC = forward scatter 
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Figure 6.5 I Gating strategy and FMO controls for FACS analysis to identify T-cells
and their activation status. a Gating strategy applied to Stain 2 (Table 6.3), which was used to
determine the number of CD8+ and CD4+ T-cells and the activation status (effector memory and
central memory) of both populations. See Table 6.2 for full list of immune populations and their
respective markers. b FMO control samples used to determine T-cell sub-populations. Each FMO
control sample contains every marker in Stain 2 (Table 6.3) except for the named marker. FMO
controls were used to determine the correct gating positions in FACS analysis to exclude false
positive results. FMO = Fluorescence minus one; SCC = side scatter; FSC= forward scatter
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FACS analysis of SCC FAK-wt tumours highlighted an increase between days 7 and 

10 in CD45+ CD11b+ F4/80- Ly6C+ inflammatory monocytes (mean ± s.e.m = 

2.427%  ± 0.2339 and 4.612% ± 0.3805) and CD45+ CD11b+ F4/80+ Ly6C+ 

inflammatory macrophages (mean ± s.e.m. = 18.62% ± 0.849 and 25.57% ± 1.509) 

as a percentage of total CD45+ cells (Figure 6.6).  This correlated with a 10% 

decrease in CD45+ CD11b+ F4/80+ Ly6C- resident macrophages between days 7 and 

10 (mean ± s.e.m = 31.89% ± 1.324 and 21.48% ± 0.7170; Figure 6.6).  Both 

inflammatory and resident macrophage populations showed a marked increase in 

MMR- and Tie2- M1 polarized macrophages between these time points 

(inflammatory macrophage = mean ± s.e.m = 32.96% ± 1.967 and 89.32% ± 0.8048; 
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Figure 6.6 | Increase in intra-tumoural Ly6C
+
 myeloid cells in SCC FAK-wt 

tumours. 1 x 10
6
 SCC FAK-wt cells were implanted into the flanks FVB/N mice by bilateral 

subcutaneous injection. Tumours were removed from mice (n = 3) 7, 10 and 14 days post-
implantation. Tumours were disaggregated and stained for FACS analysis (Table 6.3). Gating 
was as described in Figure 6.4, FACS plots of Ly6C and F4/80 expression on CD45

+
 CD11b

+
 

populations (upper panel) and their quantification (lower panels). The number of each cell 
population was determined and the statistical significance between each time point was 
calculated by one-way Anova with Tukey’s multiple comparisons. Bar height = mean, Error bars = 
s.e.m.  Comparison between days 10 and day 14 not shown. P-value = Not significant >0.05,  * 
<0.05, ** <0.01, *** <0.001, **** <0.0001. 
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resident macrophages = mean ± s.e.m = 15.47% ± 1.255 and 73.58% ± 2.095 

respectively; Figure 6.7). An increase in CD45+ CD3+ CD4- CD8+ T-cells of 

approximately 20% were seen across all three time points (mean ± s.e.m = 7.33% ± 

0.8017, 13.38% ± 0.7457 and 27.43% ± 1.843 for days 7, 10 and 14 respectively; 

Figure 6.8b), but levels of CD45+ CD3+ CD4- CD8+ CD44+ CD62L- effector CD8+ 

T-cells peaked at day 10 indicative of an activated cytotoxic population (Figure 

6.8c). Althogh tthere was no significant difference between the  levels of CD45+ 

CD3+ CD4+ CD8- (Figure 6.8d), CD45+ CD3+ CD4+ CD8- CD44+ CD62L- effector 

CD4+ T-cells increased significantly at day 10 (Figure 6.8e). SCC FAK-wt tumours 

showed obvious signs of ulceration at day 14 and the loss of inflammatory 

macrophages and monocytes at this time point is likely due to the increased 

proportion of CD8+ T-cells as a consequence of increased ulceration. Therefore, I 

hypothesised that the increases in inflammatory Ly6C+ immune cell populations, 

along side the increase in effector CD8+ T-cells at day 10 of SCC FAK-wt tumour 

growth, were indicative of the initial stages of tumour ulceration. Therefore day 7 

was selected as the most suitable time point for valid comparison between SCC 

FAK-wt and SCC FAK-/- tumours. 
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Figure 6.7 | Increase in intra-tumoural MMR
lo

 Tie2
Lo

 polarized Ly6C
+
 and Ly6C

-
 

macrophages in SCC FAK-wt tumours. a FACS plots of MMR and Tie2 expression on 
CD45

+
 CD11b

+
 F4/80

+
 - Ly6C

+
 and – Ly6C

-
 populations and the quantification of b CD45

+
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+
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+
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+ 
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SCC FAK-wt cells were implanted into the flanks FVB/N mice by bilateral subcutaneous 
injection. Tumours were removed from mice (n = 3) 7, 10 and 14 days post-implantation. 
Tumours were disaggregated and stained for FACS analysis (Table 6.3). Gating was as 
described in Figure 6.4. The number of each cell population was determined and the statistical 
significance between each time point was calculated by one-way Anova with Tukey’s multiple 
comparisons. Bar height = mean, Error bars = s.e.m.  Comparison between days 10 and day 14 
not shown. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. Green 
arrow = MMR

hi 
Tie2

hi
; Red arrow = MMR

lo
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Figure 6.8 | Effector CD8
+ 

T-cells were increased  7, 10 and 14 days post 
implantation.  1 x 10

6
 SCC FAK-wt cells were implanted into the flanks FVB/N mice by bilateral 

subcutaneous injection. Tumours were removed from mice (n = 3) 7, 10 and 14 days post-
implantation. Tumours were disaggregated and stained for FACS analysis (Table 6.3). Gating 
was as described in Figure 6.5.  a FACS plots of CD8 and CD4 expression on CD45

+
 CD3

+
 

populations (upper left panel), the activation status of CD45
+
 CD3

+
 CD8

+
 population (lower left 

panel). b FACS quantification of total intra-tumoral CD8
+
 T-cells. c FACS quantification of 

CD8
+
CD44

hi
CD62L

low
, CD8

+
CD44

hi
CD62L

hi
, CD8

+
CD44

low
CD62L

hi
 T-cell subpopulations 

(statistics shown for CD44
hi
CD62L

low
 only).The number of each cell population was determined 

and the statistical significance between each time point was  calculated by one-way Anova with 
Tukey’s multiple comparisons. P-value = Not significant >0.05, * <0.05, ** <0.01, *** <0.001, **** 
<0.0001 Bar height = mean; Error bars = s.e.m. EF = effector = CD44

hi
CD62L

hi
; M = central 

memory =  CD44
low

CD62L
hi.  
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6.4 Conclusion 

  

Together these data show that tissue disaggregation with collagenase D, dispase and 

hyaluronidase appears to cleave surface-expressed markers, and thus tissue 

disaggregation with collagenase D alone was best suited for use with FACS analysis. 

Using this protocol, a number of immune populations could be identified within 

SCC FAK-wt tumours and changes in these populations at different time points of 

tumour growth could be quantified.  

So that valid comparisons between two different tumours can be made using FACS 

analysis, tumours are matched by age and size in order to account for factors that 

may adversely influence the tumour immune milieu, including signs of tumour 

ulceration, bias in tumour size, different tumour histopathological stage etc. 

Ulceration of SCC tumours is a recognised histopathologicical indicator of disease 

progression356 and early signs of the onset of ulceration was observed in SCC FAK-

wt tumours 10 days post implantation into FVB/N mice. In a number of cases, SCC 

FAK-wt tumours appeared redder in colour, an observation that crucially was absent 

from SCC FAK-/- tumours at the same time point.  Although the changes in the 

immune mileau of SCC in response to ulceration have not as yet been characterised, 

increases in Ly6C+ immune populations and increases in CD8+ T-cell populations 

have been observed concurrent with the onset of ulceration in melanoma357 and in a 

number of different skin ulcerative diseases358-360.  

FACS analysis of SCC FAK-wt tumours dectected an increase in the levels of 

inflammatory Ly6C+ immune populations and revealed a switch in the polarisation of 

both inflammatory and resident macrophage populations from pro-tumorigenic M2 to 

an anti-tumorigenic M1 phenotype45,361. Increasing numbers of total numbers of 

CD8+ T-cells were observed across the time course. CD62L362 and CD44363 are 

adhesion proteins required for T-cell homing to non-lymphoid peripheral tissue, and 

are used to differentiate between effector (CD44+ CD62L-) and memory (CD44+ 

CD62L+) due to the requirement of CD44 alone or both CD44 and CD62L for 

homing respectively. This analysis indicated that effector CD8+ T-cell population 

increased across the time course, indicative of increased cytotoxic activity in SCC 
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FAK-wt tumours that may not be present in SCC FAK-/-. It was concluded that these 

data were indicative of tumour ulceration and thus any potential changes in the 

immune milieu driven by FAK would be masked. Thus, day 7 was the optimal time 

point to provide the most valid comparison between SCC FAK-wt and SCC FAK-/- 

tumour immune milieu.  

These data presented in this chapter identified that proteolytic degradation of surface 

expressed markers can result in the detection of very different immune landscapes. 

Both thymus and spleen predominantly contain T-cell populations14, which were 

undetectable in samples prepared with collagenase D, dispase and hyaluronidase. 

This therefore highlights the need to include a selection of immune markers, capable 

of identifying a broad number of immune populations from both the adaptive and 

innate arms of the immune response. Furthermore, if this analysis had been 

conducted exclusively on tumour tissue, would would have been unable to elucidate 

the prescience of T-cells in our phenotype. This not only highlights the essential 

requirement to validate disaggregation techniques on tissues where the inflammatory 

landscape is known (i.e the large T-cell populations in both the spleen and thymus), 

but also emphasizes the need for further evaluation of the enzymes used for tissue 

disaggregation, and their potential to degrade surface-expressed targets.  

As shown here, there is a requirement to use enzymatic disaggregation to release 

monocytes and other immune cells for tissue, but the effect on surface-expressed 

markers has to be considered. Therefore, a broad immunophenotyping approach 

alongside tissue disaggregation with collagenase D appears to be the most valid, one 

which incorporates markers for the identification and characterisation of a wide 

range of immune populations, and therefore can determine whether disaggregation 

has any effect on these targets, especially within tumours where the immune 

landscape is unknown. This approach has been used in a number of human studies, in 

which tissue sample is less abundant than in animal studies, to immunophenotype 

breast tumours35,87. Although the differences in sequences between mouse and 

human immune markers means that they are differentially effected by enzymatic 

degradation, and therefor a marker cleaved in a human sample may not be cleaved in 



 

 125 

a mouse tumour, these studies highlight the capabilities of larger 

immunophenotyping approaches.  

One potential caveat within the FACS analysis presented in this chapter is the 

presentation of FACS data as a percentage of CD45+ cells, and not as the absolute 

number of cells within the sample. This method of presenting FACS data can suffer 

from changes in immune populations being observed not because they themselves 

change, but because another population has changed. For example, an increase in 

CD8+ T-cells may be observed, but in fact the macrophage population has decreased 

and thereby increasing the proportion of CD45+ cells that are CD8+ T-cells, without 

actually effecting the total number of CD8+ T-cells within the tumour. Changes such 

as these can be identified, but nevertheless must be considered when drawing 

conclusions from data presented in this manner.  

This is not the case when presenting data as the absolute number of immune cells 

within a sample; populations will not change proportionally to each other and 

therefore a reduction in macrophages will not change the proportion of T-cells. 

However, one of the main issues with presenting data in this manor is that the 

absolute number of cells is directly related to the volume of the tumour and the 

tumour mass, and therefore surgically excised tumours must be weighted and 

measured after excision, and the FACS results normalized to these values. Another 

issue with this method is that counting beads have to be used to ensure that the 

sample concentration can be determined; if a greater volume of one sample is 

analysed when compared to another, this will not represent the absolute number of 

cells, and therefore invalidate the experiment.  

The requirement for both tumour weight post-excision and the inclusion of counting 

beads means that analysis of the absolute number cannot be performed 

retrospectively, and although would have been beneficial to conduct a comparison of 

both percentage CD45+ and absolute number methods here, this could not be 

completed. However, even though at day 7 SCC FAK-wt and SCC FAK-/- tumours 

are approximately the same volume, any increase in the tumour size of SCC FAK-wt 

tumours compared to SCC FAK-/- will introduce bias into the analysis, and therefor 

FACS data is presented as a percentage of CD45+ cells within this thesis.    
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7 FAK expression results in generation of an 
immuno-suppressive microenvironment  

 

7.1 Introduction 

 

Following the observation that SCC FAK-/- tumour clearance was dependent on 

CD8+ T-cells, and that cells of the CD4+ T-cell compartment played a role in 

protecting SCC FAK-wt tumours from clearance, I set out to understand in more 

detail the composition of the tumour immune infiltrate. In doing so, I sought to 

identify whether CD8+ T-cells were present in all tumour types, and if so, whether 

there was any evidence of other immune cell types within the tumour that had the 

potential to modulate CD8+ T-cell function. A number of immune cell types with 

intrinsic immuno-suppressive capabilities are known to infiltrate extensively into 

tumours, including macrophages, myeloid derived suppressor cells (MDSCs), and 

regulatory T-cells (Tregs). Through a variety of mechanisms (described in detail in 

section 2.1.3) these cells can disarm the cytotoxic functions of antigen-primed CD8+ 

T-cells and promote tumour survival and progression. Therefore I set out to study 

these populations in SCC FAK-wt, FAK-/-, and FAK-kd tumours 7 days post-

implantation, with the aim of identifying changes that may be responsible for the 

observed regression phenotype.  

 

7.2 Aims 

 

• To characterise the T-cell response and determine T-cell activation status 

• To determine whether FAK regulates the recruitment of immunosuppressive 

immune cell populations  
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7.3 Results 

 

7.3.1 SCC FAK-wt tumours contain infiltrating activated T-cells  
 

Having established a role for T-cells in the SCC tumour growth, I wanted to further 

characterise the T-cell population in our model. To address this, 1 x 106 SCC 

FAK-wt, SCC FAK-/- and SCC FAK-kd cells were implanted into the flanks of 

FVB/N mice by bilateral subcutaneous injection. Tumours were grown for 7 days, 

removed and disaggregated. Samples were then stained with Stains 1 and 2 (Table 

6.3) and analysed by FACS. This analysis revealed T-cells in SCC FAK-wt, SCC 

FAK-/- and SCC FAK-kd tumours (Figure 7.1a). The levels of CD8+ T-cells were 

significantly increased in SCC FAK-/- (mean ± s.e.m. = 3.272% ± 0.423%)) and 

SCC FAK-kd (mean ± s.e.m. = 3.066% ± 0.329%) tumours compared to 

SCC FAK-wt (mean ± s.e.m. = 1.76% ± 0.18%; Figure 7.1b). Further in-depth 

analysis into the activation status of the CD8+ T-cell populations, highlighted a 

significant increase in CD45+ CD3+ CD4- CD8+ CD44+ CD62L- cells in SCC FAK-/- 

(mean ± s.e.m. = 48.39% ± 1.591) and SCC FAK-kd  (mean ± s.e.m. = 67.04% ± 

1.942) tumours, when compared to SCC FAK-wt tumours (mean ± s.e.m. = 42.28% 

± 1.798; Figure 7.1c). This increase was greater after effector CD8+ T-cell numbers 

were normalized to account for the observed changes in total CD8+ T-cells and 

presented as a ‘fold change’ (Figure 7.1d). Normalized effector CD8+ T-cells were 

2-fold increased in SCC FAK-/- tumours, and approximately 3-fold increased in SCC 

FAK-kd tumours when compared to SCC FAK-wt tumours.  
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CD4+ T-cell levels did not change between SCC FAK-wt, SCC FAK-/- and SCC 

FAK-kd tumours (mean ± s.e.m. = SCC FAK-wt, 16.54% ± 1.022; SCC FAK-/-; 

20.88% ± 2.099; SCC FAK-kd, 19.88%; Figure 7.1e). However, I did observe a 

significant increase in the proportion of effector CD4+ T-cells in SCC FAK-/- and 

FAK-kd tumours (SCC FAK-/- = mean ± s.e.m. = 63.12% ± 2.037; SCC FAK-kd = 

mean ± s.e.m. = 70.84% ± 1.816; p value = <0.0001<0.0001) when compared to 

FAK-wt tumours (mean ± s.e.m. = 49.78% ± 2.164; Figure 7.1f). 

These data imply that an activated CD8+ and CD4+ T-cell response is present in all 

tumour types, raising the question as to why SCC FAK-wt tumours do not succumb 

to CD8+ T-cell mediated clearance.  

 
7.3.2 FAK expression promotes an immunosuppressive 

microenvironment 
 

Recruitment of immune cell populations with intrinsic immuno-suppressive 

capabilities, including M2 macrophages, MDSCs and Tregs has been shown to 

suppress the anti-tumour immune response and promote tumour 

deveoplement364,365,366 (2.1.3). Thus, I set out to identify whether changes in these 

populations could explain the tumour growth characteristics of the SCC FAK-wt, 

FAK-/-, and FAK-kd tumours. 1 x 106 SCC FAK-wt, SCC FAK-/- or SCC FAK-kd 

cells were implanted into the flanks of FVB/N mice (n=5). Tumours were removed 

after 7 days and disaggregated. To identify M2 Macrophages (CD45+ CD11b+ F4/80+ 

MMRhi Tie2hi; Table 6.2), both subpopulations of MDSCs, G-MDSCs (CD45+ 

CD11b+ F4/80- LyC6lo Gr1hi) and M-MDSCs (CD45+ CD11b+ F4/80- LyC6hi Gr1lo) 

and Tregs (CD4+ CD25+ FoxP3+; Table 7.1a), samples were stained with Stain 1 

(Table 6.3), Stain 3 and Stain 4 (Table 7.1b) respectively. Samples were then 

analysed by FACS.   
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7.3.2.1 Changes in macrophage polarization do not correlate with the 

tumour regression phenotype. 
SCC FAK-wt, SCC FAK-/- and SCC FAK-kd tumours stained with Stain 1 (Table 

6.3) were analysed as described in Figure 6.4. Levels of total macrophages were 

unchanged across SCC FAK-wt, SCC FAK-/- and SCC FAK-kd tumours (Figure 7.2 

height of stacked bar graph; mean ± s.e.m. = 50.511% ± 5.905, 50.456% ± 4.307 and 

49.845% ± 3.984 respectively). The proportion of inflammatory macrophages within 

the total population significantly increased in SCC FAK-/- and SCC FAK-kd 

tumours compared to SCC FAK-wt (mean ± s.e.m. = 22.900 ± 3.200, 27.989 ± 5.600 

and 18.622 ± 2.550 respectively; p value =  <0.05 and <0.001 respectively; Figure 

7.2 black bars).  

Analysis of macrophage polarization indicated that both inflammatory and resident 

macrophage populations were highly M2 polarised in both the SCC FAK-wt and 

SCC FAK-kd tumours compared to the SCC FAK-/- tumours (Figure 7.3 centre and 

right panels respectively, grey bars). Levels of M2 inflammatory macrophages were 

equivalent in SCC FAK-wt and SCC FAK-kd tumours (mean ± s.e.m. = 67.300 ± 

Stain 3
Fluorophore

Viability Viability 506
CD45 e780
CD11b PerCP - Cy5.5
F4/80 PE-Cy7
Ly6C e450
Gr1 FITC

Population Markers
M-MDSC CD45+ CD11b+ F4/80- Ly6Chi Gr1lo

G-MDSC CD45+ CD11b+ F4/80- Ly6Clo Gr1hi

Treg CD4+ FoxP3+ CD25+

Stain 4
Fluorophore

CD4 PerCP - Cy5.5
CD25 PE
FoxP3 FITC

a

b

Table 7.1 | Markers and FACS stains used to identify immunosuppressive intra 
tumoural MDSC and Treg populations. a Markers required to identify both subpopulations of 
immunosuppressive MDSCs  (M-MDSCs and G-MDSCs) and Tregs. b Stain 3 (left panel) was 
used to identify MDSCs and Stain 4 (right panel) was used to identify Tregs.  
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1.989% and 68.056 ± 1.202% respectively; Figure 7.3 centre panel, grey bars). 

Significantly lower levels were seen in SCC FAK-/- tumours (mean ± s.e.m. = 

37.611 ± 4.249%; p value = <0.0001). This same trend was also observed in the 

resident macrophage population. SCC FAK-wt and SCC FAK-kd tumours showed 

equivalent levels of M2 polarised resident macrophages (mean ± s.e.m. = 84.589 ± 

1.231 and 86.033 ± 0.971 respectively; Figure 7.3 right panel, grey bars), and this 

population was significantly decreased in SCC FAK-/- tumours (mean ± s.e.m. = 

59.000 ± 3.92; Figure 7.3 right panel, grey bars; p value = <0.0001).  
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Figure 7.2. Intra-tumoural macrophages in SCC FAK-wt, SCC FAK-/- and SCC 
FAK-kd tumours. FACS plots of Ly6C and F4/80 expression on CD45

+
 CD11b

+
 populations 

(left panel) and their quantification (right panel). 1 x 10
6
 SCC FAK-wt, SCC FAK-/- or SCC FAK-

kd cells were implanted into the of flanks FVB/N mice by bilateral subcutaneous injection. 
Resulting tumours were removed from cohorts of mice (n = 3) 7 days post-implantation. 
Tumours were disaggregated and stained for FACS analysis (Table 6.3). Gating was as 
described in Figure 6.4. The number of each cell population was determined and the statistical 
significance between each cell type was calculated by one-way Anova with Tukey’s multiple 
comparisons. Bar height = mean, Error bars = s.e.m. P-value = Not significant >0.05,  * <0.05, ** 
<0.01, *** <0.001, **** <0.0001; height of stack = Mean total number of macrophages; Statistics 
shown for comparisons of Ly6C

+
 and mean total number of macrophages. Statistics for Ly6C

-
 

not shown 
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These data showed that increased polarization towards M2 macrophages occurred in 

SCC FAK-wt and SCC FAK-kd tumours but not SCC FAK-/-. Two conclusions 

were drawn from this. Firstly, this implied that the presence of M2 macrophages 

were not sufficient to prevent SCC FAK-kd tumour regression, and therefore these 

cells were not the primary immunosuppressive population capable of evading a CD8+ 

T-cell response. Secondly, this highlighted a potential kinase-independent role of 

FAK in modulating macrophage polarization. Although I chose not to investigate this 

further as these results did not correlate with tumour regression, this could potentially 

provide a novel therapeutic opportunity. The disruption of M2 macrophages and 

TAMs is of great clinical interest due to their multiple roles in tumour growth, 

survival and malignant progression (2.1.1).  
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Figure 7.3 I M2 polarized macrophage populations did not correlate with 
tumour clearance characteristics. 1 x 10

6
 SCC FAK-wt SCC FAK-/- or SCC FAK-kd 

cells were implanted into the flanks FVB/N mice by bilateral subcutaneous injection. Tumours 
were removed from mice (n = 3) 7 days post-implantation. Tumours were disaggregated and 
stained for FACS analysis (Table 6.3). Gating was as described in Figure 6.4.  a FACS plots 
of MMR and Tie2 expression on CD45

+
 CD11b

+
 F4/80

+ 
Ly6C

+
 and -Ly6C

-
 populations and 

their quantification (right panel). The number of each cell population was determined and the 
statistical significance between each cell type was calculated by one-way Anova with Tukey’s 
multiple comparisons. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** 
<0.0001 Bar height = mean; Error bars = s.e.m. Statistics for MMR
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7.3.2.2 Intra-tumoural MDSC levels did not correlate with tumour 
regression characteristics. 

I next focused on both subsets of MDSCs. M-MDSCs and G-MDSCs have been 

shown to have distinct functions, but M-MDSCs have been shown to have greater 

immunosuppressive capabilities159 (2.1.3.1). Samples were stained with Stain 3 

(Table 7.1) and analysed by FACS as described in Figure 7.4.  Intra-tumoural 

M-MDSCs significantly increased in SCC FAK-/- tumours (means ± s.e.m. = 

11.044 ± 1.937 compared to SCC FAK-wt (means ± s.e.m. = 7.9717 ± 3.255 and 

8.5655 ± 2.803 respectively; p value  = <0.0001; Figure 7.5). No significant 

difference was observed between SCC FAK-wt and SCC FAK-kd tumours (p value 

= >0.05). 

The levels of intra-tumoural G-MDSCs were considerably less than M-MDSCs, but 

the comparison across all three-tumour types followed a similar trend. G-MDSCs 

were significantly increased in SCC FAK-/- tumours (means ± s.e.m. = 4.0125 ± 

1.4477) compared to SCC FAK-wt (means ± s.e.m. 1.082 ± 0.667; p value = 

<0.0001) and SCC FAK-kd tumours (means ± s.e.m. = 1.9425 ± 0.604; p value = 

<0.001; Figure 7.5). No significant difference was observed between SCC FAK-wt 

and SCC FAK-kd tumours (p value = >0.05). 

These data showed that both MDSC subpopulations were elevated in SCC FAK-/- 

tumours compared to SCC FAK-wt and SCC FAK-kd tumours. I concluded 

therefore, that neither M-MDSCs not G-MDSCs cells were the primary 

immunosuppressive population capable of evading a CD8+ T-cell response. 

However, as levels of both populations in SCC FAK-kd tumours were comparable to 

the levels in SCC FAK-wt tumours, it was possible the FAK negatively regulated 

levels of intra-tumoural MDSCs in a kinase independent manner, or as a 

consequence of Kinase-independent regulation of other immune component, MDSCs 

represented a smaller proportion of leukocyte infiltrate.  
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Figure 7.4 I MDSC FACS gating strategy. a Stain 3  (Table 7.1) was used to determine 
the total number of MDSCs and M-MDSCs and G-MDSCs subpopulations. See Table 7.1 for 
full list of immune populations and their respective markers. b FMO control samples used to 
determine correct gating for MDSC sub-population identification. . M-MDSC = Monocytic 
Myeloid Derived Suppressor Cell; G-MDSC = Granulocytic Myeloid Derived Suppressor Cell; 
FMO = Fluorescence minus one 
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7.3.2.3 Intra-tumoural Tregs were increased in SCC FAK-wt tumours 
and are required for SCC FAK-wt tumour growth.   

Having ruled out M2 macrophages and MDSCs, I next focused on Tregs. Samples 

were stained with Stain 4 (Table 7.1) and prepared for FACS analysis. Samples were 

analysed as described in Figure 7.6. Stain 4 is a commercially available stain that 

includes cell permeablising buffers required for intracellular FoxP3 staining, and 

thus, FMO controls were not possible with this stain.  SCC FAK-wt tumours showed 

a significant increase in the number of intra-tumoural Tregs (mean ± s.e.m. = 

22.973 ± 2.614) compared to SCC FAK-/- and SCC FAK-kd tumours (mean ± s.e.m. 

= 6.8989 ± 5.2165 and 6.3800 ± 2.299 respectively; p value  = >0.0001; Figure 

7.7a). This increase resulted in a decrease in the ratio between effector CD8+ and 

Tregs (Figure 7.7b; levels of CD8+ effector cells shown in Figure 7.1). Changes in 
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Figure 7.5 I FACS analysis of MDSC populations did not correlate with tumour 
clearance characteristics. 1 x 10

6
 SCC FAK-wt, SCC FAK-/- or SCC FAK-kd cells were 

implanted into the flanks FVB/N mice by bilateral subcutaneous injection. Resulting tumours were 
removed from cohorts of mice (n = 3) 7 days post-implantation. Tumours were disaggregated and 
stained for FACS analysis with Stain 4 (Table 7.1). FACS analysis was gated as described in 
Figure 7.4. FACS blots of Ly6C and Gr1 expression on intra-tumoural CD45

+
 CD11b

+
 F4/80

-
 

populations (left panel) and their quantification (right panel). The number of each cell population 
was determined and the statistical significance between each cell type was calculated by one-way 
Anova with Tukey’s multiple comparisons. P-value = Not significant >0.05, * <0.05, ** <0.01, *** 
<0.001, **** <0.0001 Bar height = mean; Error bars = s.e.m 
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the proportion of Tregs correlated with tumour regression characteristics, suggesting 

that this may be a potentially important population in mediating SCC FAK-wt 

tumour survival.  There is an ever-expanding body of evidence that implicates Treg 

involvement in tumour immune evasion (2.1.3.2). Tregs (CD4+ CD25+ FoxP3+ cells) 

are a highly immunosuppressive population whose primary function is to suppress 

activated CD8+ T-cells in order to limit harmful immune responses to self-antigen. 

Thus, I wanted to further investigate whether Tregs were the immunosuppressive 

population that instilled SCC FAK-wt tumours with the capacity to evade a CD8+ 

T-cell response.  I had previously established that CD4+ T-cells were required for 

SCC FAK-wt tumour survival (Figure 5.10). Treatment with CD4 depleting 

antibodies would reduce levels of Tregs, further supporting a role for Tregs in SCC 

FAK-wt survival. However, I wanted to take a more Treg-specific approach, and 

therefore used a CD25 depleting antibody. FVB/N mice were treated with 150 µg of 

CD25 depleting antibody (n = 5) or with Isotype control (n=5) by IP injection, and 

dosed as described in Figure 5.8. 1 x 106 SCC FAK-wt cells were implanted into 

mice after 5 days of treatment, and into an untreated control group, by bilateral 

subcutaneous injection in to both flanks.  1 x 106 SCC FAK-/- cells were also 

implanted into untreated animals as a control. Tumour diameter was measured twice 

weekly and tumour volume calculated using the formula 4/3πr3. 

Untreated SCC FAK-wt and SCC FAK-/- tumours, and Isotype control treated SCC 

FAK-wt tumours grew as expected (Figure 7.8) and no significant difference was 

observed between SCC FAK-wt untreated and Isotype control treated animals 

(p value = >0.05). SCC FAK-wt tumours treated with CD25 depleting antibody grew 
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Figure 7.6 I Treg FACS gating strategy.Stain 4 (Table 6.1) was used to determine the
number of CD4+ CD25+ FoxP3+ Tregs. Stain 4 is a commercially available antibody cocktail,
which incorporates cell permeablising buffers required for intracellular FoxP3 staining, and thus,
FMO controls were not possible with this stain
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normally until day 7, where tumour growth stalled, leading to complete tumour 

regression by day 21 (Figure 7.8). Following cessation of antibody treatment 25 

days post tumour-cell implantation, tumours did not reappear after 6 months of 

observation (data not shown). 

Having established that SCC FAK-wt tumour growth required CD25+ and CD4+ 

cells, I concluded that Tregs were the cell population responsible for SCC FAK-wt 

tumour escape of immune-meditated tumour regression.  
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Figure 7.7 I Increase in the number of intra-tumoural Tregs in SCC FAK-wt 
tumours.      1 x 10

6
 SCC FAK-wt, SCC FAK-/- or SCC FAK-kd cells were implanted into the 

flanks FVB/N mice by bilateral subcutaneous injection. Resulting tumours were removed 
from cohorts of mice (n = 3) 7 days post-implantation. Tumours were disaggregated and 
stained for FACS analysis with stain 4 (Table 7.1). FACS analysis was gated as described in 
Figure 7.6. a FACS plots of intra-tumoural Treg populations (left panel) and their respective 
quantification (right panel). b CD8

+
 T-cell to Treg ratio calculated using mean values from 

Figures 7.1 and 7.7. The number of each cell population was determined and the statistical 
significance between each cell type was calculated by one-way Anova with Tukey’s multiple 
comparisons. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001; 
Bar height = mean; Error bars = s.e.m 
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7.4 Conclusion 

 

These data imply that antigen-primed CD8+ T-cells infiltrate into all tumour types 

and therefore the lack of CD8+ T-cell infiltration is not the underlying mechanism for 

continued growth of SCC FAK-wt tumours. Treg levels were observed to be elevated 

in SCC FAK-wt tumours when compared to SCC FAK-/- and FAK-kd tumours, and 

specific depletion of these cells using anti-CD25 antibodies led to complete 

regression of SCC FAK-wt tumours.  Thus, increased Treg infiltration is required to 

protect SCC FAK-wt tumours from immune-mediated clearance.  The ratio of CD8+ 

T-cells to Tregs has been reported as a prognostic indicator of clinical outcome, with 

a low ratio linked to poor prognosis.  Comparing the ratio of CD8+ T-cells to Tregs 

in SCC FAK-wt, FAK-/- and FAK-kd tumours revealed a substantially lower ratio in 

SCC FAK-wt tumours, which in our model correlated with poor prognosis.  
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Figure 7.8 I SCC FAK-wt tumour clearance after antibody depletion of CD25
+

 
cells.  SCC FAK-wt tumour growth in CD25 depleted FVB/N mice. FVB/N mice (n = 5) were 
treated with CD25

+
 depleting antibody as per the dosage scheduled referred to in Figure 5.7. 

Control animals were treated with Isotype control antibody or were untreated. 1 x 10
6
 SCC FAK-

wt or SCC FAK-/- cells were implanted by bilateral subcutaneous injection into each flank. 
Tumour diameter was measured twice weekly and tumour volume was determined by 4/3πr

3
. 

Statistical significance was determined by matched, two-way Anova with Tukey’s multiple 
comparisons. Data are represented as mean ± s.e.m. P-value = Not significant >0.05,  * <0.05, 
** <0.01, *** <0.001, **** <0.0001. 
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Therefore, one outcome of elevated FAK expression in tumours may be to alter the 

ratio of CD8+ T-cells to Tregs in favour of tumour tolerance. Further work will be 

required to understand the broad relevance of these findings and to identify how 

FAK can influence Treg levels within tumours. 

Levels of inflammatory and resident macrophages were unchanged across SCC 

FAK-wt, SCC FAK-/- and SCC FAK-kd tumours, but approx. 70% were M2 

polarised in SCC FAK-wt and SCC FAK-kd tumours, and M1 polarised in SCC 

FAK-/-. While these changes in the polarity of macrophages were observed, they did 

not correlate with the regression phenotype and thus are unlikely to be the primary 

factor supporting continued growth of SCC FAK-wt tumours. However, these 

changes may be clinically relevant as M2 macrophages have been shown to be a 

pro-tumorigenic population indicative of poor clinical outcome, and may provide the 

tumour protection from chemotherapy and radiotherapy43,57,82,85,92. The difference 

between SCC FAK-/- tumours and SCC FAK-wt and SCC FAK-kd tumours can be 

attributed to the presence of FAK kinase-independent functionality, which is still 

retained in SCC FAK-kd cells. The kinase-independent roles of FAK have been 

shown to influence cell migration, adhesion, invasion, metastasis, growth and 

survival244,247,249,264,339,367,368 (Figure 3.2), and do so through the scaffolding 

functions of the FAK FERM domain244,274,284,321,369-373 (Figure 3.1).  A number of 

these functions have been shown to be modulated by chemokines and cytokines. 

Therefore, it’s possible to speculate that FAK FERM domain-mediated regulation of 

chemokines and cytokines may attribute to the differences observed between SCC 

FAK-/- and SCC FAK-kd tumours, and that the FERM domain regulates the 

expression of mediators of macrophage polarization. 

The factors leading to the differential polarization of macrophages, and indeed 

MDSCs, are to date poorly characterised. However, some work has identified factors 

such as IFNγ and IL-4 to differentially stimulate M1 and M2 macrophage 

polarization respectively361,374.  IFNγ and IL-4 are two of the main drivers of Th1 and 

Th2 immune responses respectively, and many of FAK kinase-independent functions 

lead to the upregulation of growth factors and chemokine and cytokine 

signalling265,282,284. This therefore raises the possibly that FAK kinase-independent 
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functions play a role in the modulation of these factors, which could have greater 

implications as to the inflammatory environment of a FAK-expressing tumour. 

Indeed, it may be possible that FAK-expression within tumours infer a Th2 

inflammatory microenvironment, which in the absence or downregulation of Th1 

mediating factors such as IFNγ could generate a more permissive environment for 

tumour development375.  

Although this hypothesis is intriguing, no significant differences were observed in 

the total numbers or the activation status of CD8+ T-cells between SCC FAK-/- and 

SCC FAK-kd tumours (Figure 7.1 b-d). Thus, the more likely hypothesis is that 

FAK may regulate the expression other chemokines and cytokines that affect 

macrophage polarization without the major effects on Th2 immunity. IL-21 has been 

shown to be an inducer of M2 polarization through the activation of STAT-3 

signalling in macrophages, but only moderately mediates Th2 induction376. The lack 

of an induced Th2 response by Il-21 is attributed to its effects in increasing the 

frequency of a subset of antigen-specific CD8+ T-cells, which produce IL-2 in 

response to IL-21, and thus increase Th1 mediated immunity377.  

Although further work must be done to investigate the mechanisms by which the 

kinase-independent function of FAK may regulate macrophage polarization, few 

tools exist which are capable of inhibiting scaffolding functionality. To interrogate 

this phenotype further however, the disruption of FAK FERM domain interactions 

would be required, and this could be achieved using nanobodies. Nanobodies are 

short, single chain immunoglobulins found in camelids (such as llamas), which 

contain only heavy and light immunoglobulin variable domains378. The lack of the 

immunoglobulin constant domains (seen in most other mammalian 

immunoglobulins) generates antibodies which are small enough to perturb 

protein:protein interactions directly with high avidity and specificity378. Modified 

derivations of these antibodies have been used in the clinic in the form of bispecific 

t-cell engaging antibodies (BiTEs) targeting both CD3 and TAA (CD19) in B-cell 

lymphomas, and have been shown to have excellent pharmacodynamics properties,  

specificities and anti-cancer properties379-383. Although using these molecules as 

inhibitors of protein:protein interactions has yet to be trialled in vivo in either humans 
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or mice384, they have been shown to have excellent inhibiting capacity in vitro385-387 . 

Thus, it may be possible to disrupt FAK kinase-independent FERM interactions with 

nanobodies, and begin to interrogate the mechanisms by which the FAK FERM 

domain has the capacity to polarize macrophages. This may prove to be highly 

important in the long-term implications of FAK-based therapies. 

Kinase-independent polarisation is also observed in both MDSC populations of SCC 

FAK-wt and SCC FAK-kd tumours, but it should be noted that the interpretation of 

the MDSC data is more difficult than for macrophages. Current definitions of 

immunosuppressive cell populations by FACS are not always specific. This is the 

case for MDSCs; M-MDSCs cannot be defined specifically at this point, and 

currently share the same markers are inflammatory monocytes (CD45+ CD11b+ 

F4/80- Ly6Chi; Table 7.1). New methods, such as NanoString® aims to improve on 

this by combining both RNA sequencing and protein profiling into a single reaction, 

allowing immune cell populations to be more accurately identified by both the 

expression of proteins and RNA388,389. This technology increases the specificity of 

detecting immune populations by analysis of specific transcriptional and proteomic 

profiles consisting of many more markers than FACS, and therefor allows for a more 

accurate definition of immune populations. Although this is a significant 

advancement for immunoprofiling, this technology still relies on current identifiable 

markers, and for immune populations such as MDSC and DCs that have no unique 

identifiable markers, identification of these population will always be demanding 

until more work has been done on characterising them.    

Having excluded both M2 macrophages and MDSCs as the immunosuppressive 

populations responsible for SCC FAK-wt tumour survival, work turned to 

identification and characterisation of the Treg population (CD4+ CD25+ FoxP3+). It 

has been shown however that CD4+ FoxP3+ cells also have immunosuppressive 

capabilities, and are often referred to as Tregs in the literature. Although these cell 

can be immunosuppressive, due to the lack of CD25 they may not have the same 

suppressive capacity as double positive FoxP3+ CD25+ cells. Because of this, Tregs 

are defined only as CD4+ FoxP3+ CD25+ cells within this thesis, and are stained by a 

commercially available kit that allows for the intracellular staining of FoxP3. This 
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does raise question as to whether the use of CD25 depleting antibodies (Figure 7.8) 

is an effective method to depleting Tregs. Indeed, CD4+ FoxP3+ cells will not be 

affected by this treatment, leaving the potential for residual immunosuppressive cells 

to be retained after CD25 depletion390. CD25 has also been shown to be upregulated 

on activated CD8+
 T-cells, and thus depletion of Tregs in this manner may also 

reduce cytotoxic activity391. Although both of these possibilities appear unlikely, as 

residual immunosuppression or reduction in cytotoxic activity would retain tumour 

tolerance after CD25 treatment, other possibilities would in fact lead to tumour 

rejection. For example, CD25+ CD8+ suppressor cells (CD8+ TSups) would also be 

depleted by CD25 treatment; CD8+ Tsups are a functionally defined, 

immunosuppressive population, and therefore CD25 depletion could cause tumour 

rejection if targeting this populations392. Many of the issues surrounding CD25 

antibody-meditated depletion of Tregs would be resolved, albeit only transiently by 

using FoxP3DTR knockin mouse, whereby Treg ablation follows treatment with 

diphtheria toxin (DT)393. Although these points must be considered when evaluating 

the data presented in this chapter, CD8+ Tsups are typically found at very low 

abundance in tumours, and so the hypothesis that the rejection of SCC FAK-wt 

tumours after anti-CD25 is due to the lost of Tregs appears most likely. 

The work presented in this chapter focuses on SCC FAK-wt tumours in order to 

better understand the immunomodulatory roles of FAK in SCC FAK-wt tumour 

survival. This work identifies the essential role of Tregs in SCC FAK-wt tumour 

tolerance, and correlates the absence of Tregs with SCC FAK-/- and SCC FAK-kd 

tumour rejection. However, to further substantiate this hypothesis, experimental 

evidence is required to show a stronger functional link between the lack of Tregs and 

the clearance of SCC FAK-/- and SCC FAK-kd tumours. This could be achieved by 

increasing the number of Tregs within SCC FAK-/- and SCC FAK-kd tumours by 

adoptive transfer of Tregs from SCC FAK-wt tumours. Two caveats with this 

technique are the requirement for in vitro expansion, which can prove difficult with 

Tregs and isolating a pure Treg population. As discussed above, the transcription 

factor FoxP3 is established as the best marker for Tregs, as CD25 expression is not 

restricted to Tregs alone. However, due to the permeabilization and fixation required 

for intracellular FoxP3 staining, purification by CD25 expression must be used to 
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achieve a final viable cell population. This raises difficulties around attaining a pure 

Treg population. Other methods of increasing Tregs include anti-CD45RB treatment, 

which increases endogenous splenic Tregs in vivo. Although the mechanism of 

action of anti-CD45RB treatment has been shown to act due to the specific 

enhancement of tTreg proliferation in response to antigen394, this work is 

unsubstantiated and has yet to be tried in cancer setting, but offers an opportunity to 

increase Tregs in vivo without the requirement for expansion or purification.  
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8 FAK regulates chemokines and cytokines that increase the 
levels of intra-tumoural Tregs. 

 

8.1 Introduction 

 

Having established that intra-tumoural Tregs were increased in SCC FAK-wt 

tumours, and that they were required to avoid SCC FAK-wt tumour regression, I set 

out to investigate the molecular mechanisms by which FAK could regulate intra-

tumoural Treg levels. Tumour cells have been shown to upregulate a number of 

factors that act to increase the differentiation of Tregs from effector CD4+ T-cells 

(TGFβ and IL-10; Figure 2.6) or to increase the recruitment of tTregs and their 

retention within the microenvironment (CCL5; Figure 2.6). Thus, working with Dr 

Adam Bryon and Dr Alan Serrels (Frame Group) we undertook a screening approach 

in order to determine transcriptomic changes between SCC FAK-wt and SCC FAK-/- 

cells, focussing on differentially expressed cytokines and chemokines, and then 

concentrated our experiments on selected chemokines and cytokines that are known 

to regulate intra-tumoural Tregs. 

 

8.2 Aims 

 

• To determine whether FAK regulates the expression of factors that could 

influence Treg levels in tumours 

• If so, to identify the factors involved in driving elevated Treg levels in SCC 

FAK-wt tumours 
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8.3 Results 

 

8.3.1 FAK regulates the transcription of chemokines and cytokines 
involved in the peripheral induction, recruitment and retention of 
Tregs 

 

To further investigate how FAK expression was linked to elevated intra-tumoural 

Treg levels, we used global transcriptional profiling of SCC cells. Using Affymetrix 

GeneChip Mouse Genome 430 2.0 microarrays that cover over 39000 transcripts, we 

compared the transcriptome of SCC FAK-wt cells in vitro to that of SCC FAK-/- 

cells in vitro (Figure 8.1). Analysis of the resulting data identified a set of 498 

upregulated genes, and 598 downregulated genes in the SCC FAK-wt cells compared 

to SCC FAK-/- (Figure 8.1a). Gene ontology analysis on the upregulated gene set 

indicated that FAK expression was significantly associated with a number of 

biological processes including cell migration, secretion, wounding, and ovulation, 

and that the most overrepresented gene family within this gene set was chemokine 

ligands (Figure 8.1b).  

 

Figure 8.1 I Transcriptional profiling of SCC FAK-wt and SCC FAK-/- cells reveled 
a number of upregulated chemokine ligands in SCC FAK-wt tumours. a Heat map 
of transcriptional changes between SCC FAK-wt and SCC FAK-/- cells. b Functional enrichment 
analysis of genes upregulated in SCC FAK-wt cells (grey bar in a). Overrepresented biological 
processes are displayed as a heat map (log10-transformed color scale) (top panel); asterisks 
indicate presence of cytokine-related genes. Overrepresented gene families are displayed as a 
bar chart (bottom panel); dashed line indicates P = 0.001. Displayed terms satisfy P < 0.05 
(Benjamini–Hochberg-corrected hypergeometric tests). Figure courtesy of Dr Adam Byron. 
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To further establish which chemokines and cytokines were regulated by FAK, and to 

confirm the results from the microarray analysis, we used a focussed chemokine / 

cytokine qRT-PCR array to compare transcript expression between SCC FAK-wt 

and SCC FAK-/- cells (Figure 8.2a). We identified a subset of chemokines and 

cytokines that were upregulated more than two-fold in the SCC FAK-wt cells, of 

which a number have been reported to play a role in Treg induction, expansion395  

(TGFβ2; Figure 8.2a red arrow) and recruitment396 (CCL5, CxCL10, CCL1 and 

a b 

c 

CCL5 CxCL10 TFGβ2 IL24 
TNFsf10 
CCL5 
IL15 
IL1a 
CxCL15 
IL1rn 
Csf1 
CCL12 
TGFβ2 
CxCL10 
CCL7 
CCL1 

CxCR6 
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Cmklr1 

CCR3 
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CCRL2 
C5ar1 
CCR5 

Figure 8.2 I FAK regulates transcription of chemokines and cytokines implicated 
in Treg recruitment and expansion. a qRT-PCR array analysis of cytokine and chemokine 
expression in SCC FAK-wt and SCC FAK-/- cells. Cytokine and chemokine gene names within 
cluster upregulated in SCC FAK-wt cells are listed. Green arrows indicate reported roles in Treg 
recruitment; red arrow indicates reported role in peripheral Treg induction. b qRT-PCR analysis 
of selected cytokine and chemokine gene expression in SCC cells. c qRT-PCR array analysis of 
chemokine receptor expression in tumor- and thymus-derived Tregs. Grey bar indicates cluster 
of genes upregulated in tumor-derived Tregs; receptor gene names are listed. ****P < 0.0001 
(Sidak-corrected one-way ANOVA). Data are represented as mean ± s.e.m. Figures courtesy of 
Dr Adam Byron and Dr Alan Serrels. 
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CCL7; Figure 8.2a green arrows).   

Having identified CCL5, CxCL10 and TGFβ as being upregulated in SCC FAK-wt 

cells compared to SCC FAK-/- cells, we next wanted to determine the relative 

quantity of these three chemokines and cytokines in SCC FAK-kd cells.  qRT-PCR 

analysis of SCC FAK-wt, SCC FAK-/- and SCC FAK-kd cells showed that CCL5 

was down-regulated 10-fold in SCC FAK-/- cells and 4-fold in SCC FAK-kd cells 

compared to SCC FAK-wt (p value = <0.0001; Figure 8.2b). CxCL10 was down-

regulated 10-fold in SCC FAK-/- cells and approximately 2-fold in SCC FAK-kd 

cells compared to SCC FAK-wt (p value = <0.0001) and TGFβ2 was down-regulated 

5-fold in SCC FAK-/- and 2-fold in SCC FAK-kd cells compared to SCC FAK-wt (p 

value = <0.0001; Figure 8.2b). We conclude that the FAK kinase activity is required 

for the transcriptional upregulation of CCL5, CxCL10 and TGFβ2. FAK has been 

shown previously to regulate the transcriptional levels TGFβ in other cell 

models397,398, validating our findings.  Further, it is possible that the differences 

observed between SCC FAK-/- and SCC FAK-kd cells were due to the fact that SCC 

FAK-kd cells are ‘kinase deficient’ not kinase-dead, and therefore retain some 

residual kinase activity.  

To compliment this analysis, and to identify whether there was a relationship 

between FAK-dependent chemokine expression and Treg chemokine receptor 

profile, we isolated both intra-tumoural Tregs and thymic derived Tregs and 

compared their chemokine receptor expression using qRT-PCR (Figure 8.2c). 

Analysis of this data identified a subset of chemokine receptors that were greater 

than two-fold upregulated on intra-tumoural Tregs when compared to thymic derived 

Tregs, indicating a switch from lymphoid homing receptors, including CCR7399 and 

CxCR4400, towards expression of memory / effector-type chemokine receptors 

involved in recruitment to non-lymphoid tissues and sites of inflammation, including 

CCR2, CCR5, CCR8, and CxCR6401.  

Network analysis identified a FAK-driven paracrine-signaling axis between cancer 

cells and intra-tumoural Tregs based on chemokine ligand-receptor interactions. 

Indeed, 5 of the chemokine receptors upregulated on intra-tumoural Tregs were the 
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cognate receptors for the chemokine ligands upregulated in response to FAK 

expression in SCC cells (Figure 8.3).  

 

  

Figure 8.3 I Upregulation of chemokine ligands in SCC FAK-wt cells correlate 
with the upregulation of cognate receptors on SCC FAK-wt intra-tumoural Tregs. 
Interaction network analysis of chemokine ligand gene expression detected in SCC cells (circles; 
left) and corresponding receptor gene expression detected in intra-tumoural Tregs (squares; 
right). Genes are ordered vertically by fold change. Light gray lines connect receptor–ligand 
pairs; green lines indicate pairs upregulated at least two-fold in SCC FAK-wt cells and tumor-
derived Tregs. Figure courtesy of Dr Adam Byron. 
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8.3.2 SCC FAK-wt tumour survival and growth requires TGFβ2 and 
CCL5, associated with an increase in intra-tumoural Tregs. 

 

Following identification of a subset of chemokine and cytokine ligands upregulated 

in response to FAK expression, I sought to prioritise a small number for further 

testing. TGFβ2 and CCL5 have been previously reported to be important for Treg 

induction and recruitment to non-lymphoid tissues respectively137,138,243,402. Indeed, 

disruption of the CCL5 / CCR5 axis has been reported to result in reduced intra-

tumoural Tregs and slowed tumour growth implying that FAK-dependent regulation 

of this paracrine signaling axis may be important137.  I therefore used shRNA to 

knockdown TGFβ2 and CCL5 in SCC FAK-wt cells, and tested the impact of this on 

tumour growth and intra-tumoural Treg levels. 

TGFβ2 knockdown was validated using qRT-PCR, and a single clone was chosen 

with reduced expression levels of TGFβ2 (Figure 8.4a). 1 x 106 TGFβ2 shRNA 

expressing SCC FAK-wt cells (SCC FAK-wt shRNA-TGFβ2) were implanted in to 

the flanks of FVB/N mice (n=3) by bilateral subcutaneous injection, along side SCC 

FAK-wt pLKO vector only controls and SCC FAK-/- cells for comparison. Tumour 

growth was measured twice weekly. SCC FAK-wt pLKO and SCC FAK-/- tumours 

grew as expected (Figure 8.4b). SCC FAK-wt shRNA-TGFβ tumour growth 

appeared to split into two groups (Figure 8.4b). Tumours which were observed to 

have initial increase in tumour growth compared to the SCC FAK-wt pLKO control, 

subsequently ulcerated prematurely (Figure 8.4b blue dash). Tumours that did not 

have this initially increase in growth did not ulcerate, and these tumours were cleared 

after 27 days (Figure 8.4b red dash). TGFβ signalling has been shown to have 

pleiotropic effects on tumour growth138,243,403,404 and this could account for high 

variability in tumour growth observed. I concluded that, as a subset of SCC FAK-wt 

TGFβ2 shRNA expressing tumours were cleared, which was not seen in the SCC 

FAK-wt pLKO controls, that TGFβ2 was required for the survival of SCC FAK-wt 

tumours. 
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SCC FAK-wt shRNA-CCL5 cells were generated from two independent shRNAs 

and knockdown validated using qRT-PCR (Figure 8.5a). Clones were chosen with 

reduced expression levels similar to that of SCC FAK-/- cells  (SCC FAK-wt 

shRNA-CCL5 1 and 2). 1 x 106 of both CCL5 shRNA-expressing cells 

(SCC FAK-wt shRNA-CCL5 1 and 2) were implanted in to the flanks of FVB/N 

mice (n=3) by bilateral subcutaneous injection, alongside SCC FAK-wt pLKO vector 

only controls and SCC FAK-/- cells for comparison and tumour growth was 

measured twice weekly. SCC FAK-wt pLKO and SCC FAK-/- tumours grew as 

expected (Figure 8.5b). Both SCC FAK-wt shRNA-CCL5 1 and 2 tumours grew in a 

manner akin to SCC FAK-/- cells (Figure 8.5b); tumours grew until day 7, at which 

point tumour growth stalled, until complete tumour regression a day 27 

(SCC FAK-wt shRNA-CCL5 1) and day 23 (SCC FAK-wt shRNA-CCL5 2).  

These data show that SCC FAK-wt tumour growth is dependant on TGFβ2 and 

CCL5 expression. Therefore I next wanted to determine whether knockdown of 

either TGFβ2 or CCL5 was associated with a loss in intra-tumoural Tregs by FACS 
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Figure 8.4 I FAK regulates transcription of TGFβ2 that is required for Treg 
expansion and tumour growth. a qRT-PCR analysis of TGFβ2 gene expression 
knockdown in SCC cells. b SCC FAK-wt shRNA-TGFβ2 tumour growth in FVB/N mice. Green 
solid line indicates the mean growth of all SCC FAK-wt shRNA-TGFβ2 tumours until signs of 
ulceration were observed. Tumour growth was determined by the implantation of 1 x 10

6 
SCC 

FAK-wt or SCC FAK-/- cells in to both flanks of FVB/N mice by bilateral subcutaneous injection. 
Tumour diameter was measured twice weekly and tumour volume was determined by 4/3πr

3
. 

Statistical significance was calculated by one-way Anova with Tukey’s multiple comparisons. 
Bar height = mean, Error bars = s.e.m. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** 
<0.001, **** <0.0001. 
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analysis. SCC FAK-wt shRNA TGFβ2 and SCC FAK-wt CCL5 1 cells, and SCC 

FAK-wt and SCC FAK-/- controls, were implanted in to both flanks of FVB/N mice 

by bilateral subcutaneous injection. Tumours were disaggregated and stained with 

Stain 4 (Table 7.1) Samples were then analysed by FACS as described in Figure 7.6.  

Comparison between SCC FAK-wt pLKO, SCC FAK-/- and SCC FAK-wt shRNA-

CCL5 tumours showed a statically significant decrease between the SCC FAK-/- and 

SCC FAK-wt shRNA-CCL5, and the SCC FAK-wt tumour (p value = <0.01 and 

<0.05 respectively; Figure 8.6a).  

FACS analysis of TGFβ2 shRNA-expressing SCC FAK-wt cells showed a 

significant decrease in Tregs between SCC FAK-wt shRNA-TGFβ2 and 

SCC FAK-/- tumours, compared to SCC FAK-wt tumours (p value = <0.0001; 

Figure 8.6b). From this data I concluded that TGFβ2 and CCL5 were required for 

SCC FAK-wt tumour survival and this was associated with an increase in intra-

tumoural Tregs. 
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Figure 8.5 I FAK regulates transcription of CCL5 required for Treg recruitment, 
retention and tumour growth. a qRT-PCR analysis of CCL5 gene expression knockdown in 
SCC cells. b SCC FAK-wt shRNA-CCL5 tumour growth in FVB/N mice. Tumour growth was 
determined by the implantation of 1 x 10

6 
SCC FAK-wt or SCC FAK-/- cells in to both flanks of 

FVB/N mice by subcutaneous injection. Tumour diameter was measured twice weekly and 
tumour volume was determined by 4/3πr

3.
 Statistical significance was calculated by one-way 

Anova with Tukey’s multiple comparisons. Bar height = mean, Error bars = s.e.m. P-value = Not 
significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001 
. 



 

 152 

Conclusion 

 

We have identified a novel paracrine-signalling axis between FAK expressing SCC 

tumour cells and intra-tumoural Tregs. Chemokines and cytokines regulated by FAK, 

including TGFβ2 and CCL5, are associated with an increase in intra-tumoural Tregs 

and sustained SCC FAK-wt tumour growth. Further, I show that transcription of 

TGFβ2 and CCL5 is dependent on FAK kinase activity, suggesting that they may be 

modulated by FAK kinase inhibitors to result in a similar outcome. Clinically these 

observations are important, as they suggest that FAK kinase inhibition may alter the 

chemokine and cytokine profile being secreted by tumour cells, with a resultant 

impact on the composition of the tumour immune infiltrate. Further work will focus 

on whether these phenotypes could be replicated by treatment of a FAK kinase 

inhibitor. 

The regulation of chemokines and cytokines by FAK kinase activity was identified 

using Affymetrix GeneChip Mouse Genome 430 2.0 microarrays and targeted 
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Figure 8.6 I TGFβ2 and CCL5 are required for Treg expansion and tumour 
growth in SCC FAK-wt tumours. a FACS analysis of the absolute number of Tregs / mg 
of tumour in SCC FAK-wt CCL5-shRNA tumours. b FACS analysis of intra-tumoural SCC 
FAK-wt TGFβ2-shRNA Tregs and a percentage of CD4

+
 cell. Tumours were taken 7 days 

post implantation, disaggregated and stained for FACS with Stain 4 (Table 7.1). FACS 
analysis was gated as described in Figure 7.6. Statistical significance was calculated by one-
way Anova with Tukey’s multiple comparisons. Bar height = mean, Error bars = s.e.m. P-
value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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chemokine and cytokine qRT-PCR arrays. Steady-state transcriptomic approaches 

such as these give excellent coverage of transcripts (30000 targets in the GeneChip 

Mouse genome arrays) and include some alternative probes for select targets, thus 

allowing for the identification of some non-specific amplification. However, 

steady-state transcriptomic approaches suffer from a static view of transcription, and 

thus give no detail into transcriptional kinetics and downstream processing (i.e. the 

rate of transcription vs. the rate of transcript turnover, the rate of translation, and 

whether the rates of transcription and translation change over time). Other genetic 

tools, such as gene reporter constructs, would allow for more dynamic analysis of the 

transcription of a select number of chemokines and cytokines, and could be utilized 

to determine whether the rate of transcription of these factors modulate over time.  

Further proteomic approaches are also required to determine whether the levels of 

functional chemokines and cytokines are produced in a FAK kinase-dependent 

manner. This offers a challenge as the secretion of chemokines and cytokines by 

tumour cells in culture can often be minimal, and thus can be difficult to detect above 

the high levels of background found when culturing cells in FBS. Our SCC model 

strictly requires FBS to be maintained in culture for periods longer than 24 hours, 

making analysis into chemokine and cytokine secretion difficult. Determination of 

chemokine and cytokine levels can be achieved however following the treatment of 

cultured cells with Ionomycin, which activates chemokine and cytokine production, 

and Brefeldin A, which blocks chemokine and cytokine secretion thus causing their 

intracellular retention. Treatment with these compounds allow for the quantification 

of chemokine and cytokine proteins without the inherent high levels of background 

following secretion into FBS containing media.  

This transcriptomic approach however, identified a subset of genes upregulated in 

SCC FAK-wt cells, known to be involved in Treg biology, including TGFβ2 and 

CCL5 (2.1.2.2 and 2.1.3.2). Although SCC FAK-kd cells were omitted from the 

initial transcriptomic data set, qRT-PCR data supports the array results and identifies 

the dependence of FAK kinase activity in the upregulation of TGFβ2 and CCL5. 

SCC FAK-kd cells display an intermediate phenotype in this regard, potentially due 

to the small amount of residual FAK kinase activity seen in these kinase deficient 
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cells in 2D culture conditions, but which is absent in cells grown in 3D culture 

conditions and most importantly, is insufficient to induce SCC FAK-kd tumour 

tolerance in vivo (see 276). Although a true kinase dead FAK mutant or in vitro 3D 

culture conditions would help in part to answer this question, the immune-mediated 

clearance of SCC FAK-kd cells highlights the necessary requirement for full 

FAK-kinase activity.  

Subsequent stable RNAi knockdown of CCL5 and TGFβ2 shows that both these 

factors are required for FAK-expressing tumour tolerance compared to vector-only 

transfected SCC FAK-wt pLKO cells. SCC FAK-wt pLKO cells are transfected with 

the vector-backbone (pLKO) in which both CCL5 and TGFβ2 shRNAs are 

expressed. These controls were used in lieu of the more commonly used scrambled 

RNAi controls, as off-target scrambled RNAi mediated depletion of other 

chemokines and cytokines were observed after the transfection of scrambled RNAi 

control (data not shown). A vector-only control is effectively a sham-transfection 

which allows you to determine whether changes observed in experimental 

parameters, in this case tumour tolerance, are due to the exposure of cells to the 

transfection agent, retrovirus or other aspects of the transfection protocol (4.1.15 and 

4.2.11) without any RNAi-mediated effects. A scrambled control also validates these 

effects, but also determines the probability that any changes in experimental 

parameters are due to the RNAi-mediated knockdown of a specific target, and not 

due to off-target depletion by non-targeting RNAi. Although the vector-only controls 

did not exhibit any observed changes in phenotype, they are not sufficient in 

determining the specificity of either the CCL5 or TGFβ2 shRNA for their respective 

targets. The induction of tumour clearance after the RNAi mediated-knockdown of 

either CCL5 or TGFβ2 could be due to off-target depletion of other non-specific 

targets. A scrambled control would, in part, help to clarify this. Although the use of 

multiple shRNAs for both CCL5 and TGFβ2 knockdown reduces the possibility SCC 

FAK-wt tumour clearance was mediated by off-target effects, it should still be taken 

into consideration that loss of tumour tolerance could be due to non-target effects of 

CCL5 or TGFβ2 shRNAs, and a different scrambled control should used used, one 

which does not effect other chemokines and cytokines to clarify this further.    
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Knockdown of TGFβ2 resulted in a split phenotype, with some tumours undergoing 

premature ulceration and others continuing to complete regression. The pleiotropic 

effects of TGFβ on tumour growth are well characterised. TGFβ signalling has 

cytostatic effects on epithelial, endothelial and immune cells, specifically T cells, and 

is critically important in the maintenance of tissue homeostasis and the prevention of 

hyperproliferative disorders such as cancer405,406. TGFβ acts to induce the expression 

of cyclin-dependant kinase inhibitors CDKN2B407, CDKN1A408 and p27/Kip1409, 

resulting in the arrest of  G1 to S phase transition410, and also by the repression of the 

proliferation-inducing transcription factor c-Myc411. The loss of controlled 

proliferation by TGFβ has been observed in a number of different human cancers due 

to mutations in various components of the TGFβ signalling pathway.  Loss of 

function or truncating mutations in Smad2 and Smad4 as well as TGFβRI and 

TGFβRII have been detected in colorectal, pancreatic, gastric and prostate 

cancers406,412-419. Futhermore, TGFβ is well recognized to enhance the proliferation 

of CAFs, mediated indirectly by the secretion of TGFβ-induced connective tissue 

growth factor (CTGF), which stimulates fibroblast proliferation and ECM 

generation406,420. This increase in ECM generation, specifically the deposition of 

collagen I and II fibrils, promotes cellular adhesions, and thus increase mechanical 

forces within the tumour,  enhancing the mechanosensory conversion of fibroblasts 

to differentiated myofibroblasts421,422. Therefore inhibiting the cytostatic functions of 

TGFβ by RNAi may act a pro-tumorigenic and enhance the proliferation of both 

tumour cells and pro-tumorigenic stromal populations. To counter these 

pro-tumorigenic functions, and as stated previously (2.2.1.2 and 2.2.1.3) TGFβ acts 

to suppress of CD8+ T cell proliferation and acts to differentiae CD4+ T cells into 

immunosuppressive Tregs. It is therefore not unsurprising that the RNAi-mediated 

knockdown of TGFβ2 results in a split phenotype. However, considering that a 

reduction in Tregs was observed after TGFβ2 knockdown, and that neither SCC 

FAK-wt pLKO or SCC FAK-wt tumours are seen to regress, I concluded that TGFβ2 

was in fact crucial to the survival of SCC FAK-wt cell, despite the pleotropic 

phenotype observed.   
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9 FAK kinase inhibitor VS-4718 shows preclinical potential as an 
immunotherapy. 

 

9.1 Introduction 

 

Small molecule FAK kinase inhibitors are currently being tested in a number of 

clinical trails, and it will be imperative to identify their potential utility and prioritise 

combinations for further testing. FAK is upregulated in a number of cancers 

including breast423,424, pancreatic425, colorectal426, melanoma427 and squamous cell 

carcinoma264 where FAK inhibition has been shown to prevent cell motility, 

invasion, cancer progression and survival264. I wanted to investigate whether 

treatment with FAK kinase inhibitor VS-4718, which is currently in clinical 

development, recapitulated our previous results that highlighted the 

immunomodulatory effects of FAK.  

 

9.2 Aims 

 

• To determine how treatment with a FAK inhibitor compares with our genetic 

model  

• To investigate the response to FAK inhibition in multiple syngeneic cancer 

models 

• To assess the relationship between PD-L1/2 expression and response to FAK 

inhibitor monotherapy 
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9.3 Results 

 

9.3.1 FAK kinase inhibitor VS-4718 induced SCC FAK-wt tumour 
regression associated with a reduction in intra-tumoural Tregs. 

 

To complement our data establishing a kinase-defective mutation in FAK (SCC 

FAK-kd) driving immune mediated tumour clearance, studies were preformed with 

FAK inhibitor VS-4718, which is currently in clinical development (Figure 9.1). 

FVB/N mice (n=5) were treated with 75mg/kg VS-4718 for 24 hours prior to 

bilateral subcutaneous injection of 1 x 106 SCC FAK-wt and SCC FAK-/- cells in 

both flanks, and twice daily thereafter. VS-4718 treated SCC FAK-wt and SCC 

FAK-/- tumours grew in manor akin to the SCC FAK-/- vehicle treated control 

(Figure 9.2); a significant delay in tumour growth was seen until day 10 (compared 

to SCC FAK-wt vehicle treated control; p value = <0.0001) where growth stalled, 

resulting in tumour clearance by day 24. Moreover, following cessation of VS-4718 

treatment, no tumour regrowth was observed (data not shown).  Although SCC FAK-

/- tumour growth and subsequent clearance was largely unaffected by VS-4718 

treatment, implying that anti-tumour effects of VS-4718 treatment were due to FAK 

inhibition in tumour cells, a growth delay was observed between both drug treated  
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Figure 9.1 Analysis of FAK pY397 phosphorylation in tumors following treatment 
with VS-4718. a Structure of VS-4718. Figure taken from Merlin Deficiency Predicts FAK 
Inhibitor Sensitivity: A Synthetic Lethal Relationship. Shapiro et al. Sci Transl Med, 2014. b 
Phosphorylation of FAK on Y397 was measured in protein lysates isolated from tumors following 
treatment with VS-4718 using ELISA. Tumors were removed within 30 minutes of treatment. N = 
5. Figure courtesy of Jen Ring, Verastem 
 

a b 
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tumours and the SCC FAK-/- vehicle controls at day 7 (Figure 9.2). Although this 

did not reach significance, it may be a consequence of targeting FAK in the stromal 

compartments prior to an established anti-tumour immune response, or alternatively 

it may represent a small off-target effect of VS-4718.    

To determine whether the mechanism of action of VS-4718 complimented our 

previous results, FVB/N mice were treated with 75mg/kg VS-4718 for 24 hours prior 

to bilateral subcutaneous injection of 1 x 106 SCC FAK-wt and SCC FAK-/- cells in 

both flanks, and twice daily thereafter. Tumours were removed, disaggregated and 

stained with Stain 2 (Table 6.3) and Stain 4 (Table 7.1). Samples were analysed as 

described in Figure 6.5 and Figure 7.1 respectively. Regression of VS-4718 treated 

tumours was not attributed to decreased cell viability, shown by Cell viability marker 

eFluor® 506 conjugated fixable viability dye (Figure 9.3). In both SCC FAK-wt 

tumours, treatment with VS-4718 increased cell viability, but this increase did not 

reach significance (p value = >0.05; Figure 9.3). 
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Figure 9.2 I The FAK kinase inhibitor VS-4718 leads clearance of SCC FAK-wt 
tumours. SCC FAK-wt and SCC FAK-/- tumour growth in animals treated with either vehicle 
or with 75 mg/kg VS-4718, BID by oral gavage. Treatment started 24 hours pre-tumour cell 
inoculation and continued for the duration of the experiment. 1 x 10

6
 SCC FAK-wt or SCC 

FAK-/- cells were implanted by bilateral subcutaneous injection into each flank of FVB/N mice. 
Tumour diameter was measured twice weekly and tumour volume was calculated using the 
formula 4/3πr

3
. Statistical significance determined by matched, two-way Anova with Tukey’s 

multiple comparisons Data are represented as mean ± s.e.m. P-value = Not significant >0.05,  
* <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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Regarding T-cells, a statistically significant increase in CD8+ T-cells was evident in 

SCC FAK-wt VS-4718-treated tumours (mean ± s.e.m. = FAK-wt vehicle, 3.94% ± 

0.20; FAK-wt VS-4718 = 7.32% ± 0.65; FAK-/- vehicle = 6.34% ± 0.56; FAK-/- 

VS-4718 = 3.20% ± 0.85; Figure 9.4a), but no change was observed in effector 

CD8+ T-cells (mean ± s.e.m. = FAK-wt vehicle = 43.25% ± 2.11; FAK-wt VS-4718 

= 44.93% ± 1.69; FAK-/- vehicle = 40.66% ± 5.04; FAK-/- VS-4718 = 40.68% ± 

3.19; Figure 9.4b). Decreases were observed in total CD4+ T-cells between SCC 

FAK-wt VS-4718 treated tumours (mean ± s.e.m. = FAK-wt vehicle, 15.47% ± 0.53; 

FAK-wt VS-4718, 23% ± 0.74; FAK-/- vehicle, 21.62% ± 2.07; FAK-/- VS-4718, 

21.87% ± 1.73; Figure 9.4c) and effector CD4+ T-cells (mean ± s.e.m. = FAK-wt 

vehicle = 52.37% ± 1.58; FAK-wt VS-4718 = 74.03% ± 1.46; FAK-/- vehicle= 

65.37% ± 4.53; FAK-/- VS-4718 = 61.54% ± 4.16; Figure 9.4d). 

Crucially, there was a significant reduction in CD4+CD25+FoxP3+ Treg cells in 

VS-4718-treated SCC FAK-wt tumours (mean ± s.e.m. = FAK-wt vehicle, 24.71% ± 

0.50; FAK-wt VS-4718, 13.64% ± 2.32; p value = <0.0001; Figure 9.5), which was 

similar to that observed in vehicle (mean ± s.e.m. = 14.17% ± 0.59; p value = 

<0.001) and VS-4718-treated SCC FAK-/- tumours (mean ± s.e.m. = 14.56% ± 0.90; 
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Figure 9.3 I FAK kinase inhibitor VS-4718 did not effect tumour viability in early 
SCC FAK-wt and SCC FAK-/- tumours. FVB/N mice treated with either vehicle or with 75 
mg/kg VS-4718, B.I.D by oral gavage. Treatment started 24 hours before cell inoculation and 
continued for the duration of the experiment. 1.0 x 10

6
 SCC FAK-wt and SCC FAK-/- cells were 

implanted into both flanks of FVB/N mice by bilateral subcutaneous injection. Tumours were 
disaggregated at day 7, stained with fixable viability dye eFluor® 506 and analyzed by FACS (n = 
5). Statistical significance was determined by one-way Anova with Tukey’s multiple comparisons. 
Data are represented as mean ± s.e.m. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** 
<0.001, **** <0.0001 
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p value = <0.001; Figure 9.5).  Thus, VS-4718 promoted robust anti-tumour activity, 

by decreasing levels of intra-tumoural Tregs. 

I have shown that CD8+ T-cells were responsible for the immune mediated clearance 

of SCC FAK-/- tumours (Figure 4.9b). Thus, if the anti-tumour effects of VS-4718 

were indeed mediated through the immune response, I hypothesised that CD8+ 

T-cells were required for the clearance of SCC FAK-wt tumours treated with 

VS-4718. To test this hypothesis, FVB/N mice were treated with a combination of 
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Figure 9.4 I VS-4718 treatment modulates intra-tumoural T-cell populations. a 
FACS analysis of tumor infiltrating CD8

+
 T-cells from vehicle or VS-4718 treated tumours. b 

FACS sub categorization of tumor infiltrating CD8
+
 T-cells CD44

hi
 CD62L

lo
 (black bar), CD44
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CD62L
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 (white bar) and CD44
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 CD62L

lo
 (grey bar). c FACS analysis of tumor infiltrating CD4

+
 T-

cells from vehicle or VS-4718 treated tumors. d FACS sub categorization of tumor infiltrating 
CD4

+
 T-cells CD44
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 CD62L

lo
 (black bar), CD44

hi
 CD62L

hi
 (white bar) and CD44

lo
 CD62L

lo
 (grey 

bar)1.0 x 10
6
 SCC FAK-wt and SCC FAK-/- cells were implanted into both flanks of FVB/N mice 

by bilateral subcutaneous injection. Tumours were disaggregated at day 7, and stained with 
Stain 2 (Table 5.3). FACS analysis was gated as described in Figure 5.5. Data are represented 
as mean ± s.e.m. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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VS-4718 and CD8 depleting antibodies, as described in Figure 9.6. Animals treated 

with CD8 depleting antibodies or isotype control in combination with vehicle grew 

as expected; SCC FAK-wt CD8+ depletion with vehicle treatment (Figure 9.7 solid 

red line) showed a significant increase in tumour growth compared to the control 

treated tumours (SCC FAK-wt isotype and vehicle treated; Figure 9.7 solid black 

line).  In mice treated with VS-4718 in combination with isotype control, SCC 

FAK-wt tumours were cleared by day 21 (Figure 9.7 dashed black line), as shown 

previously with VS-4718 treatment alone (Figure 9.2). However in animals treated 

with both VS-4718 and CD8 depleting antibody (Figure 9.7 dashed red line), 

tumours grew in a manner similar to VS-4718 in combination with isotype control 

until day 10, at which point tumour growth significantly increased until day 21 at 

which point animals had to sacrificed due to signs of ulceration. The final tumour 

volume reached a similar size to SCC FAK-wt CD8+ depletion with vehicle treated 

tumours.  I concluded that VS-4718 required CD8+ T-cells to clear SCC FAK-wt 

tumours.  

To determine if VS-4718 showed similar anti-tumour effects in a clinically relevant 

situation, 1 x 106 SCC FAK-wt or SCC FAK-/- cell were implanted into both flanks 
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Figure 9.5 I VS-4718 treatment reduces reduces Tregs in SCC FAK-wt tumours. 
FACS analysis of intra-tumoural Tregs expressed as a percentage of tumour infiltrating CD4

+
 T-

cells. 1.0 x 10
6
 SCC FAK-wt and SCC FAK-/- cells were implanted into both flanks of FVB/N 

mice by bilateral subcutaneous injection. Tumours were disaggregated at day 7, and stained with 
Stain 4 (Table 7.1). FACS analysis was gated as described in Figure 7.6. Statistical significance 
was determined by one-way Anova with Tukey’s multiple comparisons. Data are represented as 
mean ± s.e.m. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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of FVB/N (n = 5) by bilateral subcutaneous injection. At day 5, mice were treated 

with 75mg/kg of VS-4718 or vehicle twice daily, when a palpable tumour of 

approximately 50 mm3 was present (Figure 9.8). SCC FAK-wt tumours treated with 

VS-4718 grew until day 10, at which point tumour growth slowed and subsequent 

complete regression was observed by day 21. Vehicle treated SCC FAK-wt tumours 

grew as expected and SCC FAK-/- tumour growth remained unaffected by VS-4718 

treatment. Thus, VS-4718 appeared to have the same anti-tumour activity against 

pre-established FAK expressing tumours as shown with mice pre-treated with VS-

4718 prior to tumour cell implantation. 

From these data, I concluded that the effects of VS-4718 treatment correlated with 

modulation of FAK expression and FAK kinase activity in tumour cells alone; both 

VS-4718 treatment and SCC FAK-kd tumours underwent immune-mediated 

regression by CD8+ T-cells, which was associated with a decrease in intra-tumoural 

Drug or Vehicle 
only control group 

SC injection 
of SCCs 

monitor tumour volume 

Day 1 Day 2 Day 3 
2-day rest 
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Day 6 

monitor tumour volume 

Every 3 Days 
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Day 5 

Day 5 

VS-4718 or  
Vehicle treatment  

Day 6 

2 x Daily VS-4718 or 
Vehicle Treatment 

2 x Daily VS-4718 or 
Vehicle Treatment 

Figure 9.6 | Schematic describing treatment regime for combined antibody-
mediated  T-cell depletion and VS-4718 treatment. FVB/N mice were treated daily for 3 
consecutive days with 150 μg of CD8

+
 depleting antibody or isotype control antibody by IP injection. 

Antibody treatment then ceased for 2 days. VS-4718 treatment began 24 hours before tumour cell 
inoculation. Mice were treated with 75 mg/kg VS-4718 or vehicle control BID by oral gavage. 1 x 
10

6
 SCC FAK-wt or SCC FAK-/- cells were implanted by bilateral subcutaneous injection into each 

flank at day 6. Tumour diameter was measured twice weekly and tumour volume calculated using 
the formula 4/3πr

3
.
 
T-cell depletion was maintained by 150 μg IP injection of antibody every 3 days, 

and VS-4718 BID treatment continued until the end of the experiment. SC = bilateral subcutaneous 
injection; IP = intraperitoneal 
. 
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Tregs. Thus the anti-tumour effects of VS-4718 are likely due to the tumour-specific 

inhibition of FAK. 
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Figure 9.7 I VS-4718 induced SCC FAK-wt regression is dependent on CD8
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control, in combination with VS-4718 or vehicle treatment. FVB/N animals were treated as 
described in Figure 9.6 (n = 5). Tumour diameter was measured twice weekly and tumour 
volume calculated using the formula 4/3πr

3
. Data are represented as mean ± s.e.m. 
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6
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continued for the duration of the experiment. Tumour diameter was measured twice weekly and 
tumour volume calculated using the formula 4/3πr

3
. Data are represented as mean ± s.e.m. 
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9.3.2 VS-4718 treatment of a panel of syngeneic mouse models of 
cancer 

 

Thus far, the work described has focussed on a single model system. Therefore, it 

was important to investigate the broad relevance of these findings across multiple 

syngeneic models of cancer harbouring different genetic driver mutations, different 

tissues of origin, and different mouse strains of origin. Therefore, so I set out to 

investigate the effects of VS-4718 on a number of syngeneic mouse models of 

cancer. A panel of different syngeneic cancer models were selected covering a 

number of different host-strains, cancer types, genetic drivers and pathological 

grades (Table 9.1; Mel31428, Panc043, Panc047 and Panc117 were generously 

donated by the Samson Lab, The Beatson Institute for Cancer Research, Glasgow; 

Met01 were generously donated by Bin-Zhi Qian, Centre for Reproductive Health, 

University of Edinburgh, Edinburgh). These included breast, skin and pancreatic 

cancer models, from BALB/c, FVB/N and c57BL/6 mouse strains, and a number of 

genetic drivers including MMTV-PyMT (mouse mammary tumour virus LTR driven 

polyoma middle T antigen), CDK4 and KPC (KrasLSL.G12D/+; p53R172H/+; 

PdxCretg/+). I included the parental heterogeneous SCC population (SCC 7.1) from 

which our SCC model was derived, and an additional independently derived 

heterogenous SCC cell model, SCC 6.2 (Table 9.1). For each model, mice (n = 3) 

were treated with 75 mg/kg VS-4718 for 24 hours prior to bilateral subcutaneous 

injection of 1 x 106 cells in both flanks, and twice daily thereafter. Tumour diameter 

was measured twice weekly and tumour volume calculated using the formula 4/3πr3.   

All tumour models were observed to respond to VS-4718, albeit to varying extents. 

Models were grouped into those in which a significant growth delay was observed 

between VS-4718 treated and vehicle treated controls (moderate response; Figure 

9.9) and those in which VS-4718 resulted in disease stabilization or tumour 

regression (high response; Figure 9.10).  
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Five models showed a moderate response to VS-4718 treatment (Figure 9.9a-e). 

Panc041, Panc043, and Panc117 tumours grew until day 7, where growth stalled, 

resulting in a statistically significant growth delay by day 14 (p value = <0.0001;  

Figure 9.9a-c). Tumours continued to grow until day 17, at which point animals had 

to be sacrificed due to the onset of ulceration.  Control-treated animals showed signs 

of ulceration by day 14, and had to be sacrificed in accordance with home office 

guidelines.  VS-4718 treated Mel31 tumour growth stalled at day 7, resulting in a 

significant growth delay by day 14 (p value = <0.001; Figure 9.9d). Both VS-4718 

and control treated tumours continued to grow until day 17, and a significant growth 

delay observed in VS-4718 treated tumours (p value = <0.0001), but by day 17 

tumours showed signs of ulceration and animals were sacrificed. Finally, 4T1 tumour 

growth was complicated by the highly metastatic nature of this model.  VS-4718 

treated 4T1 tumours showed a significant growth delay by day 10 compared to 

vehicle treated control (p value = <0.001; Figure 9.9e), but animals became 

increasing ill and showed signs of advanced metastatic disease by days 14 and 10 

respectively, and therefore mice had to be sacrificed in accordance with home-office 

guidelines. Following sacrifice, multi-organ metastasis was observed in both cohorts 

of mice. 

SCC 7.1 and Met01 tumours responded better to VS-4718 treatment (Figure 9.10). 

VS-4718 treated SCC 7.1 tumours grew until day 7, at which point tumour growth 

stalled and regressed until day 24 (Figure 9.10a). At this point some SCC 7.1 

tumours appeared to rebound while still receiving VS-4718, and grew rapidly 

thereafter even in the presence of VS-4718. Analysis of individual tumour growth 

determined that most tumours regressed by day 18, but two tumours (from different 

mice) escaped tumour regression at day 24 (Figure 9.10b). Tumour growth increased 

in both tumours until day 38, at which point animals were sacrificed and tumours 

were removed, so that cell lines could be derived from them (Figure 9.10b). VS-

4718 treated Met01 tumour growth stalled at day 7, after which tumour growth 

stabilized (Figure 9.10c). Tumour growth did not regress after 28 days but continued 

to remain stable. 
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Figure 9.9 I Syngeneic mouse models with moderate response to VS-4718. 1 x 10
6
 

cells were implanted into both flanks of mice (n = 5) by bilateral subcutaneous injection. a 
Panc041, b Panc047, c Panc117 and d Mel31 cells were implanted into c57Bl/6 mice. e SCC 
6.2 cells were implanted into FVB/N mice and f 4t1 cells were implanted in BALB/c mice (Table 
9.1). Mice were treated with either vehicle or with 75 mg/kg VS-4718, BID by oral gavage. 
Treatment started 24 hours before cell inoculation and continued for the duration of the 
experiment. Tumour diameter was measured twice weekly and tumour volume calculated using 
the formula 4/3πr

3
. Statistical significance was determined by matched, two-way Anova with 

Tukey’s multiple. Data are represented as mean ± s.e.m. P-value = Not significant >0.05,  * 
<0.05, ** <0.01, *** <0.001, **** <0.0001. 
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A number of preliminary conclusions can be drawn from these data. Firstly, all 

syngeneic cell models responded to VS-4718 treatment, albeit to different extents. 

Despite this variation, all responses were observed to result in a significant growth 

delay. Secondly, the point at which VS-4781 treated tumours deviated from their 

controls, was consistently 7 days post-implantation, correlating with the average time 

thought to be required to mount an adaptive immune response (2.1). And finally, 

with regards to the parental SCC 7.1 model, although this most tumours regressed in 

this model, this model also contained cells with the capacity to escape clearance 

suggesting potential mechanisms of resistance. These observations led us to consider 

the possibility that additional mechanisms of immune evasion, independent of those 

regulated by FAK, may influence tumour response to FAK inhibitor monotherapy. 

Such potential mechanisms include tumour cell surface expression of co-inhibitory 

ligands belonging to the so called ‘immune checkpoint’ pathways.   
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Figure 9.10 I SCC 7.1 and Met01 models exhibit a good response to VS-4718. a 
Average Tumour growth of SCC 7.1 cells and b the growth of each individual tumour. c Tumour 
growth of Met01 cells. 1 x 10

6
 cells were implanted into both flanks of FVB/N mice (n = 5) by 

bilateral subcutaneous injection (Table 9.1). Mice were treated with either vehicle or with 75 
mg/kg VS-4718, BID by oral gavage. Treatment started 24 hours before cell inoculation and 
continued for the duration of the experiment. Tumour diameter was measured twice weekly and 
tumour volume calculated using the formula 4/3πr

3
. Statistical significance was determined by 

matched, two-way Anova with Tukey’s multiple comparisons. Data are represented as mean ± 
s.e.m. P-value = Not significant >0.05,  * <0.05, ** <0.01, *** <0.001, **** <0.0001. 
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9.3.3 PD-L1/PD-L2 and CD80 expression correlated with response to 
VS-4718 treatment.  

 

Tumour cells may regulate the adaptive immune response through a number of 

mechanisms. These include tumour cell expression of PD-1 ligands PDL-1 and 

PD-L2, which after engagement with T-cell expressed PD-1, induce T-cell anergy 

and exhaustion (2.4). A second mechanism is through the upregulation of co-

stimulatory molecules such as CD80, which can induce T-cell activation and lead to 

increased Tregs or T-cell anergy exhaustion (2.4). Therefore, I set out to determine 

whether any of our syngeneic tumour models expressed PD-L1, PD-L2 or CD80, and 

whether levels of expression correlated with response to VS-4718. 1 x 106 

cultered-4T1, Met01, Mel31, Panc041, Panc043, Panc117, SCC 6.1, SCC FAK-wt 

and SCC 7.1 cells were stained with PD-L1, PD-L2 and CD80 fluorescently labelled 

antibodies and analysed by FACS (Figure 9.11).  4T1, Met01, Mel31, Panc041, 

Panc043, Panc117 and SCC 6.1 all expressed PD-L1 and PD-L2. SCC FAK-wt and 
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Figure 9.11 I Levels of PD-L1, PD-L2 and CD80 expression on a panel of
syngeneic mouse tumour cell lines. FACS analysis of a panel of cell lines from
syngeneic models of breast cancer, melanoma, pancreatic cancer and SCC (see Table 9.1).
Each FACS blot representative of 5 x 105 cells. Grey populations = negative
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SCC 7.1 did not express PD-L1 or PD-L2 (Figure 9.11a). 4T1, Met01, SCC FAK-wt 

and SCC 7.1 were found to express CD80, whereas Mel31, Panc041, Panc043, 

Panc117 and SCC 6.1 did not (Figure 9.11b).   

Both SCC FAK-wt and SCC 7.1 cells showed the greatest response to VS-4718 

treatment, and were the only models to show complete tumour regression following 

treatment. Both SCC FAK-wt and SCC 7.1 cells expressed CD80 and did not express 

PD-L1 and PD-L2. Met01 tumours showed a good response to VS-4718 treatment, 

and were found to express CD80. Met01 also expressed PD-L1 and PD-L2, which 

may explain why tumour regression was not seen in this model. Mel31, Panc041, 

Panc043, Panc117 and SCC 6.1 all responded modestly to VS-4718 treatment, and 

were all negative for CD80 and positive for PD-L1 and PD-L2. This small dataset 

highlighted a potential link between CD80, PD-L1 and PD-L2 expression and 

response to VS-4718. However, a much larger data set is required to make any 

definitive conclusions.  

 

9.4 Conclusion 

 

Here I have shown that the small molecule FAK kinase inhibitor VS-4718 shows 

preclinical potential as an anti-cancer immunotherapy agent. VS-4718 treatment of 

SCC FAK-wt tumours resulted in tumour clearance associated with a reduction in 

intra-tumoural Tregs. Across a panel of syngeneic tumour models VS-4718 treatment 

resulted in a significant growth delay in all cases, with a tentative correlation 

between increased CD80 expression and response to monotherapy. Further work is 

required to determine whether immune-modulation is a general phenomenon in these 

models when treated with a FAK kinase inhibitor, or when FAK expression in cancer 

cells is down regulated, especially in models that continue to grow in the presence of 

FAK inhibitor treatment.  These models may represent good candidates for testing 

combination therapies, such anti-PD-1 or anti-CTLA-4, with the aim of unlocking 

the potential anti-tumour activity of FAK kinase inhibitors. 
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VS-4718 was administered twice-daily (BID) by oral gavage as per the protocol 

submitted by the manufacturer, Verastem. Although details regarding the work 

undertaken to set up the clinical protocol for VS-4718 are protected under licence, 

Phase I clinical trials with VS-4718 are currently being undertaken 

(ClinicalTrials.gov Identifier: NCT02651727), with the clinical protocol for these 

stating oral administration of VS-4718 BID. The timings of drug dosage are typically 

determined by the pharmacodynamics of the therapeutic in question, and consider the 

biological half-life of the drug (t1/2). t1/2 refers to the time taken for a substance to 

lose half its its pharmacologic and biologic activity, typically associated with the 

renal clearance of the drug, and may be measured as the time taken for blood plasma 

concentrations of a therapeutic to halve if biological activity is not possible to 

determine. Substances with shorter half-lives require more frequent dosage, or are 

administered at an increased dosage if well tolerated. Although the BID dosing 

schedule in both humans and mice alludes to the short half-life of VS-4718 in vivo, 

this raises the question as to the rationale behind the differences in administration 

route between clinical patients and mouse models.  

Enteral administration protocols such as oral gavage, therapeutics admixed into food 

stuffs or water, or by nasogastric gavage have the benefits of being economical, 

convenient, reliable and relatively safe429,430 compared to other routes such as 

intraperitoneal (IP)431 or intravenous (IV)432 administration. Furthermore, the Home 

Office procedural standards surrounding experiments with animals and their welfare, 

regards the severity of oral gavage to be less than other administration routes due to 

animals becoming accustomed to the procedure over time, not seen in IP or IV 

administrations433,434. Although admixing drugs into food stuffs or water is by far the 

least invasive/stressful enteral admiration route435, it suffers from the lack of accurate 

and consistent dosage. Cohorts of caged mice will eat varying amounts of food, 

requiring food to be weight before and after administrations, but also mice within 

each cohort will ingest significantly different levels of food436. This depends of 

factors such as social and physical dominance within caged cohorts, and with effects 

on appetite by therapeutic agents or by the onset/implantation of tumours, factors that 

will  will vary between each treated mouse and across different genetic 

backgrounds429. Therefore, even though the voluntary oral consumption of VS-4718 
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in mice would reflect more accurately the clinical protocol in humans, oral gavage 

allows the drug to be administered with the same dosing schedule as with humans, 

but in a more reliable, effective and controlled manner. 

Oral administration in this way also allows for the evaluation of possible 

pharmacologically inactivation following gastric ingestion of VS-4718. Although in 

majority of cases, metabolism of therapeutics occurs in the liver by oxidation, 

reduction, hydrolysis, hydration, conjugation, condensation, or isomerization, in 

some cases metabolism/inactivation can occur in the stomach, rendering them 

inert437. In consideration of this and other factors involved in pharmacodynamics, 

and to validate the effective delivery of VS-4718 to the tumour, collaborators at 

Verastem undertook an in vivo FAK pY397 Eliza (Figure 9.1). Crucially, the 

inhibition of FAK pY397 as shown here, indicates that the route of administration, 

dosing schedule and pharmacodynamics of VS-4781 in our mouse studies results in 

effective inhibition of FAK kinase activity.  

The mouse models of cancer used in this chapter only include subcutaneously 

implanted models. This raises the question as to whether a more diverse range of 

mouse models should have been used to address the clinical potential of FAK 

activity inhibition with VS-4718. Transgenic mouse model allow tumours to develop 

in a more clinically relevant setting, but which take significantly longer than 

implantation models. The extended time frame however, subjects the tumour to a 

number of significant developmental changes within the tumour itself and within the 

tumour microenvironment, the most pertinent in this case being the development of 

T-cell exhaustion and anergy143,144. This decrease in the effective cytotoxic activity 

of CD8+ T-cells could reduce the clinical efficacy of VS-4718, but invites the 

possibility of combinations of VS-4718 and checkpoint inhibitors targeting PD-1 

such as nivolumab or pembrolizumab, discussed in further detail below (10). 

Therefor the treatment of transgenic models with VS-4718 may give further insight 

into the potentially clinical efficacy of FAK kinase inhibition. 

As metastatic disease is the primary cause of death in cancer patients, and as FAK 

has been a target previously for the reduction of metastatic progression, it may been 

appropriate to determine the roles of FAK within a metastatic mouse model. Previous 
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work focused on the roles of FAK in cell migration and adhesion collectively 

concluded that FAK inhibition reduces metastatic development and 

progression4,265,302,438-447. None of these studies consider changes in the immune 

compartment to contribute to metastasis but focus on FAK as an adhesion molecule 

and regulator of cell migration. The work presented here regarding FAK kinase 

activity modulating the tumour microenvironment, highlights the need to re-address 

the role of FAK in the metastatic cascade as a number of immune compartments 

modulated by FAK activity contribute to metastatic progression31,54,55,73. Use of 

metastatic mouse models will help not only to address these points but to also in part, 

help to consider the multifaceted potential activity of FAK inhibition in clinical 

setting, to not only modulate the tumour immune response but to also inhibit 

metastasis.  

CD80 is a high affinity ligand for the receptor CTLA-4 which is constitutively 

expressed on Tregs, and ligand-receptor interaction has been shown to enhance Treg 

suppressive capacity448. Profiling of CD80 expression on the surface of our 

syngeneic panel of cell lines revealed high surface expression on the SCC FAK-wt, 

SCC 7.1, Met01, and 4T1 cell lines.  Thus, three of the four models that respond 

robustly to VS-4718 treatment express high surface levels of CD80.  While small 

sample numbers preclude the conclusion that high CD80 surface expression may 

represent a biomarker for sensitivity to FAK kinase inhibitor monotherapy, it is 

tempting to speculate that CD80 expression may drive increased Treg dependence 

rendering these tumours more susceptible to FAK inhibition. 

One potential issue with the DMBA/TPA chemically induced model was with the 

restriction of neoantigens by the isolation of SCC FAK-/- clone by single cell cloning 

(see 5.4). This would have generated an atypically immunogenic SCC FAK-wt cell 

line, which in turn would increase the immunomodulation, and consequently the 

efficacy of VS-4718 treatment. The good response observed with the treatment of 

SCC 7.1 with VS-4718 indicates that the clone selected is indicative of the 

heterogeneous population. Regarding the escape of a small number of tumours, one 

potential hypothesis is that these tumours are capable of evading the immune 
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modulation of VS-4718 treatment, and this could present new information regarding 

the resistance to VS-4718, and these findings should be investigated further.  
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10 Discussion and Concluding Remarks 

 

Using an SCC tumour cell model in which FAK has been genetically deleted 

(SCC FAK-/-), I have shown that loss of FAK results in complete SCC tumour 

regression when grown in immune-competent mice (the FVB/N strain from which 

the cell model was derived). Re-expression of a kinase-defective mutant into 

SCC FAK-/- cells was not sufficient to rescue tumour growth, implying that 

FAK-dependent immune escape required FAK catalytic activity. Treatment with the 

FAK kinase inhibitor VS-4718, which is currently in Phase 1 clinical trials, resulted 

in complete regression of SCC FAK-wt tumours irrespective of whether treatment 

was initiated prior to tumour cell inoculation, or after tumours had reached 

approximately 50 mm3. CD8+ T-cell depletion was sufficient to rescue both 

SCC FAK-/- tumour growth, and VS-4718 mediated SCC FAK-wt clearance. Thus, 

for the first time I show that loss of FAK expression or catalytic activity is sufficient 

to release the anti-tumour effects of antigen-primed CD8+ T-cells and drive tumour 

regression. This response is suppressed in SCC FAK-wt tumours as a consequence of 

FAK-dependent recruitment of immuno-suppressive Tregs into the tumour niche, the 

requirement for these cells being confirmed by both anti-CD25+ and anti-CD4+ T-

cell depletion. Mechanistically, we identify a new role for FAK in the transcriptional 

regulation of chemokines and cytokines in SCC cells, and show that FAK-driven 

expression of both CCL5 and TGFβ2 is required for elevated intra-tumoural Treg 

levels and sustained SCC FAK-wt tumour growth. Furthermore, analysis of 

chemokine receptor expression on intra-tumoural Tregs revealed a paracrine 

signalling axis between FAK-expressing SCC cells and intra-tumoural Tregs based 

on chemokine ligand-receptor interaction, that likely plays a role in driving Treg 

recruitment and retention in the tumour bed. Our data implies that FAK may 

contribute to the development of malignancy in vivo by increasing the recruitment 

and retention of intra-tumoural Tregs, leading to a change in the balance between 

CD8+ T-cells and Tregs resulting in tumour tolerance. This proposed mechanism is 

summarized in Figure 9.1. 
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The secretion of chemokines and cytokines into the tumour environment represents 

an important mode of communication between cell types, and drives recruitment of 

immune cells into tumours19,44,52. Identification that FAK expression results in the 

transcriptional upregulation of a number of these molecules, suggests that FAK may 

play a role in governing this type of communication between tumour cells and 

tumour infiltrating immune cells. Indeed our observation that both FAK-dependent 

expression of CCL5 and TGFβ2 was required for elevated intra-tumoural Tregs, and 

that CCL5 represents part of a paracrine signalling axis between tumour cells and 

Tregs, supports this notion and implies a critical role for FAK-dependent chemokine 

regulation in the development and progression of SCC tumours. In our model, a clear 

outcome of this signalling was to alter the CD8+ T-cell to Treg ratio within the 

tumour, a parameter that is a prognostic indicator in ovarian449, breast450, 

pancreatic182,451, colorectal452, oesophageal and gastric cancers453. Furthermore, 

inhibition of FAK kinase activity through expression of a kinase-deficient FAK 

protein (FAK-kd) resulted in reduced CCL5 and TGFβ2 expression that was 

associated with a reduction in Tregs and SCC tumour regression. Similar 

observations were made following VS-4718 treatment. Thus, FAK regulates the 

tumour immune environment through promoting expression of chemokines and 

cytokines that favour tumour tolerance. FAK has been reported to regulate secreted 

factors in other cell models, including IL-6454, VEGF455 and TGFβ398, suggesting that 

our observations are not unique to our tumour cell model.  

The SCC cell model used in this study was derived using the DMBA / TPA model of 

skin chemical carcinogenesis, and FAK expression has been identified to increase 

with malignant progression in this model.  Furthermore, deletion of FAK in this 

model prevents benign papilloma formation and progression to malignant 

carcinoma456, implying that FAK is required to support tumour development. In 

support of our findings, genetic ablation of CD4+ T-cells has been shown to reduce 

the number of tumours formed after DMBA/TPA treatment, while ablation of CD8+ 

T-cells resulted in enhanced tumour formation457. Thus, it is possible that at least one 

outcome of elevated FAK expression in this model is to modulate the tumour 

immune environment and promote tumour growth and progression. FAK has also 

been reported to be required for tumour development and progression in a number of 
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other pre-clinical mouse models of cancer, including breast, prostate, and colon 

cancer279,458-462 and it will be interesting to identify whether targeting FAK in these 

models, or transplantable cell lines derived from similar models, also results in 

underlying immune-modulation.  

I have demonstrated that treatment of a number of syngeneic mouse models covering 

breast, pancreatic, melanoma, and skin cancer with VS-4718 either results in a 

growth delay, disease stabilisation, or disease regression. The effects of FAK 

inhibition in these models does not become apparent until 7 days post tumour cell 

implantation and treatment initiation, a timeline that would correlate with the 

development of an adaptive immune response. It is perhaps not surprising that the 

SCC 7.1 tumours exhibited a similar sensitivity to VS-4718 when compared with the 

SCC FAK-wt tumours, given that the SCC FAK-wt cells are essentially a subclone 

from this parental heterogeneous population. However, the rebound of some SCC 7.1 

tumours following an extended period of disease stabilisation while on VS-4718 was 

surprising, and suggests either the development of intrinsic tumour cell resistance or 

the emergence of environmental changes that negate the anti-tumour properties of 

VS-4718 treatment. This characteristic was not observed when using the SCC FAK-

wt tumours. Further investigation is warranted in order to understand the mechanistic 

basis of this resistance.  

Comparison of VS-4718 sensitivity between the SCC 7.1 and SCC 6.2 tumours also 

provides further interesting insights. Both cell types were derived from late-stage 

carcinomas albeit from different mice. Both have a mesenchymal morphology, and 

both were derived using DMBA/TPA treatment and thus likely have a similar 

mutagenic burden. Therefore it seems reasonable to hypothesise that high mutagenic 

burden as a consequence of exposure to carcinogens does not dictate sensitivity to 

VS-4718. While it is difficult to stratify such conclusions from small sample 

numbers, this theory is supported by our observations when using the Met01 model. 

This transplantable cell line was derived from the MMTV-PyMT model of breast 

cancer, and when treated with VS-4718 shows durable disease stabilization. This 

oncogene driven model is likely to have a very low mutagenic burden, yet responds 

robustly to VS-4718 treatment. Interestingly, studies by the Rudensky Lab have 
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shown that in the MMTV-PyMT FoxP3DTR knockin mouse, Treg ablation following 

treatment with diphtheria toxin (DT) results in tumour regression and a reduction in 

metastatic progression393. Combination of Treg ablation with the immune checkpoint 

inhibitors anti-PD-1 and anti-CTLA-4 did not increase therapeutic efficacy over that 

of Treg ablation alone393, suggesting that this model is highly dependent on the 

immuno-suppressive capabilities of Tregs to support tumour growth and progression. 

These observations parallel with those observed using our SCC FAK-wt tumour 

model, and suggest that the observed Met01 response to VS-4718 may be due to 

FAK-dependent regulation of intra-tumoural Treg levels. Further work will be 

required to determine if this is indeed the case.  

A number of models tested exhibited a growth delay (but not disease stabilisation or 

regression) when treated with VS-4718, suggesting that other mechanisms of 

immune-suppression, independent of FAK, are likely involved in supporting tumour 

growth. For example, the three cell models derived form the KPC Kras P53 model of 

pancreatic cancer463, namely the Panc043, Panc047, and Panc117, all showed 

sensitivity to VS-4718 that manifested at day 7 but was overcome only a few days 

later. Profiling of surface ligand expression on these cells revealed that all expressed 

high levels of PD-L1 and PD-L2, but little to no CD80. Thus, it is tempting to 

speculate that engagement of the PD-1 pathway may circumvent the anti-tumour 

activity of VS-4718 in these models by helping to overcome the impact of 

modulating intra-tumoural Tregs, and that combination of these two therapies may 

prove efficacious in this instance. In support of this hypothesis targeting intra-

tumoural Tregs with a p110δ inhibitor was reported to result in a small survival 

benefit in mice from the KPC pancreatic model464. However, targeting Tregs alone 

was not sufficient to gain long-term tumour control and drive tumour regression. 

Similar observations have been reported for strategies targeting the CXCR4 axis463, 

and tumour infiltrating macrophages87. However, when these strategies were 

combined with anti-PD-1 treatment, tumour control and regression was observed87. 

FAK kinase inhibitors have been reported to block CAF recruitment into tumours by 

virtue of FAK’s role in regulating their migration302, with similar observations 

reported for macrophage recruitment following FAK inhibitor treatment. Thus, the 

immuno-modulatory outcome of treatment with FAK kinase inhibitors may extend 
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beyond that identified here to encompass multiple immune and stromal cell types 

that contribute to promoting tumour growth through suppressing CD8+ T-cell 

activity. Therefore FAK inhibitors may represent a therapeutic strategy for broad 

targeting of tumour promoting immune and stromal cell types, providing rational for 

their testing in combination with immune-checkpoint inhibitors including anti-PD1. 

Treatment of human tumours with immune-checkpoint therapies has proven highly 

efficacious in some tumour types. For example, a clinical study combining agents 

targeting cytotoxic-T-Lymphocyte-associated Antigen-4 (CTLA-4), which is thought 

to influence Treg function104,169,170,465-467, and Programmed Death Receptor-1 (PD-1), 

which blocks signals that inhibit T-cell function147,468,469, has reported impressive 

responses in patients with advanced melanoma, with 53% of patients having an 

objective response resulting in greater than 80% reduction in tumour 

burden232,470(2.3). However, this combination of checkpoint blockade antibodies was 

also reported to elicit substantial side-effects (clinical grade 3-4) in greater than 50% 

of patients, highlighting the need to find alternative combinations with improved 

tolerability profiles (2.3). A number of FAK inhibitors are in early Phase I / II 

clinical trials, and initial reports on one of these, GSK2256098 (Clinical trial 

identifier: NCT01938443), suggests a favorable tolerability profile (clinical toxicity 

grades 1-2) with some activity as a monotherapy471. No autoimmune side effects 

were reported. Alternative methods for targeting immune populations, including anti-

CD25 monoclonal antibodies472, and anti-CSF1-receptor antagonists473, are in 

clinical trials. However, this approach of targeting immune populations directly is 

hampered by immune-based toxicity due to the homeostatic roles of their target 

populations148,149,469,470,474,475. It is interesting to consider why FAK kinase inhibitors 

do not appear to exhibit immune-related toxicity given the role I have established for 

FAK in controlling Treg levels. It is possible that the role I have identified is limited 

to a minority of tumour models, or alternatively that the immune-modulatory 

function of FAK is specific to malignant cancer cells. Since finishing the work for 

my PhD, my colleagues in the Frame Laboratory have identified that the immuno-

modulatory function of FAK in the SCC tumour model is dependent of FAK nuclear 

translocation, and that this only occurs in malignant cancer cells. These recent 

findings support the conclusion that FAKs immuno-modulatory function is specific 
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to cancer cells, and that in normal cells FAK does not translocate to the nucleus and 

excerpt regulatory control over chemokine and cytokine expression. Such 

observations may underlie the lack of autoimmune side effects in clinic when 

treating with FAK kinase inhibitors. 

Taken collectively our data suggest that targeting the pleiotropic cellular functions of 

FAK, both nuclear and adhesion-related, using small molecule inhibitors may have a 

broad impact on the immunosuppressive tumour microenvironment, differentiating 

these agents from many of the therapeutic approaches currently being tested in the 

clinic which target single immune cell populations. Our findings provide good 

rationale for pre-clinical and clinical testing of FAK kinase inhibitors alongside 

agents that stimulate CD8+ T-cell activity, such as the checkpoint blockade therapies 

that target CTLA-4 and PD-1104, and have prompted a clinical trial combining 

VS-6063 (A FAK kinase inhibitor closely related to VS-4718 which has shown 

better efficacy in humans; Verastem) and anti-PD-1 therapy as part of the CRUK 

Combination Alliance. 
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11 Future Work 

 

Future work will focus on investigating the immuno-modulatory effects of FAK in 

multiple models of cancer, including those in Table 9.1. This will include both 

inhibiting FAK kinase activity (FAKi) with VS-4718 and the genetic deletion of 

FAK, using clustered regularly interspaced short palindromic repeats (CRISPR)/ Cas 

technology. This will include phenotyping T-cells, Tregs, macrophages, MDSCs and 

CAFs using FACS analysis. The key objectives here will be to identify the 

underlying immune changes that result from FAK deletion and VS-4718 treatment.   

Furthermore, SCC cells will be derived from c57BL/6 K14CreER FAKflox/flox mice 

by the two-stage DMBA/TPA chemical carcinogenesis protocol, and this work is 

currently underway. By re-deriving the SCC model onto a c58BL/6 background, will 

allow access to a number of c57BL/6 transgenic mouse models that will help 

investigate the immuno-modulatory roles of FAK. These include mice harboring 

human diphtheria toxin receptor (DTR) expressed under a variety of leukocytes-

specific promoters, in which the chronic administration of diphtheria toxin (DT) 

leads to conditional, targeted cell ablation. The aim will be to use the DTR/DT 

system to deplete immune populations such as Tregs with greater specificity than 

using antibody-mediated depletion. 

These results will help guide further work into the translational aspects of the 

FAKi/anti-PD-1 Combinations Alliance clinical trial, which is proposed to start 

within the next year in Edinburgh and four other centers across the UK. Together 

with Dr Stefan Symeonides (Edinburgh Cancer Center), further work will investigate 

pre-clinical dosing and scheduling studies in order to interrogate and optimize the 

commination of VS-4718 and anti-PD-1 inhibitors. Other inhibitors of co-inhibitory 

receptors, such as anti-CTLA4 treatment in multiple syngeneic mouse models of 

cancer will also be assessed. Utilization of c57BL/6 PD-1 knockout mice for work 

involving pancreatic and melanoma models initially (generated on c57BL/6 

backgrounds) and further work will focus on the re-derived c57BL/6 SCC model. 

Associated with this, markers of T-cell exhaustion will be investigated across our 

panel of cancer models to determine to what extent CD8+ T-cells are exhausted, how 
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this contributes to tumour tolerance and investigate whether FAKi modulates these 

factors. This includes further characterization of exhausted T-cells identified in 

SCC FAK-wt tumours. This will be done using FACS analysis of PD-1, LAG-3 and 

Tim-3 alongside secreted chemokine and cytokine arrays and functional studies.   

One potential caveat with the proposal for the clinical trial is how will the success of 

FAKi/anti-PD-1 therapy in modulating immune populations be determined. Access 

to tissue will be very limited and will be either frozen or embedded in paraffin blocks 

for histology, making FACS analysis not plausible. By identifying and characterizing 

the cell populations most frequently altered by FAKi, these may in turn, be used to 

predict rational choices as biomarkers of response. Histology could be used as a 

clinical read out, specifically fluorescent histology using fluorophore-conjugated 

antibodies that has been optimized in the lab previously, which will allow us to 

identify a number of cell populations and their activation statuses simultaneously.  

Collaborators on this trial (Prof. Christian Ottensmeier, Faculty of Medicine, 

University of Southampton) will be using RNA sequencing to determine and 

quantify leukocyte-specific gene signatures present within tissue samples, and I hope 

that our histology approach will complement these analyses. 

VS-4718 treatment of the cell models in Table 9.1 raised several questions that 

require further investigation. Firstly, long-term analysis of Met01 tumour growth 

with VS-4718 treatment is required to determine the outcome of VS-4718 treatment 

in this model. Furthermore to understand whether VS-4718’s control of the Met01 

tumour growth is immune mediated, and if ‘rebound’ or resistance can occur upon 

prolonged drug treatment, further work will include immune phenotyping Met01 

tumours, comparing tumours at both early and later time points. This would also 

include T-cell depletion studies. Secondly, I have derived cells from SCC 7.1 

tumours that appear to ‘rebound’ following VS-4718 treatment. Further 

characterization of these cells will identify whether re-occurrence of tumour growth 

was as a consequence of acquired resistance to VS-4718 treatment or whether other 

mechanisms within the tumour microenvironment, independent of FAK, were 

responsible. These mechanisms could include the upregulation of PD-1 and other co-

inhibitory molecules, and through FACS analysis this hypothesis will be tested.  
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Finally, further investigation will take place into chemokine and cytokine regulation, 

using our unique forward phase protein arrays, currently under development and 

generated using our Aushon BioSystems’ 2470 array printing platform. Current 

commercially available arrays typically include only a select few chemokines and 

cytokines, may only be used to analyze one sample per array and do not contain 

controls for the validation of analyte binding. The Aushon BioSystems’ 2470 array 

printing platform has the capacity to generate forward phase protein microarrays that 

cover a much more extensive range of chemokines, cytokines and growth factors and 

that contain dilution series of each printed anybody for the validation and 

quantification of analyte binding. Using this microarray-printing platform in 

combination with a ArrayIt Innoscan 710 high-resolution microarray scanner, 

miniaturization of current available arrays occurs to such an extent that the levels of 

chemokines, cytokines and growth factors can be determined in multiple samples on 

each array simultaneously. When completed, these arrays will be able to monitor the 

status of chemokines and cytokine for both lab-based studies, with the ultimate goal 

of utilizing this technology within the clinical trial.   

 

 

 

 

 

 

  



 

 185 

12 References 

 

 
1 Stewart, B. W., Wild, C., International Agency for Research on Cancer & 

World Health Organization. World cancer report 2014.  (International 
Agency for Research on Cancer, WHO Press, 2014). 

2 Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57-70 
(2000). 

3 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. 
Cell 144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011). 

4 Albini, A. Tumor microenvironment, a dangerous society leading to cancer 
metastasis. From mechanisms to therapy and prevention. Cancer Metastasis 
Rev 27, 3-4, doi:10.1007/s10555-007-9102-y (2008). 

5 Albini, A. & Sporn, M. B. The tumour microenvironment as a target for 
chemoprevention. Nature reviews. Cancer 7, 139-147, doi:10.1038/nrc2067 
(2007). 

6 McClinton, S., Miller, I. D. & Eremin, O. An immunohistochemical 
characterisation of the inflammatory cell infiltrate in benign and malignant 
prostatic disease. Br J Cancer 61, 400-403 (1990). 

7 Dvorak, A. M., Mihm, M. C., Jr., Osage, J. E. & Dvorak, H. F. Melanoma. 
An ultrastructural study of the host inflammatory and vascular responses. J 
Invest Dermatol 75, 388-393 (1980). 

8 Dvorak, A. M. et al. Bullous pemphigoid, an ultrastructural study of the 
inflammatory response: eosinophil, basophil and mast cell granule changes in 
multiple biopsies from one patient. J Invest Dermatol 78, 91-101 (1982). 

9 Dvorak, H. F., Dickersin, G. R., Dvorak, A. M., Manseau, E. J. & Pyne, K. 
Human breast carcinoma: fibrin deposits and desmoplasia. Inflammatory cell 
type and distribution. Microvasculature and infarction. J Natl Cancer Inst 67, 
335-345 (1981). 

10 Dvorak, H. F. Tumors: Wounds That Do Not Heal. New England Journal of 
Medicine 315, 1650-1659, doi:doi:10.1056/NEJM198612253152606 (1986). 

11 Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour-host 
interface. Nature 411, 375-379, doi:10.1038/35077241 (2001). 

12 Wernert, N. The multiple roles of tumour stroma. Virchows Arch 430, 433-
443 (1997). 

13 Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells 
recruited to the tumor microenvironment. Cancer Cell 21, 309-322, 
doi:10.1016/j.ccr.2012.02.022 (2012). 

14 Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway's 
immunobiology. 7th edn,  (Garland Science, 2008). 



 

 186 

15 de Visser, K. E., Eichten, A. & Coussens, L. M. Paradoxical roles of the 
immune system during cancer development. Nature reviews. Cancer 6, 24-
37, doi:10.1038/nrc1782 (2006). 

16 Buckley, C. D., Gilroy, D. W., Serhan, C. N., Stockinger, B. & Tak, P. P. The 
resolution of inflammation. Nat Rev Immunol 13, 59-66, doi:10.1038/nri3362 
(2013). 

17 Wallace, J. L. Nitric oxide as a regulator of inflammatory processes. Mem I 
Oswaldo Cruz 100, 5-9 (2005). 

18 Gilroy, D. W., Lawrence, T., Perretti, M. & Rossi, A. G. Inflammatory 
resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3, 
401-416, doi:10.1038/nrd1383 (2004). 

19 Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? 
Lancet 357, 539-545, doi:10.1016/S0140-6736(00)04046-0 (2001). 

20 de Martel, C. et al. Global burden of cancers attributable to infections in 
2008: a review and synthetic analysis. Lancet Oncol 13, 607-615, 
doi:10.1016/S1470-2045(12)70137-7 (2012). 

21 Salama, N. R., Hartung, M. L. & Muller, A. Life in the human stomach: 
persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev 
Microbiol 11, 385-399, doi:10.1038/nrmicro3016 (2013). 

22 Castle, P. E. et al. An association of cervical inflammation with high-grade 
cervical neoplasia in women infected with oncogenic human papillomavirus 
(HPV). Cancer Epidemiol Biomarkers Prev 10, 1021-1027 (2001). 

23 Rothenberg, S. M. & Ellisen, L. W. The molecular pathogenesis of head and 
neck squamous cell carcinoma. J Clin Invest 122, 1951-1957 (2012). 

24 Arzumanyan, A., Reis, H. M. & Feitelson, M. A. Pathogenic mechanisms in 
HBV- and HCV-associated hepatocellular carcinoma. Nature reviews. 
Cancer 13, 123-135, doi:10.1038/nrc3449 (2013). 

25 Dyson, J. K. & Rutter, M. D. Colorectal cancer in inflammatory bowel 
disease: what is the real magnitude of the risk? World J Gastroenterol 18, 
3839-3848, doi:10.3748/wjg.v18.i29.3839 (2012). 

26 Pinho, A. V., Chantrill, L. & Rooman, I. Chronic pancreatitis: a path to 
pancreatic cancer. Cancer Lett 345, 203-209, 
doi:10.1016/j.canlet.2013.08.015 (2014). 

27 Jayson, G. C., Kohn, E. C., Kitchener, H. C. & Ledermann, J. A. Ovarian 
cancer. Lancet 384, 1376-1388, doi:10.1016/S0140-6736(13)62146-7 (2014). 

28 Giraldo, N. A., Becht, E., Vano, Y., Sautes-Fridman, C. & Fridman, W. H. 
The immune response in cancer: from immunology to pathology to 
immunotherapy. Virchows Arch, doi:10.1007/s00428-015-1787-7 (2015). 

29 Chia, W. K., Ali, R. & Toh, H. C. Aspirin as adjuvant therapy for colorectal 
cancer--reinterpreting paradigms. Nat Rev Clin Oncol 9, 561-570, 
doi:10.1038/nrclinonc.2012.137 (2012). 



 

 187 

30 Basha, R. et al. Therapeutic applications of NSAIDS in cancer: special 
emphasis on tolfenamic acid. Front Biosci (Schol Ed) 3, 797-805 (2011). 

31 Qian, B. Z. & Pollard, J. W. Macrophage diversity enhances tumor 
progression and metastasis. Cell 141, 39-51, doi:10.1016/j.cell.2010.03.014 
(2010). 

32 Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: 
balance, tolerance, and diversity. Current opinion in immunology 22, 231-
237, doi:10.1016/j.coi.2010.01.009 (2010). 

33 Mittal, D., Gubin, M. M., Schreiber, R. D. & Smyth, M. J. New insights into 
cancer immunoediting and its three component phases--elimination, 
equilibrium and escape. Current opinion in immunology 27, 16-25, 
doi:10.1016/j.coi.2014.01.004 (2014). 

34 Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and 
cancer. Cell 140, 883-899, doi:10.1016/j.cell.2010.01.025 (2010). 

35 Ruffell, B. et al. Leukocyte composition of human breast cancer. Proceedings 
of the National Academy of Sciences of the United States of America 109, 
2796-2801, doi:10.1073/pnas.1104303108 (2012). 

36 Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse 
and human immunology. Journal of immunology 172, 2731-2738 (2004). 

37 Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with 
lymphocyte subsets: cancer as a paradigm. Nat Immunol 11, 889-896, 
doi:10.1038/ni.1937 (2010). 

38 Ostuni, R., Kratochvill, F., Murray, P. J. & Natoli, G. Macrophages and 
cancer: from mechanisms to therapeutic implications. Trends Immunol 36, 
229-239, doi:10.1016/j.it.2015.02.004 (2015). 

39 Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage 
polarization: enabling diversity with identity. Nat Rev Immunol 11, 750-761, 
doi:10.1038/nri3088 (2011). 

40 Ostuni, R. & Natoli, G. Transcriptional control of macrophage diversity and 
specialization. European journal of immunology 41, 2486-2490, 
doi:10.1002/eji.201141706 (2011). 

41 Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of 
macrophages: an immunologic functional perspective. Annu Rev Immunol 27, 
451-483, doi:10.1146/annurev.immunol.021908.132532 (2009). 

42 Steidl, C. et al. Tumor-associated macrophages and survival in classic 
Hodgkin's lymphoma. The New England journal of medicine 362, 875-885, 
doi:10.1056/NEJMoa0905680 (2010). 

43 Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour-associated 
macrophages in tumour progression: implications for new anticancer 
therapies. J Pathol 196, 254-265, doi:10.1002/path.1027 (2002). 



 

 188 

44 Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized 
inflammation in the initiation and promotion of malignant disease. Cancer 
Cell 7, 211-217, doi:10.1016/j.ccr.2005.02.013 (2005). 

45 Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are 
related processes orchestrated by p50 nuclear factor kappaB. Proceedings of 
the National Academy of Sciences of the United States of America 106, 
14978-14983, doi:10.1073/pnas.0809784106 (2009). 

46 Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune 
cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7, 
41-51, doi:10.1038/nri1995 (2007). 

47 Karin, M. & Greten, F. R. NF-kappaB: linking inflammation and immunity to 
cancer development and progression. Nat Rev Immunol 5, 749-759, 
doi:10.1038/nri1703 (2005). 

48 Greten, F. R. et al. IKKbeta links inflammation and tumorigenesis in a mouse 
model of colitis-associated cancer. Cell 118, 285-296, 
doi:10.1016/j.cell.2004.07.013 (2004). 

49 Pang, B. et al. Lipid peroxidation dominates the chemistry of DNA adduct 
formation in a mouse model of inflammation. Carcinogenesis 28, 1807-1813, 
doi:10.1093/carcin/bgm037 (2007). 

50 Meira, L. B. et al. DNA damage induced by chronic inflammation contributes 
to colon carcinogenesis in mice. J Clin Invest 118, 2516-2525, 
doi:10.1172/JCI35073 (2008). 

51 Filler, R. B., Roberts, S. J. & Girardi, M. Cutaneous two-stage chemical 
carcinogenesis. CSH Protoc 2007, pdb prot4837, doi:10.1101/pdb.prot4837 
(2007). 

52 Balkwill, F. Tumour necrosis factor and cancer. Nature reviews. Cancer 9, 
361-371, doi:10.1038/nrc2628 (2009). 

53 Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 3, 23-35, 
doi:10.1038/nri978 (2003). 

54 Pollard, J. W. Trophic macrophages in development and disease. Nat Rev 
Immunol 9, 259-270, doi:10.1038/nri2528 (2009). 

55 Pollard, J. W. Tumour-educated macrophages promote tumour progression 
and metastasis. Nature reviews. Cancer 4, 71-78, doi:10.1038/nrc1256 
(2004). 

56 Saccani, A. et al. p50 nuclear factor-kappaB overexpression in tumor-
associated macrophages inhibits M1 inflammatory responses and antitumor 
resistance. Cancer research 66, 11432-11440, doi:10.1158/0008-5472.CAN-
06-1867 (2006). 

57 Lewis, C. E. & Pollard, J. W. Distinct role of macrophages in different tumor 
microenvironments. Cancer research 66, 605-612, doi:10.1158/0008-
5472.CAN-05-4005 (2006). 



 

 189 

58 Lin, E. Y. et al. Progression to malignancy in the polyoma middle T 
oncoprotein mouse breast cancer model provides a reliable model for human 
diseases. Am J Pathol 163, 2113-2126, doi:10.1016/S0002-9440(10)63568-7 
(2003). 

59 Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse 
model of breast cancer. Cancer research 66, 11238-11246, 
doi:10.1158/0008-5472.CAN-06-1278 (2006). 

60 Zumsteg, A. & Christofori, G. Corrupt policemen: inflammatory cells 
promote tumor angiogenesis. Curr Opin Oncol 21, 60-70, 
doi:10.1097/CCO.0b013e32831bed7e (2009). 

61 Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating 
factor 1 promotes progression of mammary tumors to malignancy. The 
Journal of experimental medicine 193, 727-740 (2001). 

62 Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the 
angiogenic switch in breast cancer. Cancer research 67, 5064-5066, 
doi:10.1158/0008-5472.CAN-07-0912 (2007). 

63 Leek, R. D. & Harris, A. L. Tumor-associated macrophages in breast cancer. 
J Mammary Gland Biol Neoplasia 7, 177-189 (2002). 

64 De Palma, M. et al. Tumor-targeted interferon-alpha delivery by Tie2-
expressing monocytes inhibits tumor growth and metastasis. Cancer Cell 14, 
299-311, doi:10.1016/j.ccr.2008.09.004 (2008). 

65 De Palma, M. et al. Tie2 identifies a hematopoietic lineage of proangiogenic 
monocytes required for tumor vessel formation and a mesenchymal 
population of pericyte progenitors. Cancer Cell 8, 211-226, 
doi:10.1016/j.ccr.2005.08.002 (2005). 

66 Ojalvo, L. S., King, W., Cox, D. & Pollard, J. W. High-density gene 
expression analysis of tumor-associated macrophages from mouse mammary 
tumors. Am J Pathol 174, 1048-1064, doi:10.2353/ajpath.2009.080676 
(2009). 

67 Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating 
Tie2-expressing monocytes, blood "resident" monocytes, and embryonic 
macrophages suggests common functions and developmental relationships. 
Blood 114, 901-914, doi:10.1182/blood-2009-01-200931 (2009). 

68 Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular 
anastomosis downstream of VEGF-mediated endothelial tip cell induction. 
Blood 116, 829-840, doi:10.1182/blood-2009-12-257832 (2010). 

69 Mazzieri, R. et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and 
metastasis by impairing angiogenesis and disabling rebounds of 
proangiogenic myeloid cells. Cancer Cell 19, 512-526, 
doi:10.1016/j.ccr.2011.02.005 (2011). 

70 Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell 
migration, invasion, and metastasis. Cell 124, 263-266, 
doi:10.1016/j.cell.2006.01.007 (2006). 



 

 190 

71 Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is 
required for tumor cell migration in mammary tumors. Cancer research 64, 
7022-7029, doi:10.1158/0008-5472.CAN-04-1449 (2004). 

72 Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell 
intravasation in mammary tumors. Cancer research 67, 2649-2656, 
doi:10.1158/0008-5472.CAN-06-1823 (2007). 

73 Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-
tumour metastasis. Nature 475, 222-225, doi:10.1038/nature10138 (2011). 

74 Qian, J. et al. Aberrant methylation of GTPase regulator associated with the 
focal adhesion kinase (GRAF) promoter is an adverse prognostic factor in 
myelodysplastic syndrome. Eur J Haematol 85, 174-176, doi:10.1111/j.1600-
0609.2010.01453.x (2010). 

75 Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer 
metastasis by promoting angiogenesis. Nature 515, 130-133, 
doi:10.1038/nature13862 (2014). 

76 Cortez-Retamozo, V. et al. Origins of tumor-associated macrophages and 
neutrophils. Proceedings of the National Academy of Sciences of the United 
States of America 109, 2491-2496, doi:10.1073/pnas.1113744109 (2012). 

77 Wiktor-Jedrzejczak, W. W., Ahmed, A., Szczylik, C. & Skelly, R. R. 
Hematological characterization of congenital osteopetrosis in op/op mouse. 
Possible mechanism for abnormal macrophage differentiation. The Journal of 
experimental medicine 156, 1516-1527 (1982). 

78 Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for 
macrophages and dendritic cells. Science 311, 83-87, 
doi:10.1126/science.1117729 (2006). 

79 Valledor, A. F., Borras, F. E., Cullell-Young, M. & Celada, A. Transcription 
factors that regulate monocyte/macrophage differentiation. J Leukoc Biol 63, 
405-417 (1998). 

80 Richards, D. M., Hettinger, J. & Feuerer, M. Monocytes and macrophages in 
cancer: development and functions. Cancer Microenviron 6, 179-191, 
doi:10.1007/s12307-012-0123-x (2013). 

81 Houthuijzen, J. M. et al. Lysophospholipids secreted by splenic macrophages 
induce chemotherapy resistance via interference with the DNA damage 
response. Nat Commun 5, 5275, doi:10.1038/ncomms6275 (2014). 

82 De Palma, M. & Lewis, C. E. Macrophage regulation of tumor responses to 
anticancer therapies. Cancer Cell 23, 277-286, doi:10.1016/j.ccr.2013.02.013 
(2013). 

83 Mantovani, A., Polentarutti, N., Luini, W., Peri, G. & Spreafico, F. Role of 
host defense merchanisms in the antitumor activity of adriamycin and 
daunomycin in mice. J Natl Cancer Inst 63, 61-66 (1979). 

84 Kodumudi, K. N. et al. A novel chemoimmunomodulating property of 
docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. 



 

 191 

Clin Cancer Res 16, 4583-4594, doi:10.1158/1078-0432.CCR-10-0733 
(2010). 

85 Germano, G. et al. Role of macrophage targeting in the antitumor activity of 
trabectedin. Cancer Cell 23, 249-262, doi:10.1016/j.ccr.2013.01.008 (2013). 

86 Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-
derived suppressor cells activates the Nlrp3 inflammasome and promotes 
tumor growth. Nat Med 19, 57-64, doi:10.1038/nm.2999 (2013). 

87 DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival 
and functionally regulates response to chemotherapy. Cancer Discov 1, 54-
67, doi:10.1158/2159-8274.CD-10-0028 (2011). 

88 Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic 
response in breast cancer. Genes & development 25, 2465-2479, 
doi:10.1101/gad.180331.111 (2011). 

89 Milas, L., Wike, J., Hunter, N., Volpe, J. & Basic, I. Macrophage content of 
murine sarcomas and carcinomas: associations with tumor growth parameters 
and tumor radiocurability. Cancer research 47, 1069-1075 (1987). 

90 Xu, J. et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid 
cells and improves the efficacy of radiotherapy in prostate cancer. Cancer 
research 73, 2782-2794, doi:10.1158/0008-5472.CAN-12-3981 (2013). 

91 Ahn, G. O. et al. Inhibition of Mac-1 (CD11b/CD18) enhances tumor 
response to radiation by reducing myeloid cell recruitment. Proceedings of 
the National Academy of Sciences of the United States of America 107, 8363-
8368, doi:10.1073/pnas.0911378107 (2010). 

92 Hughes, R. et al. Perivascular M2 Macrophages Stimulate Tumor Relapse 
after Chemotherapy. Cancer research 75, 3479-3491, doi:10.1158/0008-
5472.CAN-14-3587 (2015). 

93 Jiang, Y., Li, Y. & Zhu, B. T-cell exhaustion in the tumor microenvironment. 
Cell Death Dis 6, e1792, doi:10.1038/cddis.2015.162 (2015). 

94 Okkenhaug, K., Bilancio, A., Emery, J. L. & Vanhaesebroeck, B. 
Phosphoinositide 3-kinase in T cell activation and survival. Biochem Soc 
Trans 32, 332-335, doi:10.1042/ (2004). 

95 Wherry, E. J. & Ahmed, R. Memory CD8 T-cell differentiation during viral 
infection. J Virol 78, 5535-5545, doi:10.1128/JVI.78.11.5535-5545.2004 
(2004). 

96 Kaech, S. M., Wherry, E. J. & Ahmed, R. Effector and memory T-cell 
differentiation: implications for vaccine development. Nat Rev Immunol 2, 
251-262, doi:10.1038/nri778 (2002). 

97 Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial 
antigen encounter triggers a developmental program in naive cells. Nat 
Immunol 2, 415-422, doi:10.1038/87720 (2001). 



 

 192 

98 Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell 
development and survival. Nat Rev Immunol 3, 269-279, doi:10.1038/nri1052 
(2003). 

99 Blankenstein, T., Coulie, P. G., Gilboa, E. & Jaffee, E. M. The determinants 
of tumour immunogenicity. Nature reviews. Cancer 12, 307-313, 
doi:10.1038/nrc3246 (2012). 

100 Willimsky, G. et al. Immunogenicity of premalignant lesions is the primary 
cause of general cytotoxic T lymphocyte unresponsiveness. The Journal of 
experimental medicine 205, 1687-1700, doi:10.1084/jem.20072016 (2008). 

101 Huppa, J. B. & Davis, M. M. T-cell-antigen recognition and the 
immunological synapse. Nat Rev Immunol 3, 973-983, doi:10.1038/nri1245 
(2003). 

102 Banchereau, J. & Steinman, R. M. Dendritic cells and the control of 
immunity. Nature 392, 245-252, doi:10.1038/32588 (1998). 

103 Hivroz, C., Chemin, K., Tourret, M. & Bohineust, A. Crosstalk between T 
Lymphocytes and Dendritic Cells.  32, 139-155, 
doi:10.1615/CritRevImmunol.v32.i2.30 (2012). 

104 Pardoll, D. M. The blockade of immune checkpoints in cancer 
immunotherapy. Nat Rev Cancer 12, 252-264, doi:10.1038/nrc3239 (2012). 

105 Linard, B. et al. A ras-mutated peptide targeted by CTL infiltrating a human 
melanoma lesion. Journal of immunology 168, 4802-4808 (2002). 

106 Sharkey, M. S., Lizee, G., Gonzales, M. I., Patel, S. & Topalian, S. L. 
CD4(+) T-cell recognition of mutated B-RAF in melanoma patients 
harboring the V599E mutation. Cancer research 64, 1595-1599 (2004). 

107 Wolfel, T. et al. A p16INK4a-insensitive CDK4 mutant targeted by cytolytic 
T lymphocytes in a human melanoma. Science 269, 1281-1284 (1995). 

108 Gjertsen, M. K., Bjorheim, J., Saeterdal, I., Myklebust, J. & Gaudernack, G. 
Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras 
(12Val) peptide vaccination of a patient, recognize 12Val-dependent nested 
epitopes present within the vaccine peptide and kill autologous tumour cells 
carrying this mutation. International journal of cancer. Journal international 
du cancer 72, 784-790 (1997). 

109 Bosch, G. J., Joosten, A. M., Kessler, J. H., Melief, C. J. & Leeksma, O. C. 
Recognition of BCR-ABL positive leukemic blasts by human CD4+ T cells 
elicited by primary in vitro immunization with a BCR-ABL breakpoint 
peptide. Blood 88, 3522-3527 (1996). 

110 Makita, M. et al. Leukemia-associated fusion proteins, dek-can and bcr-abl, 
represent immunogenic HLA-DR-restricted epitopes recognized by fusion 
peptide-specific CD4+ T lymphocytes. Leukemia 16, 2400-2407, 
doi:10.1038/sj.leu.2402742 (2002). 



 

 193 

111 Yotnda, P. et al. Cytotoxic T cell response against the chimeric p210 BCR-
ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 
101, 2290-2296, doi:10.1172/JCI488 (1998). 

112 Kim, P. S. & Ahmed, R. Features of responding T cells in cancer and chronic 
infection. Current opinion in immunology 22, 223-230, 
doi:10.1016/j.coi.2010.02.005 (2010). 

113 Qi, Q. & August, A. Keeping the (kinase) party going: SLP-76 and ITK 
dance to the beat. Sci STKE 2007, pe39, doi:10.1126/stke.3962007pe39 
(2007). 

114 Milstein, O. et al. CTLs respond with activation and granule secretion when 
serving as targets for T-cell recognition. Blood 117, 1042-1052, 
doi:10.1182/blood-2010-05-283770 (2011). 

115 Chaudhry, A. & Rudensky, A. Y. Control of inflammation by integration of 
environmental cues by regulatory T cells. J Clin Invest 123, 939-944, 
doi:10.1172/JCI57175 (2013). 

116 Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and 
IFN-gamma production in CD4 and CD8 T cells. Science 295, 338-342, 
doi:10.1126/science.1065543 (2002). 

117 Kim, H. J. & Cantor, H. CD4 T-cell subsets and tumor immunity: the helpful 
and the not-so-helpful. Cancer Immunol Res 2, 91-98, doi:10.1158/2326-
6066.CIR-13-0216 (2014). 

118 Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and 
maintenance of type 2 innate lymphoid cells. Immunity 37, 634-648, 
doi:10.1016/j.immuni.2012.06.020 (2012). 

119 Tepper, R. I., Coffman, R. L. & Leder, P. An eosinophil-dependent 
mechanism for the antitumor effect of interleukin-4. Science 257, 548-551 
(1992). 

120 Tepper, R. I., Pattengale, P. K. & Leder, P. Murine interleukin-4 displays 
potent anti-tumor activity in vivo. Cell 57, 503-512 (1989). 

121 Tatsumi, T. et al. Disease-associated bias in T helper type 1 (Th1)/Th2 
CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients 
with renal cell carcinoma or melanoma. The Journal of experimental 
medicine 196, 619-628 (2002). 

122 Bettelli, E. et al. Reciprocal developmental pathways for the generation of 
pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238, 
doi:10.1038/nature04753 (2006). 

123 Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. 
Nat Immunol 13, 991-999, doi:10.1038/ni.2416 (2012). 

124 Miyahara, Y. et al. Generation and regulation of human CD4+ IL-17-
producing T cells in ovarian cancer. Proceedings of the National Academy of 
Sciences of the United States of America 105, 15505-15510, 
doi:10.1073/pnas.0710686105 (2008). 



 

 194 

125 Zhang, B. et al. The prevalence of Th17 cells in patients with gastric cancer. 
Biochem Biophys Res Commun 374, 533-537, doi:10.1016/j.bbrc.2008.07.060 
(2008). 

126 Sfanos, K. S. et al. Phenotypic analysis of prostate-infiltrating lymphocytes 
reveals TH17 and Treg skewing. Clin Cancer Res 14, 3254-3261, 
doi:10.1158/1078-0432.CCR-07-5164 (2008). 

127 Kryczek, I. et al. Cutting edge: Th17 and regulatory T cell dynamics and the 
regulation by IL-2 in the tumor microenvironment. Journal of immunology 
178, 6730-6733 (2007). 

128 Langowski, J. L. et al. IL-23 promotes tumour incidence and growth. Nature 
442, 461-465, doi:10.1038/nature04808 (2006). 

129 Numasaki, M. et al. IL-17 enhances the net angiogenic activity and in vivo 
growth of human non-small cell lung cancer in SCID mice through promoting 
CXCR-2-dependent angiogenesis. Journal of immunology 175, 6177-6189 
(2005). 

130 Tartour, E. et al. Interleukin 17, a T-cell-derived cytokine, promotes 
tumorigenicity of human cervical tumors in nude mice. Cancer research 59, 
3698-3704 (1999). 

131 Muranski, P. et al. Th17 cells are long lived and retain a stem cell-like 
molecular signature. Immunity 35, 972-985, 
doi:10.1016/j.immuni.2011.09.019 (2011). 

132 Muranski, P. & Restifo, N. P. Essentials of Th17 cell commitment and 
plasticity. Blood 121, 2402-2414, doi:10.1182/blood-2012-09-378653 (2013). 

133 Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells 
in central CD4(+) T cell tolerance. Nat Immunol 11, 512-519, 
doi:10.1038/ni.1874 (2010). 

134 Pacholczyk, R., Ignatowicz, H., Kraj, P. & Ignatowicz, L. Origin and T cell 
receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25, 249-259, 
doi:10.1016/j.immuni.2006.05.016 (2006). 

135 Burchill, M. A. et al. Linked T cell receptor and cytokine signaling govern 
the development of the regulatory T cell repertoire. Immunity 28, 112-121, 
doi:10.1016/j.immuni.2007.11.022 (2008). 

136 Lio, C. W. & Hsieh, C. S. A two-step process for thymic regulatory T cell 
development. Immunity 28, 100-111, doi:10.1016/j.immuni.2007.11.021 
(2008). 

137 Tan, M. C. et al. Disruption of CCR5-dependent homing of regulatory T cells 
inhibits tumor growth in a murine model of pancreatic cancer. Journal of 
immunology 182, 1746-1755 (2009). 

138 Chang, L. Y. et al. Tumor-derived chemokine CCL5 enhances TGF-beta-
mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. 
Cancer research 72, 1092-1102, doi:10.1158/0008-5472.CAN-11-2493 
(2012). 



 

 195 

139 Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: 
mechanisms of differentiation and function. Annu Rev Immunol 30, 531-564, 
doi:10.1146/annurev.immunol.25.022106.141623 (2012). 

140 Shevach, E. M. & Thornton, A. M. tTregs, pTregs, and iTregs: similarities 
and differences. Immunological reviews 259, 88-102, doi:10.1111/imr.12160 
(2014). 

141 Pot, C., Apetoh, L. & Kuchroo, V. K. Type 1 regulatory T cells (Tr1) in 
autoimmunity. Semin Immunol 23, 202-208, doi:10.1016/j.smim.2011.07.005 
(2011). 

142 Boon, T., Cerottini, J. C., Van den Eynde, B., van der Bruggen, P. & Van Pel, 
A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12, 
337-365, doi:10.1146/annurev.iy.12.040194.002005 (1994). 

143 Chappert, P. & Schwartz, R. H. Induction of T cell anergy: integration of 
environmental cues and infectious tolerance. Current opinion in immunology 
22, 552-559, doi:10.1016/j.coi.2010.08.005 (2010). 

144 Xing, Y. & Hogquist, K. A. T-cell tolerance: central and peripheral. Cold 
Spring Harb Perspect Biol 4, doi:10.1101/cshperspect.a006957 (2012). 

145 Powell, J. D. & Delgoffe, G. M. The mammalian target of rapamycin: linking 
T cell differentiation, function, and metabolism. Immunity 33, 301-311, 
doi:10.1016/j.immuni.2010.09.002 (2010). 

146 Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. & Powell, J. D. Anergic 
T cells are metabolically anergic. Journal of immunology 183, 6095-6101, 
doi:10.4049/jimmunol.0803510 (2009). 

147 Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands 
in tolerance and immunity. Annu Rev Immunol 26, 677-704, 
doi:10.1146/annurev.immunol.26.021607.090331 (2008). 

148 Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of 
lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an 
ITIM motif-carrying immunoreceptor. Immunity 11, 141-151 (1999). 

149 Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-
deficient mice. Science 291, 319-322, doi:10.1126/science.291.5502.319 
(2001). 

150 Guleria, I. et al. A critical role for the programmed death ligand 1 in 
fetomaternal tolerance. The Journal of experimental medicine 202, 231-237, 
doi:10.1084/jem.20050019 (2005). 

151 Anderson, M. S. & Bluestone, J. A. The NOD mouse: a model of immune 
dysregulation. Annu Rev Immunol 23, 447-485, 
doi:10.1146/annurev.immunol.23.021704.115643 (2005). 

152 Delovitch, T. L. & Singh, B. The nonobese diabetic mouse as a model of 
autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727-
738 (1997). 



 

 196 

153 Salama, A. D. et al. Critical role of the programmed death-1 (PD-1) pathway 
in regulation of experimental autoimmune encephalomyelitis. The Journal of 
experimental medicine 198, 71-78, doi:10.1084/jem.20022119 (2003). 

154 Wherry, E. J. T cell exhaustion. Nat Immunol 12, 492-499 (2011). 
155 Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple 

inhibitory receptors during chronic viral infection. Nat Immunol 10, 29-37, 
doi:10.1038/ni.1679 (2009). 

156 Grosso, J. F. et al. Functionally distinct LAG-3 and PD-1 subsets on activated 
and chronically stimulated CD8 T cells. Journal of immunology 182, 6659-
6669, doi:10.4049/jimmunol.0804211 (2009). 

157 Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and 
fatal multiorgan tissue destruction, revealing a critical negative regulatory 
role of CTLA-4. Immunity 3, 541-547 (1995). 

158 Dolcetti, L. et al. Hierarchy of immunosuppressive strength among myeloid-
derived suppressor cell subsets is determined by GM-CSF. European journal 
of immunology 40, 22-35, doi:10.1002/eji.200939903 (2010). 

159 Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-
derived suppressor cells in tumor-bearing mice. Journal of immunology 181, 
5791-5802 (2008). 

160 Movahedi, K. et al. Identification of discrete tumor-induced myeloid-derived 
suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 
111, 4233-4244, doi:10.1182/blood-2007-07-099226 (2008). 

161 Mandruzzato, S. et al. IL4Ralpha+ myeloid-derived suppressor cell 
expansion in cancer patients. Journal of immunology 182, 6562-6568, 
doi:10.4049/jimmunol.0803831 (2009). 

162 Khattri, R., Cox, T., Yasayko, S. A. & Ramsdell, F. An essential role for 
Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4, 337-342, 
doi:10.1038/ni909 (2003). 

163 Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the 
development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4, 
330-336, doi:10.1038/ni904 (2003). 

164 Lin, W. et al. Regulatory T cell development in the absence of functional 
Foxp3. Nat Immunol 8, 359-368, doi:10.1038/ni1445 (2007). 

165 Wan, Y. Y. & Flavell, R. A. Regulatory T-cell functions are subverted and 
converted owing to attenuated Foxp3 expression. Nature 445, 766-770, 
doi:10.1038/nature05479 (2007). 

166 Gavin, M. A. et al. Foxp3-dependent programme of regulatory T-cell 
differentiation. Nature 445, 771-775, doi:10.1038/nature05543 (2007). 

167 Schmidt, A., Oberle, N. & Krammer, P. H. Molecular mechanisms of treg-
mediated T cell suppression. Frontiers in immunology 3, 51, 
doi:10.3389/fimmu.2012.00051 (2012). 



 

 197 

168 Pandiyan, P., Zheng, L. X., Ishihara, S., Reed, J. & Lenardo, M. J. CD4(+) 
CD25(+) Foxp3(+) regulatory T cells induce cytokine deprivation -mediated 
apoptosis of effector CD4(+) T cells. Nature Immunology 8, 1353-1362, 
doi:10.1038/ni1536 (2007). 

169 Friedline, R. H. et al. CD4+ regulatory T cells require CTLA-4 for the 
maintenance of systemic tolerance. The Journal of experimental medicine 
206, 421-434, doi:10.1084/jem.20081811 (2009). 

170 Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. 
Science 322, 271-275, doi:10.1126/science.1160062 (2008). 

171 Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent 
catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8, 
191-197, doi:10.1038/ni1428 (2007). 

172 Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis 
for the cell-extrinsic function of CTLA-4. Science 332, 600-603, 
doi:10.1126/science.1202947 (2011). 

173 Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. 
Nat Immunol 4, 1206-1212, doi:10.1038/ni1003 (2003). 

174 Fallarino, F. et al. T cell apoptosis by kynurenines. Adv Exp Med Biol 527, 
183-190 (2003). 

175 Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg 
cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 
1225-1232, doi:10.1182/blood-2006-12-064527 (2007). 

176 Kobie, J. J. et al. T regulatory and primed uncommitted CD4 T cells express 
CD73, which suppresses effector CD4 T cells by converting 5'-adenosine 
monophosphate to adenosine. Journal of immunology 177, 6780-6786 (2006). 

177 Ernst, P. B., Garrison, J. C. & Thompson, L. F. Much ado about adenosine: 
adenosine synthesis and function in regulatory T cell biology. Journal of 
immunology 185, 1993-1998, doi:10.4049/jimmunol.1000108 (2010). 

178 Ormandy, L. A. et al. Increased populations of regulatory T cells in 
peripheral blood of patients with hepatocellular carcinoma. Cancer research 
65, 2457-2464, doi:10.1158/0008-5472.CAN-04-3232 (2005). 

179 Wolf, A. M. et al. Increase of regulatory T cells in the peripheral blood of 
cancer patients. Clin Cancer Res 9, 606-612 (2003). 

180 Schaefer, C. et al. Characteristics of CD4+CD25+ regulatory T cells in the 
peripheral circulation of patients with head and neck cancer. Br J Cancer 92, 
913-920, doi:10.1038/sj.bjc.6602407 (2005). 

181 Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in 
peripheral blood and tumor microenvironment of patients with pancreas or 
breast adenocarcinoma. Journal of immunology 169, 2756-2761 (2002). 

182 Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ 
regulatory T cells increases during the progression of pancreatic ductal 



 

 198 

adenocarcinoma and its premalignant lesions. Clin Cancer Res 12, 5423-
5434, doi:10.1158/1078-0432.CCR-06-0369 (2006). 

183 Sasada, T., Kimura, M., Yoshida, Y., Kanai, M. & Takabayashi, A. 
CD4+CD25+ regulatory T cells in patients with gastrointestinal 
malignancies: possible involvement of regulatory T cells in disease 
progression. Cancer 98, 1089-1099, doi:10.1002/cncr.11618 (2003). 

184 Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian 
carcinoma fosters immune privilege and predicts reduced survival. Nat Med 
10, 942-949, doi:10.1038/nm1093 (2004). 

185 Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high 
CD8+/regulatory T cell ratio are associated with favorable prognosis in 
ovarian cancer. Proceedings of the National Academy of Sciences of the 
United States of America 102, 18538-18543, doi:10.1073/pnas.0509182102 
(2005). 

186 Bates, G. J. et al. Quantification of regulatory T cells enables the 
identification of high-risk breast cancer patients and those at risk of late 
relapse. J Clin Oncol 24, 5373-5380, doi:10.1200/JCO.2006.05.9584 (2006). 

187 Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications 
of angiogenesis. Nature 473, 298-307, doi:10.1038/nature10144 (2011). 

188 Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 
407, 249-257, doi:10.1038/35025220 (2000). 

189 Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel 
normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 
10, 417-427, doi:10.1038/nrd3455 (2011). 

190 Chi, A. S., Sorensen, A. G., Jain, R. K. & Batchelor, T. T. Angiogenesis as a 
therapeutic target in malignant gliomas. Oncologist 14, 621-636, 
doi:10.1634/theoncologist.2008-0272 (2009). 

191 Crawford, Y. et al. PDGF-C mediates the angiogenic and tumorigenic 
properties of fibroblasts associated with tumors refractory to anti-VEGF 
treatment. Cancer Cell 15, 21-34, doi:10.1016/j.ccr.2008.12.004 (2009). 

192 Folkman, J. Tumor angiogenesis: therapeutic implications. The New England 
journal of medicine 285, 1182-1186, doi:10.1056/nejm197111182852108 
(1971). 

193 Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the 
angiogenic switch during tumorigenesis. Cell 86, 353-364 (1996). 

194 Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of 
angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 
808-812 (1999). 

195 Nagy, J. A., Chang, S. H., Shih, S. C., Dvorak, A. M. & Dvorak, H. F. 
Heterogeneity of the tumor vasculature. Semin Thromb Hemost 36, 321-331, 
doi:10.1055/s-0030-1253454 (2010). 



 

 199 

196 Jain, R. K. Normalization of tumor vasculature: an emerging concept in 
antiangiogenic therapy. Science 307, 58-62, doi:10.1126/science.1104819 
(2005). 

197 Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of 
blood vessels as targets in cancer. Curr Opin Genet Dev 15, 102-111, 
doi:10.1016/j.gde.2004.12.005 (2005). 

198 Gerber, H. P. & Ferrara, N. Pharmacology and pharmacodynamics of 
bevacizumab as monotherapy or in combination with cytotoxic therapy in 
preclinical studies. Cancer research 65, 671-680 (2005). 

199 Johnson, D. H. et al. Randomized phase II trial comparing bevacizumab plus 
carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously 
untreated locally advanced or metastatic non-small-cell lung cancer. J Clin 
Oncol 22, 2184-2191, doi:10.1200/JCO.2004.11.022 (2004). 

200 Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular 
endothelial growth factor antibody, for metastatic renal cancer. The New 
England journal of medicine 349, 427-434, doi:10.1056/NEJMoa021491 
(2003). 

201 Ferrara, N., Hillan, K. J. & Novotny, W. Bevacizumab (Avastin), a 
humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem 
Biophys Res Commun 333, 328-335, doi:10.1016/j.bbrc.2005.05.132 (2005). 

202 Patel, A. S. et al. TIE2-expressing monocytes/macrophages regulate 
revascularization of the ischemic limb. EMBO Mol Med 5, 858-869, 
doi:10.1002/emmm.201302752 (2013). 

203 Ohlund, D., Elyada, E. & Tuveson, D. Fibroblast heterogeneity in the cancer 
wound. The Journal of experimental medicine 211, 1503-1523, 
doi:10.1084/jem.20140692 (2014). 

204 Bissell, M. J. & Hines, W. C. Why don't we get more cancer? A proposed 
role of the microenvironment in restraining cancer progression. Nat Med 17, 
320-329, doi:10.1038/nm.2328 (2011). 

205 Naba, A. et al. The matrisome: in silico definition and in vivo 
characterization by proteomics of normal and tumor extracellular matrices. 
Mol Cell Proteomics 11, M111 014647, doi:10.1074/mcp.M111.014647 
(2012). 

206 Dolberg, D. S. & Bissell, M. J. Inability of Rous sarcoma virus to cause 
sarcomas in the avian embryo. Nature 309, 552-556 (1984). 

207 Stoker, A. W., Hatier, C. & Bissell, M. J. The embryonic environment 
strongly attenuates v-src oncogenesis in mesenchymal and epithelial tissues, 
but not in endothelia. The Journal of cell biology 111, 217-228 (1990). 

208 Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. 
Cancer Cell 8, 241-254, doi:10.1016/j.ccr.2005.08.010 (2005). 



 

 200 

209 Chun, T. H. et al. A pericellular collagenase directs the 3-dimensional 
development of white adipose tissue. Cell 125, 577-591, 
doi:10.1016/j.cell.2006.02.050 (2006). 

210 Cirri, P. & Chiarugi, P. Cancer associated fibroblasts: the dark side of the 
coin. Am J Cancer Res 1, 482-497 (2011). 

211 Santhanam, A. N., Baker, A. R., Hegamyer, G., Kirschmann, D. A. & 
Colburn, N. H. Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced 
breast cancer cell invasion. Oncogene 29, 3921-3932, 
doi:10.1038/onc.2010.158 (2010). 

212 Juin, A. et al. Physiological type I collagen organization induces the 
formation of a novel class of linear invadosomes. Mol Biol Cell 23, 297-309, 
doi:10.1091/mbc.E11-07-0594 (2012). 

213 Barker, H. E., Cox, T. R. & Erler, J. T. The rationale for targeting the LOX 
family in cancer. Nature reviews. Cancer 12, 540-552, doi:10.1038/nrc3319 
(2012). 

214 Cox, T. R. et al. The hypoxic cancer secretome induces pre-metastatic bone 
lesions through lysyl oxidase. Nature 522, 106-110, doi:10.1038/nature14492 
(2015). 

215 Linder, S. Invadosomes at a glance. J Cell Sci 122, 3009-3013, 
doi:10.1242/jcs.032631 (2009). 

216 Plow, E. F., Haas, T. A., Zhang, L., Loftus, J. & Smith, J. W. Ligand binding 
to integrins. J Biol Chem 275, 21785-21788, doi:10.1074/jbc.R000003200 
(2000). 

217 Pankov, R. & Yamada, K. M. Fibronectin at a glance. J Cell Sci 115, 3861-
3863 (2002). 

218 Chen, S. H. et al. Up-regulation of fibronectin and tissue transglutaminase 
promotes cell invasion involving increased association with integrin and 
MMP expression in A431 cells. Anticancer Res 30, 4177-4186 (2010). 

219 Mitra, A. K. et al. Ligand-independent activation of c-Met by fibronectin and 
alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. 
Oncogene 30, 1566-1576, doi:10.1038/onc.2010.532 (2011). 

220 Kobayashi, N. et al. Hyaluronan deficiency in tumor stroma impairs 
macrophage trafficking and tumor neovascularization. Cancer research 70, 
7073-7083, doi:10.1158/0008-5472.CAN-09-4687 (2010). 

221 Zeisberg, M., Strutz, F. & Muller, G. A. Role of fibroblast activation in 
inducing interstitial fibrosis. J Nephrol 13 Suppl 3, S111-120 (2000). 

222 Eyden, B. The myofibroblast: a study of normal, reactive and neoplastic 
tissues, with an emphasis on ultrastructure. Part 1--normal and reactive cells. 
J Submicrosc Cytol Pathol 37, 109-204 (2005). 

223 Eyden, B. The myofibroblast: a study of normal, reactive and neoplastic 
tissues, with an emphasis on ultrastructure. part 2 - tumours and tumour-like 
lesions. J Submicrosc Cytol Pathol 37, 231-296 (2005). 



 

 201 

224 Dumont, N. et al. Breast fibroblasts modulate early dissemination, 
tumorigenesis, and metastasis through alteration of extracellular matrix 
characteristics. Neoplasia 15, 249-262 (2013). 

225 Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor 
progression and metastasis. Nat Med 19, 1423-1437, doi:10.1038/nm.3394 
(2013). 

226 Franco, O. E., Shaw, A. K., Strand, D. W. & Hayward, S. W. Cancer 
associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21, 33-39, 
doi:10.1016/j.semcdb.2009.10.010 (2010). 

227 Orimo, A. et al. Cancer-associated myofibroblasts possess various factors to 
promote endometrial tumor progression. Clin Cancer Res 7, 3097-3105 
(2001). 

228 Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-
Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate 
Tumor-Promoting Inflammation in an NF-kappaB-Dependent Manner. 
Cancer Cell 17, 135-147, doi:10.1016/j.ccr.2009.12.041 (2010). 

229 Fang, L., Lonsdorf, A. S. & Hwang, S. T. Immunotherapy for advanced 
melanoma. J Invest Dermatol 128, 2596-2605, doi:10.1038/jid.2008.101 
(2008). 

230 Sharma, P., Wagner, K., Wolchok, J. D. & Allison, J. P. Novel cancer 
immunotherapy agents with survival benefit: recent successes and next steps. 
Nature reviews. Cancer 11, 805-812, doi:10.1038/nrc3153 (2011). 

231 Wolchok, J. D. & Saenger, Y. The mechanism of anti-CTLA-4 activity and 
the negative regulation of T-cell activation. Oncologist 13 Suppl 4, 2-9, 
doi:10.1634/theoncologist.13-S4-2 (2008). 

232 Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. 
The New England journal of medicine 369, 122-133, 
doi:10.1056/NEJMoa1302369 (2013). 

233 Li, B. et al. Anti-programmed death-1 synergizes with granulocyte 
macrophage colony-stimulating factor--secreting tumor cell immunotherapy 
providing therapeutic benefit to mice with established tumors. Clin Cancer 
Res 15, 1623-1634, doi:10.1158/1078-0432.CCR-08-1825 (2009). 

234 van Elsas, A., Hurwitz, A. A. & Allison, J. P. Combination immunotherapy 
of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 
(CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-
CSF)-producing vaccines induces rejection of subcutaneous and metastatic 
tumors accompanied by autoimmune depigmentation. The Journal of 
experimental medicine 190, 355-366 (1999). 

235 Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature reviews. Cancer 6, 
392-401, doi:10.1038/nrc1877 (2006). 

236 Marsh, T., Pietras, K. & McAllister, S. S. Fibroblasts as architects of cancer 
pathogenesis. Biochim Biophys Acta 1832, 1070-1078, 
doi:10.1016/j.bbadis.2012.10.013 (2013). 



 

 202 

237 Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicologic 
pathology 35, 495-516, doi:10.1080/01926230701320337 (2007). 

238 Pang, B. et al. Direct antigen presentation and gap junction mediated cross-
presentation during apoptosis. Journal of immunology 183, 1083-1090, 
doi:10.4049/jimmunol.0900861 (2009). 

239 Ma, Y. et al. Anticancer chemotherapy-induced intratumoral recruitment and 
differentiation of antigen-presenting cells. Immunity 38, 729-741, 
doi:10.1016/j.immuni.2013.03.003 (2013). 

240 Tesniere, A. et al. Molecular characteristics of immunogenic cancer cell 
death. Cell Death Differ 15, 3-12, doi:10.1038/sj.cdd.4402269 (2008). 

241 Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite 
immunosurveillance: immunoselection and immunosubversion. Nat Rev 
Immunol 6, 715-727, doi:10.1038/nri1936 (2006). 

242 Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated 
regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253-268, 
doi:10.1038/nri3175 (2012). 

243 Trapani, J. A. The dual adverse effects of TGF-beta secretion on tumor 
progression. Cancer Cell 8, 349-350, doi:10.1016/j.ccr.2005.10.018 (2005). 

244 Frame, M. C., Patel, H., Serrels, B., Lietha, D. & Eck, M. J. The FERM 
domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 
11, 802-814, doi:10.1038/nrm2996 (2010). 

245 McLean, G. W. et al. Specific deletion of focal adhesion kinase suppresses 
tumor formation and blocks malignant progression. Genes Dev 18, 2998-
3003, doi:10.1101/gad.316304 (2004). 

246 Serrels, B., Sandilands, E. & Frame, M. C. Signaling of the direction-sensing 
FAK/RACK1/PDE4D5 complex to the small GTPase Rap1. Small GTPases 
2, 54-61, doi:10.4161/sgtp.2.1.15137 (2011). 

247 Serrels, B. et al. A complex between FAK, RACK1, and PDE4D5 controls 
spreading initiation and cancer cell polarity. Current biology : CB 20, 1086-
1092, doi:10.1016/j.cub.2010.04.042 (2010). 

248 Serrels, B. et al. Focal adhesion kinase controls actin assembly via a FERM-
mediated interaction with the Arp2/3 complex. Nat Cell Biol 9, 1046-1056, 
doi:10.1038/ncb1626 (2007). 

249 Canel, M. et al. Quantitative in vivo imaging of the effects of inhibiting 
integrin signaling via Src and FAK on cancer cell movement: effects on E-
cadherin dynamics. Cancer research 70, 9413-9422, doi:10.1158/0008-
5472.CAN-10-1454 (2010). 

250 Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in 
normal and cancer cells. Curr Opin Cell Biol 18, 516-523, 
doi:10.1016/j.ceb.2006.08.011 (2006). 



 

 203 

251 Schlaepfer, D. D. & Mitra, S. K. Multiple connections link FAK to cell 
motility and invasion. Curr Opin Genet Dev 14, 92-101, 
doi:10.1016/j.gde.2003.12.002 (2004). 

252 Zhao, J. H., Reiske, H. & Guan, J. L. Regulation of the cell cycle by focal 
adhesion kinase. J Cell Biol 143, 1997-2008 (1998). 

253 Westhoff, M. A., Serrels, B., Fincham, V. J., Frame, M. C. & Carragher, N. 
O. SRC-mediated phosphorylation of focal adhesion kinase couples actin and 
adhesion dynamics to survival signaling. Mol Cell Biol 24, 8113-8133, 
doi:10.1128/MCB.24.18.8113-8133.2004 (2004). 

254 Serrels, A. et al. The role of focal adhesion kinase catalytic activity on the 
proliferation and migration of squamous cell carcinoma cells. Int J Cancer 
131, 287-297, doi:10.1002/ijc.26351 (2012). 

255 Cance, W. G. et al. Immunohistochemical analyses of focal adhesion kinase 
expression in benign and malignant human breast and colon tissues: 
correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6, 
2417-2423 (2000). 

256 Owens, L. V. et al. Overexpression of the focal adhesion kinase (p125FAK) 
in invasive human tumors. Cancer Res 55, 2752-2755 (1995). 

257 Pylayeva, Y. et al. Ras- and PI3K-dependent breast tumorigenesis in mice 
and humans requires focal adhesion kinase signaling. J Clin Invest 119, 252-
266, doi:10.1172/JCI37160 (2009). 

258 Tremblay, L. et al. Focal adhesion kinase (pp125FAK) expression, activation 
and association with paxillin and p50CSK in human metastatic prostate 
carcinoma. Int J Cancer 68, 164-171 (1996). 

259 Kornberg, L. J. Focal adhesion kinase expression in oral cancers. Head Neck 
20, 634-639 (1998). 

260 Rodrigo, J. P. et al. Focal adhesion kinase and E-cadherin as markers for 
nodal metastasis in laryngeal cancer. Arch Otolaryngol Head Neck Surg 133, 
145-150, doi:10.1001/archotol.133.2.145 (2007). 

261 Agochiya, M. et al. Increased dosage and amplification of the focal adhesion 
kinase gene in human cancer cells. Oncogene 18, 5646-5653, 
doi:10.1038/sj.onc.1202957 (1999). 

262 Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche 
in cancer progression. The Journal of cell biology 196, 395-406, 
doi:10.1083/jcb.201102147 (2012). 

263 Schaller, M. D. Cellular functions of FAK kinases: insight into molecular 
mechanisms and novel functions. J Cell Sci 123, 1007-1013, 
doi:10.1242/jcs.045112 (2010). 

264 McLean, G. W. et al. The role of focal-adhesion kinase in cancer - a new 
therapeutic opportunity. Nature reviews. Cancer 5, 505-515, 
doi:10.1038/nrc1647 (2005). 



 

 204 

265 Sulzmaier, F. J., Jean, C. & Schlaepfer, D. D. FAK in cancer: mechanistic 
findings and clinical applications. Nature reviews. Cancer 14, 598-610, 
doi:10.1038/nrc3792 (2014). 

266 Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact 
formation in cells from FAK-deficient mice. Nature 377, 539-544, 
doi:10.1038/377539a0 (1995). 

267 Yu, H. G. et al. p190RhoGEF (Rgnef) promotes colon carcinoma tumor 
progression via interaction with focal adhesion kinase. Cancer research 71, 
360-370, doi:10.1158/0008-5472.CAN-10-2894 (2011). 

268 Lawson, C. et al. FAK promotes recruitment of talin to nascent adhesions to 
control cell motility. The Journal of cell biology 196, 223-232, 
doi:10.1083/jcb.201108078 (2012). 

269 Barbero, S. et al. Caspase-8 association with the focal adhesion complex 
promotes tumor cell migration and metastasis. Cancer research 69, 3755-
3763, doi:10.1158/0008-5472.CAN-08-3937 (2009). 

270 Tomar, A. & Schlaepfer, D. D. Focal adhesion kinase: switching between 
GAPs and GEFs in the regulation of cell motility. Curr Opin Cell Biol 21, 
676-683, doi:10.1016/j.ceb.2009.05.006 (2009). 

271 Cicchini, C. et al. TGFbeta-induced EMT requires focal adhesion kinase 
(FAK) signaling. Exp Cell Res 314, 143-152, 
doi:10.1016/j.yexcr.2007.09.005 (2008). 

272 Li, X. Y. et al. Snail1 controls epithelial-mesenchymal lineage commitment 
in focal adhesion kinase-null embryonic cells. The Journal of cell biology 
195, 729-738, doi:10.1083/jcb.201105103 (2011). 

273 Canel, M., Serrels, A., Frame, M. C. & Brunton, V. G. E-cadherin-integrin 
crosstalk in cancer invasion and metastasis. J Cell Sci 126, 393-401, 
doi:10.1242/jcs.100115 (2013). 

274 Zhao, J. & Guan, J. L. Signal transduction by focal adhesion kinase in cancer. 
Cancer Metastasis Rev 28, 35-49, doi:10.1007/s10555-008-9165-4 (2009). 

275 Lane, D., Goncharenko-Khaider, N., Rancourt, C. & Piche, A. Ovarian 
cancer ascites protects from TRAIL-induced cell death through alphavbeta5 
integrin-mediated focal adhesion kinase and Akt activation. Oncogene 29, 
3519-3531, doi:10.1038/onc.2010.107 (2010). 

276 Serrels, A. et al. The role of focal adhesion kinase catalytic activity on the 
proliferation and migration of squamous cell carcinoma cells. International 
journal of cancer. Journal international du cancer 131, 287-297, 
doi:10.1002/ijc.26351 (2012). 

277 Zhao, J. H., Reiske, H. & Guan, J. L. Regulation of the cell cycle by focal 
adhesion kinase. The Journal of cell biology 143, 1997-2008 (1998). 

278 Nagy, T. et al. Mammary epithelial-specific deletion of the focal adhesion 
kinase gene leads to severe lobulo-alveolar hypoplasia and secretory 



 

 205 

immaturity of the murine mammary gland. J Biol Chem 282, 31766-31776, 
doi:10.1074/jbc.M705403200 (2007). 

279 Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Beggs, H. E. & Keely, P. J. 
Mammary epithelial-specific disruption of focal adhesion kinase retards 
tumor formation and metastasis in a transgenic mouse model of human breast 
cancer. Am J Pathol 173, 1551-1565, doi:10.2353/ajpath.2008.080308 
(2008). 

280 Ravenhall, C., Guida, E., Harris, T., Koutsoubos, V. & Stewart, A. The 
importance of ERK activity in the regulation of cyclin D1 levels and DNA 
synthesis in human cultured airway smooth muscle. Br J Pharmacol 131, 17-
28, doi:10.1038/sj.bjp.0703454 (2000). 

281 Wang, X., Urvalek, A. M., Liu, J. & Zhao, J. Activation of KLF8 
transcription by focal adhesion kinase in human ovarian epithelial and cancer 
cells. J Biol Chem 283, 13934-13942, doi:10.1074/jbc.M709300200 (2008). 

282 Ossovskaya, V., Lim, S. T., Ota, N., Schlaepfer, D. D. & Ilic, D. FAK nuclear 
export signal sequences. FEBS Lett 582, 2402-2406, 
doi:10.1016/j.febslet.2008.06.004 (2008). 

283 Lim, S. T. et al. Nuclear FAK promotes cell proliferation and survival 
through FERM-enhanced p53 degradation. Mol Cell 29, 9-22, 
doi:10.1016/j.molcel.2007.11.031 (2008). 

284 Lim, S. T. et al. Nuclear-localized focal adhesion kinase regulates 
inflammatory VCAM-1 expression. The Journal of cell biology 197, 907-919, 
doi:10.1083/jcb.201109067 (2012). 

285 Hall, J. E., Fu, W. & Schaller, M. D. Focal adhesion kinase: exploring Fak 
structure to gain insight into function. Int Rev Cell Mol Biol 288, 185-225, 
doi:10.1016/B978-0-12-386041-5.00005-4 (2011). 

286 Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in 
command and control of cell motility. Nat Rev Mol Cell Biol 6, 56-68, 
doi:10.1038/nrm1549 (2005). 

287 Astier, A. et al. The related adhesion focal tyrosine kinase differentially 
phosphorylates p130Cas and the Cas-like protein, p105HEF1. J Biol Chem 
272, 19719-19724 (1997). 

288 Avraham, S. & Avraham, H. Characterization of the novel focal adhesion 
kinase RAFTK in hematopoietic cells. Leuk Lymphoma 27, 247-256, 
doi:10.3109/10428199709059681 (1997). 

289 Ganju, R. K. et al. RAFTK, a novel member of the focal adhesion kinase 
family, is phosphorylated and associates with signaling molecules upon 
activation of mature T lymphocytes. The Journal of experimental medicine 
185, 1055-1063 (1997). 

290 Hatch, W. C., Ganju, R. K., Hiregowdara, D., Avraham, S. & Groopman, J. 
E. The related adhesion focal tyrosine kinase (RAFTK) is tyrosine 
phosphorylated and participates in colony-stimulating factor-1/macrophage 



 

 206 

colony-stimulating factor signaling in monocyte-macrophages. Blood 91, 
3967-3973 (1998). 

291 Ostergaard, H. L. & Lysechko, T. L. Focal adhesion kinase-related protein 
tyrosine kinase Pyk2 in T-cell activation and function. Immunol Res 31, 267-
282, doi:10.1385/IR:31:3:267 (2005). 

292 Zheng, C. et al. Differential regulation of Pyk2 and focal adhesion kinase 
(FAK). The C-terminal domain of FAK confers response to cell adhesion. J 
Biol Chem 273, 2384-2389 (1998). 

293 Choi, C. H., Webb, B. A., Chimenti, M. S., Jacobson, M. P. & Barber, D. L. 
pH sensing by FAK-His58 regulates focal adhesion remodeling. The Journal 
of cell biology 202, 849-859, doi:10.1083/jcb.201302131 (2013). 

294 Corsi, J. M., Rouer, E., Girault, J. A. & Enslen, H. Organization and post-
transcriptional processing of focal adhesion kinase gene. BMC Genomics 7, 
198, doi:10.1186/1471-2164-7-198 (2006). 

295 Chandel, N. S., Trzyna, W. C., McClintock, D. S. & Schumacker, P. T. Role 
of oxidants in NF-kappa B activation and TNF-alpha gene transcription 
induced by hypoxia and endotoxin. Journal of immunology 165, 1013-1021 
(2000). 

296 Renard, P. et al. Effects of antioxidant enzyme modulations on interleukin-1-
induced nuclear factor kappa B activation. Biochemical pharmacology 53, 
149-160 (1997). 

297 Kume, A., Nishiura, H., Suda, J. & Suda, T. Focal adhesion kinase 
upregulated by granulocyte-macrophage colony-stimulating factor but not by 
interleukin-3 in differentiating myeloid cells. Blood 89, 3434-3442 (1997). 

298 Abshire, M. Y., Thomas, K. S., Owen, K. A. & Bouton, A. H. Macrophage 
motility requires distinct alpha5beta1/FAK and alpha4beta1/paxillin signaling 
events. J Leukoc Biol 89, 251-257, doi:10.1189/jlb.0710395 (2011). 

299 Owen, K. A. et al. Regulation of lamellipodial persistence, adhesion turnover, 
and motility in macrophages by focal adhesion kinase. The Journal of cell 
biology 179, 1275-1287, doi:10.1083/jcb.200708093 (2007). 

300 Walsh, C. et al. Oral delivery of PND-1186 FAK inhibitor decreases tumor 
growth and spontaneous breast to lung metastasis in pre-clinical models. 
Cancer Biol Ther 9, 778-790 (2010). 

301 Wendt, M. K. & Schiemann, W. P. Therapeutic targeting of the focal 
adhesion complex prevents oncogenic TGF-beta signaling and metastasis. 
Breast Cancer Res 11, R68, doi:10.1186/bcr2360 (2009). 

302 Stokes, J. B. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits 
the growth and metastasis of pancreatic cancer concomitant with altering the 
tumor microenvironment. Mol Cancer Ther 10, 2135-2145, 
doi:10.1158/1535-7163.MCT-11-0261 (2011). 

303 Kasorn, A. et al. Focal adhesion kinase regulates pathogen-killing capability 
and life span of neutrophils via mediating both adhesion-dependent and -



 

 207 

independent cellular signals. Journal of immunology 183, 1032-1043, 
doi:10.4049/jimmunol.0802984 (2009). 

304 Batista, S. et al. Haematopoietic focal adhesion kinase deficiency alters 
haematopoietic homeostasis to drive tumour metastasis. Nat Commun 5, 
5054, doi:10.1038/ncomms6054 (2014). 

305 Recher, C. et al. Expression of focal adhesion kinase in acute myeloid 
leukemia is associated with enhanced blast migration, increased cellularity, 
and poor prognosis. Cancer research 64, 3191-3197 (2004). 

306 Chapman, N. M., Connolly, S. F., Reinl, E. L. & Houtman, J. C. Focal 
adhesion kinase negatively regulates Lck function downstream of the T cell 
antigen receptor. Journal of immunology 191, 6208-6221, 
doi:10.4049/jimmunol.1301587 (2013). 

307 Wiemer, A. J. et al. The focal adhesion kinase inhibitor PF-562,271 impairs 
primary CD4+ T cell activation. Biochemical pharmacology 86, 770-781, 
doi:10.1016/j.bcp.2013.07.024 (2013). 

308 Katagiri, T., Takahashi, T., Sasaki, T., Nakamura, S. & Hattori, S. Protein-
tyrosine kinase Pyk2 is involved in interleukin-2 production by Jurkat T cells 
via its tyrosine 402. J Biol Chem 275, 19645-19652, 
doi:10.1074/jbc.M909828199 (2000). 

309 Beinke, S. et al. Proline-rich tyrosine kinase-2 is critical for CD8 T-cell short-
lived effector fate. Proceedings of the National Academy of Sciences of the 
United States of America 107, 16234-16239, doi:10.1073/pnas.1011556107 
(2010). 

310 Judokusumo, E., Tabdanov, E., Kumari, S., Dustin, M. L. & Kam, L. C. 
Mechanosensing in T lymphocyte activation. Biophys J 102, L5-7, 
doi:10.1016/j.bpj.2011.12.011 (2012). 

311 Schultze, A. & Fiedler, W. Therapeutic potential and limitations of new FAK 
inhibitors in the treatment of cancer. Expert Opin Investig Drugs 19, 777-788, 
doi:10.1517/13543784.2010.489548 (2010). 

312 Bagi, C. M. et al. Sunitinib and PF-562,271 (FAK/Pyk2 inhibitor) effectively 
block growth and recovery of human hepatocellular carcinoma in a rat 
xenograft model. Cancer Biol Ther 8, 856-865 (2009). 

313 Halder, J. et al. Therapeutic efficacy of a novel focal adhesion kinase 
inhibitor TAE226 in ovarian carcinoma. Cancer research 67, 10976-10983, 
doi:10.1158/0008-5472.CAN-07-2667 (2007). 

314 Jean, C. et al. Inhibition of endothelial FAK activity prevents tumor 
metastasis by enhancing barrier function. The Journal of cell biology 204, 
247-263, doi:10.1083/jcb.201307067 (2014). 

315 Tavora, B. et al. Endothelial FAK is required for tumour angiogenesis. 
EMBO Mol Med 2, 516-528, doi:10.1002/emmm.201000106 (2010). 

316 Schmidt, T. T. et al. Conditional deletion of FAK in mice endothelium 
disrupts lung vascular barrier function due to destabilization of RhoA and 



 

 208 

Rac1 activities. Am J Physiol Lung Cell Mol Physiol 305, L291-300, 
doi:10.1152/ajplung.00094.2013 (2013). 

317 Shen, T. L. et al. Conditional knockout of focal adhesion kinase in 
endothelial cells reveals its role in angiogenesis and vascular development in 
late embryogenesis. The Journal of cell biology 169, 941-952, 
doi:10.1083/jcb.200411155 (2005). 

318 Zhao, X., Peng, X., Sun, S., Park, A. Y. & Guan, J. L. Role of kinase-
independent and -dependent functions of FAK in endothelial cell survival and 
barrier function during embryonic development. The Journal of cell biology 
189, 955-965, doi:10.1083/jcb.200912094 (2010). 

319 Dave, J. M., Kang, H., Abbey, C. A., Maxwell, S. A. & Bayless, K. J. 
Proteomic profiling of endothelial invasion revealed receptor for activated C 
kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion 
kinase (FAK). J Biol Chem 288, 30720-30733, doi:10.1074/jbc.M113.512467 
(2013). 

320 Angelucci, A. & Bologna, M. Targeting vascular cell migration as a strategy 
for blocking angiogenesis: the central role of focal adhesion protein tyrosine 
kinase family. Curr Pharm Des 13, 2129-2145 (2007). 

321 Chen, X. L. et al. VEGF-induced vascular permeability is mediated by FAK. 
Dev Cell 22, 146-157, doi:10.1016/j.devcel.2011.11.002 (2012). 

322 Le Boeuf, F., Houle, F. & Huot, J. Regulation of vascular endothelial growth 
factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat 
shock protein 90 and Src kinase activities. J Biol Chem 279, 39175-39185, 
doi:10.1074/jbc.M405493200 (2004). 

323 Hiratsuka, S. et al. Endothelial focal adhesion kinase mediates cancer cell 
homing to discrete regions of the lungs via E-selectin up-regulation. 
Proceedings of the National Academy of Sciences of the United States of 
America 108, 3725-3730, doi:10.1073/pnas.1100446108 (2011). 

324 Barker, H. E., Bird, D., Lang, G. & Erler, J. T. Tumor-secreted LOXL2 
activates fibroblasts through FAK signaling. Mol Cancer Res 11, 1425-1436, 
doi:10.1158/1541-7786.MCR-13-0033-T (2013). 

325 Greenberg, R. S. et al. FAK-dependent regulation of myofibroblast 
differentiation. FASEB J 20, 1006-1008, doi:10.1096/fj.05-4838fje (2006). 

326 Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific 
mutation and amplification of Ha-ras during mouse skin carcinogenesis. 
Nature 322, 78-80, doi:10.1038/322078a0 (1986). 

327 Frisch, S. M., Vuori, K., Ruoslahti, E. & Chan-Hui, P. Y. Control of 
adhesion-dependent cell survival by focal adhesion kinase. The Journal of 
cell biology 134, 793-799 (1996). 

328 de Hoon, M. J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering 
software. Bioinformatics 20, 1453-1454, doi:10.1093/bioinformatics/bth078 
(2004). 



 

 209 

329 Saldanha, A. J. Java Treeview--extensible visualization of microarray data. 
Bioinformatics 20, 3246-3248, doi:10.1093/bioinformatics/bth349 (2004). 

330 Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for 
gene list enrichment analysis and candidate gene prioritization. Nucleic acids 
research 37, W305-311, doi:10.1093/nar/gkp427 (2009). 

331 Alexander, S. P. et al. The Concise Guide to PHARMACOLOGY 2013/14: G 
protein-coupled receptors. Br J Pharmacol 170, 1459-1581, 
doi:10.1111/bph.12445 (2013). 

332 Pawson, A. J. et al. The IUPHAR/BPS Guide to PHARMACOLOGY: an 
expert-driven knowledgebase of drug targets and their ligands. Nucleic acids 
research 42, D1098-1106, doi:10.1093/nar/gkt1143 (2014). 

333 Bachelerie, F. et al. International Union of Basic and Clinical Pharmacology. 
[corrected]. LXXXIX. Update on the extended family of chemokine receptors 
and introducing a new nomenclature for atypical chemokine receptors. 
Pharmacological reviews 66, 1-79, doi:10.1124/pr.113.007724 (2014). 

334 Shannon, P. et al. Cytoscape: a software environment for integrated models 
of biomolecular interaction networks. Genome research 13, 2498-2504, 
doi:10.1101/gr.1239303 (2003). 

335 Chow, S.-C. Sample size calculations for clinical trials 

Wiley Interdisciplinary Reviews: Computational Statistics Volume 3, Issue 5. Wiley 
Interdisciplinary Reviews: Computational Statistics 3, 414-427 (2011). 
<http://onlinelibrary.wiley.com/doi/10.1002/wics.155/abstract>. 

336 Hennings, H. et al. FVB/N mice: an inbred strain sensitive to the chemical 
induction of squamous cell carcinomas in the skin. Carcinogenesis 14, 2353-
2358 (1993). 

337 Castagna, M. et al. Direct activation of calcium-activated, phospholipid-
dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 
257, 7847-7851 (1982). 

338 Lee, W. Y., Lockniskar, M. F. & Fischer, S. M. Interleukin-1 alpha mediates 
phorbol ester-induced inflammation and epidermal hyperplasia. FASEB J 8, 
1081-1087 (1994). 

339 McLean, G. W. et al. Specific deletion of focal adhesion kinase suppresses 
tumor formation and blocks malignant progression. Genes & development 18, 
2998-3003, doi:10.1101/gad.316304 (2004). 

340 Sieg, D. J., Hauck, C. R. & Schlaepfer, D. D. Required role of focal adhesion 
kinase (FAK) for integrin-stimulated cell migration. J Cell Sci 112 ( Pt 16), 
2677-2691 (1999). 

341 Schorpp, M., Hofmann, M., Dear, T. N. & Boehm, T. Characterization of 
mouse and human nude genes. Immunogenetics 46, 509-515 (1997). 

342 Siddiqui, W. A., Ahad, A. & Ahsan, H. The mystery of BCL2 family: Bcl-2 
proteins and apoptosis: an update. Arch Toxicol 89, 289-317, 
doi:10.1007/s00204-014-1448-7 (2015). 



 

 210 

343 Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development 
and therapy. Oncogene 26, 1324-1337, doi:10.1038/sj.onc.1210220 (2007). 

344 Sonoda, Y. et al. Anti-apoptotic role of focal adhesion kinase (FAK). 
Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the 
overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem 
275, 16309-16315 (2000). 

345 Sakurai, S. et al. Mutated focal adhesion kinase induces apoptosis in a human 
glioma cell line, T98G. Biochem Biophys Res Commun 293, 174-181, 
doi:10.1016/S0006-291X(02)00192-4 (2002). 

346 Solana, R. et al. Effect of phorbol ester TPA on macrophage metabolic 
activity. Methods Find Exp Clin Pharmacol 6, 67-71 (1984). 

347 McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and 
sensitivity to immune checkpoint blockade. Science 351, 1463-1469, 
doi:10.1126/science.aaf1490 (2016). 

348 Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 
expression by dendritic cell subtypes in mouse thymus and spleen. Journal of 
immunology 164, 2978-2986 (2000). 

349 Wang, B. et al. Multiple paths for activation of naive CD8+ T cells: CD4-
independent help. J Immunol 167, 1283-1289 (2001). 

350 Bevan, M. J. Helping the CD8(+) T-cell response. Nat Rev Immunol 4, 595-
602, doi:10.1038/nri1413 (2004). 

351 Norment, A. M., Salter, R. D., Parham, P., Engelhard, V. H. & Littman, D. R. 
Cell-cell adhesion mediated by CD8 and MHC class I molecules. Nature 336, 
79-81, doi:10.1038/336079a0 (1988). 

352 Koretzky, G. A. Multiple roles of CD4 and CD8 in T cell activation. Journal 
of immunology 185, 2643-2644, doi:10.4049/jimmunol.1090076 (2010). 

353 Watkins, S. K., Zhu, Z., Watkins, K. E. & Hurwitz, A. A. Isolation of 
immune cells from primary tumors. J Vis Exp, e3952, doi:10.3791/3952 
(2012). 

354 Freshney, R. I. Culture of animal cells : a manual of basic technique and 
specialized applications. 6th edn,  (Wiley-Blackwell, 2010). 

355 Cerra, R., Zarbo, R. J. & Crissman, J. D. Dissociation of cells from solid 
tumors. Methods Cell Biol 33, 1-12 (1990). 

356 Kanitakis, J., Karayannopoulou, G., Roux, A. & Euvrard, S. Histopathologic 
Features Predictive of Aggressiveness of Post-transplant Cutaneous 
Squamous-cell Carcinomas. Anticancer Res 35, 2305-2308 (2015). 

357 Jewell, R. et al. The clinicopathological and gene expression patterns 
associated with ulceration of primary melanoma. Pigment Cell Melanoma 
Res 28, 94-104, doi:10.1111/pcmr.12315 (2015). 



 

 211 

358 San Mateo, L. R., Toffer, K. L., Orndorff, P. E. & Kawula, T. H. Immune 
cells are required for cutaneous ulceration in a swine model of chancroid. 
Infect Immun 67, 4963-4967 (1999). 

359 Cruse, J. M. et al. Facilitation of immune function, healing of pressure ulcers, 
and nutritional status in spinal cord injury patients. Exp Mol Pathol 68, 38-54, 
doi:10.1006/exmp.1999.2292 (2000). 

360 Lee, H. J., Kim, M. K., Wee, W. R. & Oh, J. Y. Interplay of Immune Cells in 
Mooren Ulcer. Cornea 34, 1164-1167, doi:10.1097/ICO.0000000000000471 
(2015). 

361 Umemura, N. et al. Tumor-infiltrating myeloid-derived suppressor cells are 
pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type 
characteristics. J Leukoc Biol 83, 1136-1144, doi:10.1189/jlb.0907611 
(2008). 

362 Hengel, R. L. et al. Cutting edge: L-selectin (CD62L) expression 
distinguishes small resting memory CD4+ T cells that preferentially respond 
to recall antigen. Journal of immunology 170, 28-32 (2003). 

363 Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to 
signalling regulators. Nat Rev Mol Cell Biol 4, 33-45, doi:10.1038/nrm1004 
(2003). 

364 Beyer, M. & Schultze, J. L. Regulatory T cells in cancer. Blood 108, 804-811, 
doi:10.1182/blood-2006-02-002774 (2006). 

365 Biragyn, A. & Longo, D. L. Neoplastic "Black Ops": cancer's subversive 
tactics in overcoming host defenses. Seminars in cancer biology 22, 50-59, 
doi:10.1016/j.semcancer.2012.01.005 (2012). 

366 Marigo, I., Dolcetti, L., Serafini, P., Zanovello, P. & Bronte, V. Tumor-
induced tolerance and immune suppression by myeloid derived suppressor 
cells. Immunological reviews 222, 162-179, doi:10.1111/j.1600-
065X.2008.00602.x (2008). 

367 Serrels, A. et al. Real-time study of E-cadherin and membrane dynamics in 
living animals: implications for disease modeling and drug development. 
Cancer research 69, 2714-2719, doi:10.1158/0008-5472.CAN-08-4308 
(2009). 

368 Brunton, V. G. & Frame, M. C. Src and focal adhesion kinase as therapeutic 
targets in cancer. Curr Opin Pharmacol 8, 427-432, 
doi:10.1016/j.coph.2008.06.012 (2008). 

369 Plaza-Menacho, I. et al. Focal adhesion kinase (FAK) binds RET kinase via 
its FERM domain, priming a direct and reciprocal RET-FAK transactivation 
mechanism. J Biol Chem 286, 17292-17302, doi:10.1074/jbc.M110.168500 
(2011). 

370 Golubovskaya, V. M. Focal adhesion kinase as a cancer therapy target. 
Anticancer Agents Med Chem 10, 735-741 (2010). 



 

 212 

371 Hao, H. et al. Focal adhesion kinase as potential target for cancer therapy 
(Review). Oncol Rep 22, 973-979 (2009). 

372 Golubovskaya, V. M., Kweh, F. A. & Cance, W. G. Focal adhesion kinase 
and cancer. Histol Histopathol 24, 503-510 (2009). 

373 Lim, S. T., Mikolon, D., Stupack, D. G. & Schlaepfer, D. D. FERM control 
of FAK function: implications for cancer therapy. Cell Cycle 7, 2306-2314 
(2008). 

374 Genin, M., Clement, F., Fattaccioli, A., Raes, M. & Michiels, C. M1 and M2 
macrophages derived from THP-1 cells differentially modulate the response 
of cancer cells to etoposide. BMC Cancer 15, 577, doi:10.1186/s12885-015-
1546-9 (2015). 

375 Ikeda, H., Old, L. J. & Schreiber, R. D. The roles of IFN gamma in protection 
against tumor development and cancer immunoediting. Cytokine Growth 
Factor Rev 13, 95-109 (2002). 

376 Li, S. N. et al. IL-21 modulates release of proinflammatory cytokines in LPS-
stimulated macrophages through distinct signaling pathways. Mediators 
Inflamm 2013, 548073, doi:10.1155/2013/548073 (2013). 

377 Li, Y., Bleakley, M. & Yee, C. IL-21 influences the frequency, phenotype, 
and affinity of the antigen-specific CD8 T cell response. Journal of 
immunology 175, 2261-2269 (2005). 

378 Pardon, E. et al. A general protocol for the generation of Nanobodies for 
structural biology. Nat Protoc 9, 674-693, doi:10.1038/nprot.2014.039 
(2014). 

379 Le Jeune, C. & Thomas, X. Potential for bispecific T-cell engagers: role of 
blinatumomab in acute lymphoblastic leukemia. Drug Des Devel Ther 10, 
757-765, doi:10.2147/DDDT.S83848 (2016). 

380 Smits, N. C. & Sentman, C. L. Bispecific T-Cell Engagers (BiTEs) as 
Treatment of B-Cell Lymphoma. J Clin Oncol 34, 1131-1133, 
doi:10.1200/JCO.2015.64.9970 (2016). 

381 Schmohl, J. U., Gleason, M. K., Dougherty, P. R., Miller, J. S. & Vallera, D. 
A. Heterodimeric Bispecific Single Chain Variable Fragments (scFv) Killer 
Engagers (BiKEs) Enhance NK-cell Activity Against CD133+ Colorectal 
Cancer Cells. Target Oncol, doi:10.1007/s11523-015-0391-8 (2015). 

382 Wu, M. R. et al. B7H6-Specific Bispecific T Cell Engagers Lead to Tumor 
Elimination and Host Antitumor Immunity. Journal of immunology 194, 
5305-5311, doi:10.4049/jimmunol.1402517 (2015). 

383 Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T-cell engagers for 
cancer immunotherapy. Immunol Cell Biol 93, 290-296, 
doi:10.1038/icb.2014.93 (2015). 

384 Steeland, S., Vandenbroucke, R. E. & Libert, C. Nanobodies as therapeutics: 
big opportunities for small antibodies. Drug Discov Today, 
doi:10.1016/j.drudis.2016.04.003 (2016). 



 

 213 

385 Ivanov, A. A., Khuri, F. R. & Fu, H. Targeting protein-protein interactions as 
an anticancer strategy. Trends Pharmacol Sci 34, 393-400, 
doi:10.1016/j.tips.2013.04.007 (2013). 

386 Fry, D. C. & Vassilev, L. T. Targeting protein-protein interactions for cancer 
therapy. J Mol Med (Berl) 83, 955-963, doi:10.1007/s00109-005-0705-x 
(2005). 

387 Oliveira, S., Heukers, R., Sornkom, J., Kok, R. J. & van Bergen En 
Henegouwen, P. M. Targeting tumors with nanobodies for cancer imaging 
and therapy. J Control Release 172, 607-617, 
doi:10.1016/j.jconrel.2013.08.298 (2013). 

388 Golubeva, Y., Salcedo, R., Mueller, C., Liotta, L. A. & Espina, V. Laser 
capture microdissection for protein and NanoString RNA analysis. Methods 
Mol Biol 931, 213-257, doi:10.1007/978-1-62703-056-4_12 (2013). 

389 Stricker, T. P. et al. Validation of a prognostic multi-gene signature in high-
risk neuroblastoma using the high throughput digital NanoString nCounter 
system. Mol Oncol 8, 669-678, doi:10.1016/j.molonc.2014.01.010 (2014). 

390 Zelenay, S. et al. Foxp3+ CD25- CD4 T cells constitute a reservoir of 
committed regulatory cells that regain CD25 expression upon homeostatic 
expansion. Proceedings of the National Academy of Sciences of the United 
States of America 102, 4091-4096, doi:10.1073/pnas.0408679102 (2005). 

391 Herndler-Brandstetter, D. et al. Non-regulatory CD8+CD45RO+CD25+ T-
lymphocytes may compensate for the loss of antigen-inexperienced 
CD8+CD45RA+ T-cells in old age. Biol Chem 389, 561-568 (2008). 

392 Churlaud, G. et al. Human and Mouse CD8(+)CD25(+)FOXP3(+) 
Regulatory T Cells at Steady State and during Interleukin-2 Therapy. 
Frontiers in immunology 6, 171, doi:10.3389/fimmu.2015.00171 (2015). 

393 Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y. & Rudensky, A. Y. Transient 
regulatory T cell ablation deters oncogene-driven breast cancer and enhances 
radiotherapy. The Journal of experimental medicine 210, 2435-2466, 
doi:10.1084/jem.20130762 (2013). 

394 Camirand, G. et al. CD45 ligation expands Tregs by promoting interactions 
with DCs. J Clin Invest 124, 4603-4613, doi:10.1172/JCI74087 (2014). 

395 Goldstein, J. D. et al. Role of cytokines in thymus- versus peripherally 
derived-regulatory T cell differentiation and function. Frontiers in 
immunology 4, 155, doi:10.3389/fimmu.2013.00155 (2013). 

396 Ondondo, B., Jones, E., Godkin, A. & Gallimore, A. Home sweet home: the 
tumor microenvironment as a haven for regulatory T cells. Frontiers in 
immunology 4, 197, doi:10.3389/fimmu.2013.00197 (2013). 

397 Hong, S. et al. The role of focal adhesion kinase in the TGF-beta-induced 
myofibroblast transdifferentiation of human Tenon's fibroblasts. Korean J 
Ophthalmol 26, 45-48, doi:10.3341/kjo.2012.26.1.45 (2012). 



 

 214 

398 Chen, R. et al. Focal adhesion kinase (FAK) siRNA inhibits human 
hypertrophic scar by suppressing integrin alpha, TGF-beta and alpha-SMA. 
Cell Biol Int 38, 803-808, doi:10.1002/cbin.10265 (2014). 

399 Forster, R. et al. CCR7 coordinates the primary immune response by 
establishing functional microenvironments in secondary lymphoid organs. 
Cell 99, 23-33 (1999). 

400 Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed 
cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. 
Proceedings of the National Academy of Sciences of the United States of 
America 95, 9448-9453 (1998). 

401 Lee, J. H., Kang, S. G. & Kim, C. H. FoxP3+ T cells undergo conventional 
first switch to lymphoid tissue homing receptors in thymus but accelerated 
second switch to nonlymphoid tissue homing receptors in secondary 
lymphoid tissues. Journal of immunology 178, 301-311 (2007). 

402 Zheng, S. G., Wang, J. H., Gray, J. D., Soucier, H. & Horwitz, D. A. Natural 
and induced CD4+CD25+ cells educate CD4+CD25- cells to develop 
suppressive activity: the role of IL-2, TGF-beta, and IL-10. Journal of 
immunology 172, 5213-5221 (2004). 

403 Andrieux, G., Le Borgne, M. & Theret, N. An integrative modeling 
framework reveals plasticity of TGF-beta signaling. BMC Syst Biol 8, 30, 
doi:10.1186/1752-0509-8-30 (2014). 

404 Principe, D. R. et al. TGF-beta: duality of function between tumor prevention 
and carcinogenesis. J Natl Cancer Inst 106, djt369, doi:10.1093/jnci/djt369 
(2014). 

405 Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-beta in 
homeostasis and cancer. Nature reviews. Cancer 3, 807-821, 
doi:10.1038/nrc1208 (2003). 

406 Papageorgis, P. & Stylianopoulos, T. Role of TGFbeta in regulation of the 
tumor microenvironment and drug delivery (review). Int J Oncol 46, 933-
943, doi:10.3892/ijo.2015.2816 (2015). 

407 Hannon, G. J. & Beach, D. p15INK4B is a potential effector of TGF-beta-
induced cell cycle arrest. Nature 371, 257-261, doi:10.1038/371257a0 (1994). 

408 Datto, M. B. et al. Transforming growth factor beta induces the cyclin-
dependent kinase inhibitor p21 through a p53-independent mechanism. 
Proceedings of the National Academy of Sciences of the United States of 
America 92, 5545-5549 (1995). 

409 Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth 
factor-beta and contact inhibition to cell cycle arrest. Genes & development 8, 
9-22 (1994). 

410 Laiho, M., DeCaprio, J. A., Ludlow, J. W., Livingston, D. M. & Massague, J. 
Growth inhibition by TGF-beta linked to suppression of retinoblastoma 
protein phosphorylation. Cell 62, 175-185 (1990). 



 

 215 

411 Pietenpol, J. A. et al. TGF-beta 1 inhibition of c-myc transcription and 
growth in keratinocytes is abrogated by viral transforming proteins with pRB 
binding domains. Cell 61, 777-785 (1990). 

412 Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated 
MAD-related protein that is functionally mutated in colorectal carcinoma. 
Cell 86, 543-552 (1996). 

413 Hahn, S. A. et al. Homozygous deletion map at 18q21.1 in pancreatic cancer. 
Cancer research 56, 490-494 (1996). 

414 Thiagalingam, S. et al. Evaluation of candidate tumour suppressor genes on 
chromosome 18 in colorectal cancers. Nat Genet 13, 343-346, 
doi:10.1038/ng0796-343 (1996). 

415 Kim, S. K. et al. DPC4, a candidate tumor suppressor gene, is altered 
infrequently in head and neck squamous cell carcinoma. Cancer research 56, 
2519-2521 (1996). 

416 Schutte, M. et al. DPC4 gene in various tumor types. Cancer research 56, 
2527-2530 (1996). 

417 Markowitz, S. et al. Inactivation of the type II TGF-beta receptor in colon 
cancer cells with microsatellite instability. Science 268, 1336-1338 (1995). 

418 Chen, R. H., Ebner, R. & Derynck, R. Inactivation of the type II receptor 
reveals two receptor pathways for the diverse TGF-beta activities. Science 
260, 1335-1338 (1993). 

419 Kim, I. Y. et al. Genetic change in transforming growth factor beta (TGF-
beta) receptor type I gene correlates with insensitivity to TGF-beta 1 in 
human prostate cancer cells. Cancer research 56, 44-48 (1996). 

420 Grotendorst, G. R. Connective tissue growth factor: a mediator of TGF-beta 
action on fibroblasts. Cytokine Growth Factor Rev 8, 171-179 (1997). 

421 Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. 
Myofibroblasts and mechano-regulation of connective tissue remodelling. 
Nat Rev Mol Cell Biol 3, 349-363, doi:10.1038/nrm809 (2002). 

422 Karagiannis, G. S. et al. Cancer-associated fibroblasts drive the progression 
of metastasis through both paracrine and mechanical pressure on cancer 
tissue. Mol Cancer Res 10, 1403-1418, doi:10.1158/1541-7786.MCR-12-
0307 (2012). 

423 Cance, W. G. et al. Immunohistochemical analyses of focal adhesion kinase 
expression in benign and malignant human breast and colon tissues: 
correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6, 
2417-2423 (2000). 

424 Oktay, M. H., Oktay, K., Hamele-Bena, D., Buyuk, A. & Koss, L. G. Focal 
adhesion kinase as a marker of malignant phenotype in breast and cervical 
carcinomas. Hum Pathol 34, 240-245, doi:10.1053/hupa.2003.40 (2003). 

425 Zhang, J., He, D. H., Zajac-Kaye, M. & Hochwald, S. N. A small molecule 
FAK kinase inhibitor, GSK2256098, inhibits growth and survival of 



 

 216 

pancreatic ductal adenocarcinoma cells. Cell Cycle 13, 3143-3149, 
doi:10.4161/15384101.2014.949550 (2014). 

426 Lark, A. L. et al. Overexpression of focal adhesion kinase in primary 
colorectal carcinomas and colorectal liver metastases: immunohistochemistry 
and real-time PCR analyses. Clin Cancer Res 9, 215-222 (2003). 

427 Hess, A. R. & Hendrix, M. J. Focal adhesion kinase signaling and the 
aggressive melanoma phenotype. Cell Cycle 5, 478-480 (2006). 

428 Bald, T. et al. Ultraviolet-radiation-induced inflammation promotes 
angiotropism and metastasis in melanoma. Nature 507, 109-113 (2014). 

429 Turner, P. V., Brabb, T., Pekow, C. & Vasbinder, M. A. Administration of 
substances to laboratory animals: routes of administration and factors to 
consider. J Am Assoc Lab Anim Sci 50, 600-613 (2011). 

430 Brown, A. P., Dinger, N. & Levine, B. S. Stress produced by gavage 
administration in the rat. Contemp Top Lab Anim Sci 39, 17-21 (2000). 

431 Vachon, P., Faubert, S., Blais, D., Comtois, A. & Bienvenu, J. G. A 
pathophysiological study of abdominal organs following intraperitoneal 
injections of chloral hydrate in rats: comparison between two anaesthesia 
protocols. Lab Anim-Uk 34, 84-90, doi:Doi 10.1258/002367700780578082 
(2000). 

432 Vachon, P. Self-mutilation in rabbits following intramuscular ketamine-
xylazine-acepromazine injections. Can Vet J 40, 581-582 (1999). 

433 Alban, L. et al. The welfare impact of increased gavaging doses in rats. Anim 
Welfare 10, 303-314 (2001). 

434 Bonnichsen, M., Dragsted, N. & Hansen, A. K. The welfare impact of 
gavaging laboratory rats. Anim Welfare 14, 223-227 (2005). 

435 Morton, D. B. et al. Refining procedures for the administration of substances. 
Lab Anim-Uk 35, 1-41, doi:Doi 10.1258/0023677011911345 (2001). 

436 Turner, P. V., Pekow, C., Vasbinder, M. A. & Brabb, T. Administration of 
Substances to Laboratory Animals: Equipment Considerations, Vehicle 
Selection, and Solute Preparation. J Am Assoc Lab Anim 50, 614-627 (2011). 

437 Guengerich, F. P. Common and uncommon cytochrome P450 reactions 
related to metabolism and chemical toxicity. Chem Res Toxicol 14, 611-650, 
doi:10.1021/tx0002583 (2001). 

438 Abdel-Ghany, M., Cheng, H. C., Elble, R. C. & Pauli, B. U. Focal adhesion 
kinase activated by beta(4) integrin ligation to mCLCA1 mediates early 
metastatic growth. J Biol Chem 277, 34391-34400, 
doi:10.1074/jbc.M205307200 (2002). 

439 Albasri, A., Fadhil, W., Scholefield, J. H., Durrant, L. G. & Ilyas, M. Nuclear 
expression of phosphorylated focal adhesion kinase is associated with poor 
prognosis in human colorectal cancer. Anticancer Res 34, 3969-3974 (2014). 



 

 217 

440 Albini, A., Mirisola, V. & Pfeffer, U. Metastasis signatures: genes regulating 
tumor-microenvironment interactions predict metastatic behavior. Cancer 
Metastasis Rev 27, 75-83, doi:10.1007/s10555-007-9111-x (2008). 

441 Brenner, W. et al. Migration of renal carcinoma cells is dependent on protein 
kinase Cdelta via beta1 integrin and focal adhesion kinase. Int J Oncol 32, 
1125-1131 (2008). 

442 Rodrigo, J. P. et al. Focal adhesion kinase and E-cadherin as markers for 
nodal metastasis in laryngeal cancer. Arch Otolaryngol Head Neck Surg 133, 
145-150, doi:10.1001/archotol.133.2.145 (2007). 

443 Schlaepfer, D. D., Mitra, S. K. & Ilic, D. Control of motile and invasive cell 
phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692, 77-102, 
doi:10.1016/j.bbamcr.2004.04.008 (2004). 

444 Shanthi, E. et al. Focal adhesion kinase inhibitors in the treatment of 
metastatic cancer: a patent review. Expert Opin Ther Pat 24, 1077-1100, 
doi:10.1517/13543776.2014.948845 (2014). 

445 van Nimwegen, M. J. & van de Water, B. Focal adhesion kinase: a potential 
target in cancer therapy. Biochemical pharmacology 73, 597-609, 
doi:10.1016/j.bcp.2006.08.011 (2007). 

446 van Nimwegen, M. J., Verkoeijen, S., van Buren, L., Burg, D. & van de 
Water, B. Requirement for focal adhesion kinase in the early phase of 
mammary adenocarcinoma lung metastasis formation. Cancer research 65, 
4698-4706, doi:10.1158/0008-5472.CAN-04-4126 (2005). 

447 Ward, K. K. et al. Inhibition of focal adhesion kinase (FAK) activity prevents 
anchorage-independent ovarian carcinoma cell growth and tumor 
progression. Clin Exp Metastasis 30, 579-594, doi:10.1007/s10585-012-
9562-5 (2013). 

448 Zheng, Y. et al. CD86 and CD80 differentially modulate the suppressive 
function of human regulatory T cells. Journal of immunology 172, 2778-2784 
(2004). 

449 Preston, C. C. et al. The ratios of CD8+ T cells to CD4+CD25+ FOXP3+ and 
FOXP3- T cells correlate with poor clinical outcome in human serous ovarian 
cancer. PLoS One 8, e80063, doi:10.1371/journal.pone.0080063 (2013). 

450 Kim, S. et al. Zonal difference and prognostic significance of foxp3 
regulatory T cell infiltration in breast cancer. J Breast Cancer 17, 8-17, 
doi:10.4048/jbc.2014.17.1.8 (2014). 

451 Liyanage, U. K. et al. Increased prevalence of regulatory T cells (Treg) is 
induced by pancreas adenocarcinoma. J Immunother 29, 416-424, 
doi:10.1097/01.cji.0000205644.43735.4e (2006). 

452 Somasundaram, R. et al. Inhibition of cytolytic T lymphocyte proliferation by 
autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient 
is mediated by transforming growth factor-beta. Cancer research 62, 5267-
5272 (2002). 



 

 218 

453 Ichihara, F. et al. Increased populations of regulatory T cells in peripheral 
blood and tumor-infiltrating lymphocytes in patients with gastric and 
esophageal cancers. Clin Cancer Res 9, 4404-4408 (2003). 

454 Schlaepfer, D. D. et al. Tumor necrosis factor-alpha stimulates focal adhesion 
kinase activity required for mitogen-activated kinase-associated interleukin 6 
expression. J Biol Chem 282, 17450-17459, doi:10.1074/jbc.M610672200 
(2007). 

455 Sheta, E. A., Harding, M. A., Conaway, M. R. & Theodorescu, D. Focal 
adhesion kinase, Rap1, and transcriptional induction of vascular endothelial 
growth factor. J Natl Cancer Inst 92, 1065-1073 (2000). 

456 McLean, G. W. et al. Decreased focal adhesion kinase suppresses papilloma 
formation during experimental mouse skin carcinogenesis. Cancer research 
61, 8385-8389 (2001). 

457 Yusuf, N. et al. Antagonistic roles of CD4+ and CD8+ T-cells in 7,12-
dimethylbenz(a)anthracene cutaneous carcinogenesis. Cancer research 68, 
3924-3930, doi:10.1158/0008-5472.CAN-07-3059 (2008). 

458 Ashton, G. H. et al. Focal adhesion kinase is required for intestinal 
regeneration and tumorigenesis downstream of Wnt/c-Myc signaling. Dev 
Cell 19, 259-269, doi:10.1016/j.devcel.2010.07.015 (2010). 

459 Lahlou, H. et al. Mammary epithelial-specific disruption of the focal 
adhesion kinase blocks mammary tumor progression. Proceedings of the 
National Academy of Sciences of the United States of America 104, 20302-
20307, doi:10.1073/pnas.0710091104 (2007). 

460 Slack-Davis, J. K., Hershey, E. D., Theodorescu, D., Frierson, H. F. & 
Parsons, J. T. Differential requirement for focal adhesion kinase signaling in 
cancer progression in the transgenic adenocarcinoma of mouse prostate 
model. Mol Cancer Ther 8, 2470-2477, doi:10.1158/1535-7163.MCT-09-
0262 (2009). 

461 Luo, M. et al. Mammary epithelial-specific ablation of the focal adhesion 
kinase suppresses mammary tumorigenesis by affecting mammary cancer 
stem/progenitor cells. Cancer research 69, 466-474, doi:10.1158/0008-
5472.CAN-08-3078 (2009). 

462 Pylayeva, Y. et al. Ras- and PI3K-dependent breast tumorigenesis in mice 
and humans requires focal adhesion kinase signaling. J Clin Invest 119, 252-
266, doi:10.1172/JCI37160 (2009). 

463 Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated 
fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. 
Proceedings of the National Academy of Sciences of the United States of 
America 110, 20212-20217, doi:10.1073/pnas.1320318110 (2013). 

464 Ali, K. et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-
mediated immune tolerance to cancer. Nature 510, 407-411, 
doi:10.1038/nature13444 (2014). 



 

 219 

465 Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory 
T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. 
The Journal of experimental medicine 210, 1695-1710, 
doi:10.1084/jem.20130579 (2013). 

466 Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J. & Allison, J. P. 
Blockade of CTLA-4 on both effector and regulatory T cell compartments 
contributes to the antitumor activity of anti-CTLA-4 antibodies. The Journal 
of experimental medicine 206, 1717-1725, doi:10.1084/jem.20082492 (2009). 

467 Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade 
and GM-CSF combination immunotherapy alters the intratumor balance of 
effector and regulatory T cells. J Clin Invest 116, 1935-1945, 
doi:10.1172/JCI27745 (2006). 

468 Wang, W. et al. PD1 blockade reverses the suppression of melanoma antigen-
specific CTL by CD4+ CD25(Hi) regulatory T cells. International 
immunology 21, 1065-1077, doi:10.1093/intimm/dxp072 (2009). 

469 Fife, B. T. & Pauken, K. E. The role of the PD-1 pathway in autoimmunity 
and peripheral tolerance. Annals of the New York Academy of Sciences 1217, 
45-59, doi:10.1111/j.1749-6632.2010.05919.x (2011). 

470 Larkin, J. et al. Combined Nivolumab and Ipilimumab or Monotherapy in 
Untreated Melanoma. The New England journal of medicine 373, 23-34, 
doi:10.1056/NEJMoa1504030 (2015). 

471 Arkenau, H. T. et al. A phase Ib dose-escalation study of GSK2256098 
(FAKi) plus trametinib (MEKi) in patients with selected advanced solid 
tumors. Journal of Clinical Oncology 33 (2015). 

472 Rech, A. J. & Vonderheide, R. H. Clinical use of anti-CD25 antibody 
daclizumab to enhance immune responses to tumor antigen vaccination by 
targeting regulatory T cells. Annals of the New York Academy of Sciences 
1174, 99-106, doi:10.1111/j.1749-6632.2009.04939.x (2009). 

473 Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating 
macrophages and improves response to T-cell checkpoint immunotherapy in 
pancreatic cancer models. Cancer research 74, 5057-5069, 
doi:10.1158/0008-5472.CAN-13-3723 (2014). 

474 Curran, M. A., Montalvo, W., Yagita, H. & Allison, J. P. PD-1 and CTLA-4 
combination blockade expands infiltrating T cells and reduces regulatory T 
and myeloid cells within B16 melanoma tumors. Proceedings of the National 
Academy of Sciences of the United States of America 107, 4275-4280, 
doi:10.1073/pnas.0915174107 (2010). 

475 Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients 
with advanced cancer. The New England journal of medicine 366, 2455-2465, 
doi:10.1056/NEJMoa1200694 (2012). 

 
  



Article

Nuclear FAK Controls Chemokine Transcription,
Tregs, and Evasion of Anti-tumor Immunity

Graphical Abstract

Highlights
d Depletion or kinase inhibition of FAK can cause squamous

cell carcinoma regression

d FAK promotes tumor evasion by inducing an immuno-

suppressive microenvironment

d Nuclear FAK promotes transcription of chemokines that

drive recruitment of Tregs

d FAK-induced Tregs inhibit cytotoxic CD8+ T cells, allowing

tumor tolerance and growth

Authors
Alan Serrels, Tom Lund, Bryan Serrels, ...,

Stephen M. Anderton, Robert J.B. Nibbs,

Margaret C. Frame

Correspondence
a.serrels@ed.ac.uk (A.S.),
m.frame@ed.ac.uk (M.C.F.)

In Brief
Nuclear focal adhesion kinase (FAK)

regulates transcription of chemokines

that drive recruitment of tumor-

associated regulatory T cells (Tregs),

thereby creating a tumor suppressive

microenvironment by inhibiting cytotoxic

CD8+ T cell activity.

Accession Numbers
GSE71662

Serrels et al., 2015, Cell 163, 160–173
September 24, 2015 ª2015 The Authors
http://dx.doi.org/10.1016/j.cell.2015.09.001



Article

Nuclear FAK Controls Chemokine Transcription,
Tregs, and Evasion of Anti-tumor Immunity
Alan Serrels,1,7,* Tom Lund,1,7 Bryan Serrels,1 Adam Byron,1 Rhoanne C. McPherson,2 Alexander von Kriegsheim,1
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SUMMARY

Focal adhesion kinase (FAK) promotes anti-tumor
immune evasion. Specifically, the kinase activity of
nuclear-targeted FAK in squamous cell carcinoma
(SCC) cells drives exhaustion of CD8+ T cells and
recruitment of regulatory T cells (Tregs) in the tumor
microenvironment by regulating chemokine/cytokine
and ligand-receptor networks, including via tran-
scription of Ccl5, which is crucial. These changes
inhibit antigen-primed cytotoxic CD8+ T cell activity,
permitting growth of FAK-expressing tumors. Mech-
anistically, nuclear FAK is associated with chromatin
and exists in complex with transcription factors and
their upstream regulators that control Ccl5 expres-
sion. Furthermore, FAK’s immuno-modulatory nu-
clear activities may be specific to cancerous squa-
mous epithelial cells, as normal keratinocytes do
not have nuclear FAK. Finally, we show that a
small-molecule FAK kinase inhibitor, VS-4718, which
is currently in clinical development, also drives
depletion of Tregs and promotes a CD8+ T cell-medi-
ated anti-tumor response. Therefore, FAK inhibitors
may trigger immune-mediated tumor regression,
providing previously unrecognized therapeutic
opportunities.

INTRODUCTION

First described more than a decade ago (Onizuka et al., 1999;
Shimizu et al., 1999), regulatory T cells (Tregs) have become
recognized as a core component of the immuno-suppressive ar-
mory utilized by many tumors to keep the anti-tumor activity of
antigen-primed CD8+ T cells at bay. Increased Treg numbers
has been associated with poorer survival in ovarian (Curiel

et al., 2004), gastrointestinal (Sasada et al., 2003), and esopha-
geal (Kono et al., 2006) cancer. Indeed, the ratio of CD8+

T cells/Tregs correlates with poor prognosis, shifting the balance
from anti-tumor immunity toward tumor tolerance (Quezada
et al., 2006; Sato et al., 2005; Shah et al., 2011). Through
secreting a range of chemokines and cytokines, cancer cells
can promote the recruitment of Tregs into tumors and can also
facilitate their peripheral expansion and retention (Darrasse-
Jèze and Podsypanina, 2013; Ondondo et al., 2013). Thus, Tregs
can act as a barrier to effective immune-based therapy aimed at
activation of a CD8+ T cell anti-tumor immune response. How-
ever, the specific signals within tumor cells that stimulate
elevated intra-tumoral Tregs, giving rise to tumor tolerance,
remain elusive.
FAK is a tyrosine kinase that regulates diverse cellular func-

tions, including adhesion, migration, invasion, polarity, prolifera-
tion, and survival (Frame et al., 2010). Using targeted gene dele-
tion in mouse skin, we have previously shown a requirement for
fak in tumor initiation and progression to malignant disease
(McLean et al., 2004). FAK is also required for mammary tumor
progression, intestinal tumorigenesis, and the androgen-inde-
pendent formation of neuroendocrine carcinoma in a mouse
model of prostate cancer (Ashton et al., 2010; Lahlou et al.,
2007; Luo et al., 2009a; Provenzano et al., 2008; Pylayeva
et al., 2009; Slack-Davis et al., 2009). Expression of FAK is
elevated in a number of tumor types (reviewed in McLean
et al., 2005), and FAK inhibitors are being developed as potential
cancer therapeutics (Roberts et al., 2008; Shapiro et al., 2014).
Many of FAK’s functions in cancer are via its role in signaling
downstream of integrins and growth factor receptors at the
plasma membrane. FAK also contains putative nuclear localiza-
tion sequences (NLS) within the F2 lobe of its FERM domain and
can localize to the nucleus upon receipt of cellular stress, where
it binds to p53 (Lim et al., 2008). However, the extent of FAK’s nu-
clear functions remains largely unknown. Here, we report a func-
tion for nuclear FAK in regulating transcription of inflammatory
cytokines and chemokines, in turn promoting an immuno-sup-
pressive, pro-tumorigenic microenvironment. This is mediated
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by recruitment and expansion of Tregs via FAK-regulated che-
mokine/cytokine networks, and we have found an important
role for Ccl5 and TGFb2. Therefore, FAK controls the tumor envi-
ronment, and suppressing FAK activity, including via a clinically
relevant FAK inhibitor, may be therapeutically beneficial by trig-
gering immune-mediated tumor regression.

RESULTS

FAK-Deficient SCC Tumors Undergo Regression in
an Immune-Competent Host
We used a syngeneic model of SCC in which the fak gene had
been deleted by Cre-lox recombination (McLean et al., 2004;
Serrels et al., 2012) and mutant tumor cell lines generated. We
monitored tumor growth following injection of 13 106 FAK-defi-
cient cells (FAK!/!) or FAK-deficient cells that re-expressed
wild-type FAK (FAK-WT) at comparable levels to endogenous
FAK in both CD-1 nude and FVB (syngeneic) host mouse strains.
In CD-1 nude mice, SCC FAK!/! tumor growth was character-
ized by amodest growth delay (Figure 1A) as reported previously
(Serrels et al., 2012). By contrast, in FVB mice, SCC FAK!/! tu-
mor growthwas characterized by an initial period of growth in the
first 7 days followed by complete regression by day 21 (Fig-
ure 1B). Thus, FAK expression is required for the survival and

Figure 1. Loss of FAK or FAK Kinase Activ-
ity Results in CD8+ T Cell-Dependent SCC
Tumor Clearance
(A and B) SCC FAK-WT and SCC FAK!/! subcu-

taneous tumor growth in immune-deficient CD-1

nude mice (A) and immune-competent FVB

mice (B).

(C and D) SCC FAK!/! (C) and SCC FAK-WT (D)

tumor growth in FVB mice treated with T-cell-

depleting antibodies.

(E)Secondary tumor re-challengewithSCCFAK!/!

(top) and SCC FAK-WT (middle) cells following a

pre-challenge with SCC FAK!/! cells and a 7-day

tumor-free period. Subcutaneous growth of SCC

FAK-WT and SCC FAK!/! tumors injected at day

28 without pre-challenge (bottom).

(F) Tumor growth in FVB mice following subcu-

taneous injection of SCC FAK-WT, SCC FAK!/!,

and SCC FAK-KD cells.

*p < 0.05, **p or ++p < 0.01, ****p < 0.0001; Sidak-

corrected two-way ANOVA (A and B) or Tukey-

corrected two-wayANOVA (C,versusSCCFAK!/!;

D, versus SCC FAK-WT; F, *, versus SCC FAK!/!

and +, versus SCC FAK-KD). Data are represented

as mean ± SEM; n = 5–6 tumors.

growth of SCC tumors in FVB mice with
a functional adaptive immune system.

SCC FAK!/! Tumor Regression Is
Dependent on CD8+ T Cells
To characterize the role of adaptive im-
munity in FAK!/! SCC tumor regression,
we used antibody-mediated T cell deple-
tion in animals bearing FAK!/! tumors

(Figures 1C and S1). Depletion of CD4+ T cells had no effect on
tumor growth. In contrast, depletion of CD8+ T cells, either alone
or in combination with CD4+ T cells, restored SCC FAK!/! tumor
growth. This implies that cytotoxic CD8+ T cells were respon-
sible for regression of FAK!/! tumors (Figure 1C) but does not
exclude an accessory role for CD4+ T cells. T cell depletion in
mice bearing SCC FAK-WT tumors (Figure 1D) revealed that:
(1) depletion of CD8+ T cells, either alone or in combination
with CD4+ T cells, caused a significant increase in tumor growth
when compared to isotype-treated controls at day 14, and
(2) depletion of CD4+ T cells alone caused regression of FAK-
WT SCC tumors by day 21. This implied that FAK-expressing
tumors were also under negative pressure from the immune sys-
tem and that cells from the CD4+ T cell compartment play a role
in protecting FAK-WT tumors from immune-mediated regression
(reason discussed later; Figure 3).
Next, we re-challenged mice with 1 3 106 SCC FAK-WT cells

after regression of primary FAK!/! SCC tumors, following 7 days
of tumor-free survival after the tumors had regressed (Figure 1E,
top andmiddle graphs). Neither FAK-deficient nor FAK-express-
ing SCC cells were able to grow after the mice had been pre-
challenged with SCC FAK!/! cells. As controls, SCC FAK-WT
and FAK!/! cells were injected at day 28 into mice with no
pre-challenge, and these grew as expected (Figure 1E, bottom).
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This implies that, following FAK!/! SCC tumor regression, host
mice remain immunized against further tumor challenge
because immunological memory had been established. It is
possible that either broad immunization against SCCs may
have occurred or, more likely, that the FAK!/! and FAK-WT
SCCs shared common antigen(s) that are expressed irrespec-
tive of FAK status. We conclude that FAK enables SCC cancer
cells to suppress an adaptive immune response rather than to
circumvent it through evading recognition per se. SCC FAK!/!

cells in which a FAK kinase-deficient mutant was re-expressed
(SCC FAK-KD) initially grew and then regressed with kinetics
that were only modestly delayed when compared to FAK!/!

cells, indicating that immune suppression depends on FAK ki-
nase activity (Figure 1F).

We next investigated the nature of the T cell response within
tumors derived from all three SCC cell lines using FACS analysis
on disaggregated tumor tissue taken at day 7. We did not
observe a significant change in the percentage of total CD4+

T cells (Figures 2A and S2 and Table S2) or the percentage of
CD4+ T cells that expressed the activation marker CD69 (Fig-
ure 2B). In contrast, we did observe a significant increase in
the proportion of effector CD4+CD44hiCD62Llow T cells in SCC
FAK!/! and FAK-KD tumors when compared to FAK-WT tumors
(Figures 2C and S2 and Table S2). Analysis of tumor-infiltrating
CD8+ T cells revealed a significant increase in SCC FAK!/!

and SCC FAK-KD tumors when compared to SCC FAK-WT tu-
mors (Figures 2D and S2 and Table S2), indicative of a height-
ened cytotoxic anti-tumor immune response. Staining with the
activation marker CD69 identified the presence of CD8+CD69+

T cells in all tumors (Figure 2E). Further analysis revealed an in-
crease in percentage of effector CD8+CD44hiCD62Llow T cells
in SCC FAK!/! and SCC FAK-KD tumors when compared to
SCC FAK-WT tumors (Figures 2F and S2 and Table S2), espe-
cially when effector CD8+ T cell numbers were normalized to
account for the observed changes in total CD8+ T cells and pre-
sented as a ‘‘fold change’’ (Figure 2G). However, while SCC
FAK!/! and SCC FAK-KD tumors had increased effector CD8+

T cells, there were activated CD8+ T cells present in all of the
SCC tumors, raising the question of why SCC FAK-WT tumors
do not succumb to the cytotoxic CD8+ T cell response.

It is now established that not only the quantity of tumor-infil-
trating CD8+ T cells is important, but also their ‘‘quality.’’
Tumor-induced T cell exhaustion has been reported in a number
of tumor types, including melanoma (Fourcade et al., 2010) and
ovarian cancer (Matsuzaki et al., 2010), and is characterized by
expression of co-inhibitory surface receptors, including pro-
grammed death receptor 1 (PD-1), lymphocyte-activation gene
3 (LAG-3), and T cell immunoglobulin mucin-3 (Tim-3), either
alone or in combination (Fourcade et al., 2010; Sakuishi et al.,
2010; Wherry, 2011). Analysis of these markers on antigen-
primed CD8+CD44hi T cells infiltrating SCC FAK-WT, FAK!/!,
and FAK-KD tumors revealed increased surface expression of
PD-1, LAG-3, and Tim-3 in CD8+CD44hi T cells present in SCC
FAK-WT tumors (Figures 2H–2J). Together, our data imply that
antigen-primed CD8+CD44hi T cells infiltrating SCC FAK-WT tu-
mors exhibit a heightened state of exhaustion indicative of a
dysfunctional T cell response. Linked to their exhausted state,
there was also evidence of decreased proliferation of CD8+

T cells isolated from SCC FAK-WT tumors (judged by Ki-67
staining in Figure 2K).
Histological staining of tumor sections taken at day 7 revealed

that: (1) CD8+ T cells are present throughout all tumors, and
(2) while CD8+ T cells infiltrating SCC FAK-WT tumors appear
predominantly as individual cells, CD8+ T cells infiltrating SCC
FAK!/! and FAK-KD tumors are clustered (Figure 2L). Thus,
the ability of SCC FAK-WT tumors to evade the anti-tumor im-
mune response is not due to limited CD8+ T cell penetration
into these tumors.

FAK Expression Drives Establishment
of an Immuno-Suppressive Environment
Macrophages, myeloid-derived suppressor cells (MDSC), and
Tregs with intrinsic immuno-suppressive capabilities can pro-
mote tumor development by inhibiting cytotoxic CD8+ T cell ac-
tivity in mouse and humans (Beyer and Schultze, 2006; Biragyn
and Longo, 2012; Marigo et al., 2008). Flow cytometric analysis
revealed no differences in macrophage or MDSC populations
that correlated with tumor regression (Figures 3A, 3B, S3, and
S4 and Table S2), although this does not rule out an accessory
role for these cells in eventual tumor clearance. However, we
did find a significantly greater number of CD4+FoxP3+CD25+

Tregs in SCC FAK-WT tumors (Figures 3C and S4 and Table
S2) when compared with FAK!/! and FAK-KD tumors (Fig-
ure 3C). Tregs have been associated with the development of
CD8+ T cell exhaustion (Sakuishi et al., 2013) and may therefore
be linked to the CD8+ T cell exhaustion that we observed in SCC
FAK-WT tumors (Figures 2H–2J). We next calculated the ratio of
CD8+ T cells to Tregs (Figure 3D), as this has been reported to
correlate with poor prognosis in a number of tumor types (Sato
et al., 2005; Shah et al., 2011). We found a substantially lower
CD8+ T cell to Treg ratio in SCC FAK-WT tumors when compared
to SCC FAK!/! and SCC FAK-KD tumors, which correlated with
outcome in terms of tumor tolerance versus immune-mediated
tumor regression.

Tregs Protect FAK-WT Tumors from Immune-Mediated
Regression
We next examined SCC FAK-WT tumor growth in animals
treated with an anti-CD25 antibody to deplete Tregs (Figure 3E).
Depletion of CD25+ cells led to regression of SCC FAK-WT
tumors. Therefore, FAK-dependent Tregs are required for the
growth of FAK-WT-expressing tumors by creating an im-
muno-suppressive environment that impairs cytotoxic CD8+

T cell activity. This role of CD4+ Tregs is the likely reason for ef-
fects of the CD4-depleting antibody in promoting regression of
SCC FAK-WT tumors (Figure 1D). We note that high Treg levels
have been reported in a number of solid tumor types (Beyer
and Schultze, 2006) and that elevated Tregs are linked to
poor clinical outcome (Beyer and Schultze, 2006; Sato et al.,
2005).
We demonstrated that Tregs derived from SCC FAK-WT tu-

mors expressed the transcription factor (TF) Helios (Figure S5A),
indicative of thymic origin (Thornton et al., 2010). Thus, we hy-
pothesized that FAK may drive the recruitment and expansion
of the intra-tumoral Tregs by influencing the availability of
secreted factors.
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FAK Regulates the Transcription of Chemokines and
Cytokines to Control Tregs
To address how FAK activity in SCC cancer cells promotes
elevated intra-tumoral Tregs, we next analyzed global transcrip-

tional profiles of SCC FAK-WT and SCC FAK!/! cells using Affy-
metrix GeneChip microarrays (Figure 4A). FAK expression re-
sulted in the upregulation of 498 genes and the downregulation
of 598 genes (p < 0.01). The upregulated transcript set in SCC

Figure 2. FAK-Depleted Tumors Exhibit a Heightened CD8+ T Cell Response
(A) FACS quantification of total intra-tumoral CD4+ T cells.

(B) FACS quantification of CD69+ cells as a percentage of CD4+ T cells.

(C) FACS quantification of CD4+CD44hiCD62Llow, CD4+CD44hiCD62Lhi, CD4+CD44lowCD62Llow T cell subpopulations.

(D) FACS quantification of total intra-tumoral CD8+ T cells.

(E) FACS quantification of CD69+ cells as a percentage of CD8+ T cells.

(F) Quantification of CD8+CD44hiCD62Llow, CD8+CD44hiCD62Lhi, CD8+CD44lowCD62Llow T cell subpopulations.

(G) Changes in effector (CD8+CD44hiCD62Llow) CD8+ T cells normalized to total CD8+ T cell proportions.

(H) FACS quantification of PD-1+LAG-3+ T cells as a percentage of CD8+CD44hi tumor-infiltrating T cells. n = 6 tumors.

(I) FACS quantification of PD-1+Tim-3+ T cells as a percentage of CD8+CD44hi tumor-infiltrating T cells. n = 3 tumors.

(J) FACS quantification of PD-1+Tim-3+LAG-3+ T cells as a percentage of CD8+CD44hi tumor-infiltrating T cells. n = 3 tumors.

(K) FACS quantification of Ki-67+ cells as a percentage of tumor-infiltrating CD8+ T cells. n = 3 tumors.

(L) Representative histological staining of CD8 in frozen sections from SCC FAK-WT, SCC FAK!/!, and SCC FAK-KD tumors. Dashed white lines demark tumor

boundary.

Scale bars, 500 mm. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant; Tukey-corrected one-way ANOVA (C and F, CD44hiCD62Llow only). Data

are represented as mean ± SEM; n = 5 tumors unless stated.
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FAK-WT cells was associated with a number of processes,
including cell migration, receptor binding, secretion, wounding,
and ovulation (Figure 4B, top). Analysis of this gene set revealed
the chemokine ligand group of genes to be significantly overrep-
resented (Figure 4B, bottom), which is interesting given that a
number of these chemokines and cytokines mediate both Treg
recruitment to tumors and induction of peripheral Tregs within
tumors (Goldstein et al., 2013; Ondondo et al., 2013).

To establish which chemokines and cytokines were regulated
by FAK and to address whether the FAK-dependent transcrip-
tional profile was linked to chemokine receptor expression on tu-
mor-infiltrating Tregs, we performed quantitative (q)RT-PCR
array analysis. Comparison of chemokine/cytokine transcript
levels between SCC FAK-WT and SCC FAK!/! cells revealed a
subset of ligands increased >2-fold in SCC FAK-WT cells (Fig-
ure 4C). Several of these (Ccl1, Ccl5, Ccl7, Cxcl10) have roles
in Treg recruitment (Ondondo et al., 2013) (green arrowheads,
Figure 4C), while one (Tgfb2) has a reported role in peripheral in-
duction and expansion of Tregs (Goldstein et al., 2013) (red
arrowhead, Figure 4C). To complement this, comparison of
Tregs isolated from the thymus of normal FVB mice with those
isolated directly from SCC FAK-WT tumors revealed a chemo-
kine receptor switch (Figure 4D). We found increased expression
of the cognate receptors for five of the six chemokine ligands up-
regulated in SCC FAK-WT cells (Figure 4C). These receptor
changes may represent a switch from lymphoid homing recep-
tors, including Ccr7 and Cxcr4, toward expression of memory/
effector-type chemokine receptors, including Ccr2, Ccr5, Ccr8,
and Cxcr6, involved in recruitment to non-lymphoid tissues
and sites of inflammation. Network analysis of the relationship
between FAK-dependent chemokine ligand expression in SCC
cells and tumor-infiltrating Treg chemokine receptor expression
revealed the existence of a FAK-dependent paracrine signaling
axis between cancer cells and intra-tumoral Tregs based on che-

mokine ligand-receptor interactions (Figure 4E). Furthermore, (q)
RT-PCR analysis of Ccl5, Cxcl10, and Tgfb2 demonstrated that
their expression was dependent on FAK kinase activity (Fig-
ure 4F). We note that disruption of the Ccl5/Ccr5 axis in a model
of pancreatic adenocarcinoma results in reduced intra-tumoral
Tregs and slows tumor growth (Tan et al., 2009), implying that
FAK-dependent regulation of this paracrine signaling axis may
be more generally important. Thus, FAK activity regulates the
expression of a subset of chemokines that can specifically
mediate crosstalk between tumor cells and tumor-infiltrating
Tregs. This likely has importance in recruitment and retention
of CD4+FoxP3+CD25+ Tregs into SCC FAK-WT tumors.

Nuclear FAK Regulates the Transcription of Ccl5
and TGFb2 to Increase Tregs
The finding that the Tregs enriched in SCC FAK-WT tumors
were likely recruited into SCC FAK-WT tumors led us to
consider a potential role for Ccl5 that has been implicated in
the recruitment and expansion of CD4+FoxP3+CD25+ Tregs
(Tan et al., 2009), via the paracrine signaling axis that we iden-
tified. We found that efficient knockdown of Ccl5 using two
independent shRNA hairpins (P1 and P2, Figure 5A) resulted
in SCC FAK-WT shRNA-Ccl5 tumor regression by days 21–27
(Figure 5B). We measured the absolute number of Tregs in
SCC FAK-WT shRNA-Ccl5 tumors at day 7 and found that there
was a substantial reduction in both Ccl5-depleted tumors when
compared with empty vector control SCC FAK-WT pLKO tu-
mors (Figure 5C).
Expanding on these findings, shRNA-mediated knockdown of

Tgfb2 expression in SCC FAK-WT cells also influenced tumor
growth (Figures S5B and S5C). Partial knockdown of TGFb2
had complex effects, which resulted in one of two outcomes.
One group (Figure S5C, dashed blue line), grew more rapidly
and ulcerated, leading to removal from study at day 14. In the

Figure 3. FAK Regulates the Immuno-Sup-
pressive Microenvironment
(A) FACS quantification of Ly6Chi and Ly6Clow

macrophage populations expressed as a per-

centage of tumor-infiltrating CD45+ leukocytes.

(B) FACS quantification of Ly6ChiGr1low (M-MDSC)

and Ly6CintGr1hi (G-MDSC) populations ex-

pressed as a percentage of tumor-infiltrating

CD45+ leukocytes.

(C) Quantification of CD4+CD25+FoxP3+ Tregs

expressed as a percentage of tumor-infiltrating

CD4+ T cells.

(D) CD8+ T cell-to-Treg ratio calculated using

mean values from Figures 2D and 3C.

(E) SCC FAK-WT tumor growth in FVB mice

treated with anti-CD25 depleting antibody.

n = 6 tumors. * or +p < 0.05, ++p < 0.01, ***p <

0.001, **** or ++++p < 0.0001; Tukey-corrected

one-way ANOVA (A, *, Ly6Chi; +, Ly6Clow). Data are

represented as mean ± SEM; n = 5 tumors unless

stated.
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Figure 4. FAK Regulates Transcription of Cytokines Implicated in Treg Recruitment and Expansion
(A) Transcriptomic profiling of SCC FAK-WT and SCC FAK!/! cells.

(B) Functional enrichment analysis of genes upregulated in SCC FAK-WT cells (bottom gray bar in A). Overrepresented biological processes are displayed as a

heatmap (log10-transformed color scale) (top); asterisks indicate presence of cytokine-related genes. Overrepresented gene families are displayed as a bar chart

(bottom). p < 0.05; Benjamini–Hochberg-corrected hypergeometric tests.

(C) qRT-PCR array analysis of cytokine and chemokine expression in SCCFAK-WT andSCC FAK!/! cells. Gray bar indicates cluster of genes upregulated in SCC

FAK-WT cells; cytokine and chemokine gene names are listed. Green arrowheads indicate reported roles in Treg recruitment; red arrowhead indicates reported

role in peripheral Treg induction.

(D) qRT-PCR array analysis of chemokine and receptor expression in tumor- and thymus-derived Tregs. Gray bar indicates cluster of genes upregulated in tumor-

derived Tregs; receptor gene names are listed.

(E) Interaction network analysis of chemokine ligand gene expression detected in SCC cells (circles, left) and corresponding receptor gene expression detected in

Tregs (squares, right). Genes are ordered vertically by fold change. Light gray lines connect receptor-ligand pairs; green lines indicate pairs upregulated at least

2-fold in SCC FAK-WT cells and tumor-derived Tregs.

(F) qRT-PCR analysis of selected cytokine and chemokine gene expression in SCC cells. ***p < 0.001, ****p < 0.0001; Tukey-corrected one-way ANOVA. Data are

represented as mean ± SEM.
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other group that did not display such frank ulceration, we
observed tumor regression by day 27 (Figure S5C, dashed red
line). Analysis of Treg levels in SCC FAK-WT shRNA-TGFb2 tu-
mors at day 7 (regardless of initial growth characteristics) re-
vealed that TGFb2 knockdown was also associated with a
reduction in CD4+FoxP3+CD25+ Tregs (Figure S5D). Therefore,

while the effects of reducing TGFb2 expression aremore compli-
cated than for Ccl5, FAK-dependent TGFb2 expression does
contribute to elevated CD4+FoxP3+CD25+ Tregs in SCC FAK-
WT tumors; and in the subset of mice bearing tumors that
were able to complete the study, TGFb2 knockdown also caused
tumor regression.

Figure 5. Nuclear FAK Regulates Transcription of Ccl5, which Is Required for Treg Recruitment and Tumor Growth
(A) qRT-PCR analysis of Ccl5 gene expression knockdown in SCC FAK-WT cells stably expressing two independent shRNA constructs targeting Ccl5 (P1

and P2).

(B) SCC FAK-WT shRNA-Ccl5 tumor growth in FVB mice. n = 6 tumors.

(C) FACS quantitation of tumor-infiltrating Treg numbers from SCC FAK-WT shRNA-Ccl5 tumors. Data represent a single value from six pooled tumors.

(D) Western blotting of cytoplasmic, nuclear, and total protein fractions from SCC FAK-WT, SCC FAK!/!, and SCC FAK-NLS cells.

(E) qRT-PCR analysis of Ccl5 gene expression in SCC FAK-NLS cells.

(F) Tumor growth of SCC FAK-NLS cells in FVB mice.

(G) Western blotting of cytoplasmic, nuclear, and total protein fractions from SCC FAK-WT, SCC FAK!/!, and SCC FAK-KD cells.

(H) Western blotting of whole-cell (WC) and nuclear (Nuc) protein fractions from SCC FAK-WT cells and primary skin keratinocytes. 60 s exposure time is shown

for all samples; additional 10 min exposure time is shown for FAK in keratinocyte samples. GAPDH, cytoplasmic; PARP, nuclear.

***p < 0.001, ****p < 0.0001; Tukey-corrected one-way ANOVA. Data are represented as mean ± SEM unless stated.

166 Cell 163, 160–173, September 24, 2015 ª2015 The Authors



Our findings that FAK regulated the transcription of cytokines
and chemokines (including Ccl5 and TGFb2) that were associ-
ated with elevated intra-tumoral Tregs and tumor tolerance led
us to consider a possible role for nuclear FAK in regulating the
transcription of these genes. Based on previous reports (Lim
et al., 2008), which identified putative NLSs within the FERM
domain of FAK, we constructed an optimally nuclear targeting-
impaired mutant FAK by replacing two arginines (positions 177
and 178) and four lysines (positions 190, 191, 216, and 218)
with alanines (termed FAK-NLS). Western blotting of cyto-
plasmic and nuclear fractions confirmed that the FAK-NLS
mutant was indeed defective in nuclear localization (Figure 5D).
Subsequent (q)RT-PCR analysis of Ccl5 and Tgfb2 expression
in SCC cells expressing only FAK-NLS revealed that FAK nuclear
localization was required for transcription of these genes (Fig-
ures 5E and S5E, respectively). Thus, nuclear FAK drives the
transcription of Ccl5 and TGFb2, which are required for recruit-
ment and expansion of immuno-suppressive Tregs into SCC tu-
mors, altering the balance between CD8+ T cells and Tregs in
favor of tumor tolerance. In support of this, growth of SCC
FAK-NLS tumor cells was similar to that of SCC FAK!/!, with ul-
timate tumor regression (Figure 5F). This confirmed that it was
nuclear FAK that afforded protection from the anti-tumor im-
mune response. Western blotting of cytoplasmic and nuclear
fractions from SCC FAK-KD showed that the kinase-deficient
mutant was able to localize to the nucleus, so we conclude
that the immune modulatory effects of FAK are dependent on
FAK kinase activity in the nucleus (Figure 5G).
We next examined nuclear FAK levels in primary skin keratino-

cytes, the normal cellular counterparts of the SCC cells used
here, and did not find detectable nuclear FAK (Figure 5H).
Thus, abundant nuclear localization, and therefore the capacity
to exert regulatory control over chemokine and cytokine expres-
sion, is likely a feature of oncogenic transformation in skin kera-
tinocytes. This suggests that the nuclear functions of FAK that
we have identified—namely, regulating transcription of chemo-
kine/cytokine networks—may be associated with the cancerous
state when FAK is highly expressed.

Nuclear FAK Interacts with a Network of Ccl5
Transcriptional Regulators
Having established an important role for the nuclear FAK-
dependent transcription of Ccl5 in mediating recruitment and
expansion of intra-tumoral Tregs, we wanted to determine
how nuclear FAK could exert control over Ccl5 transcription.
Using sucrose gradients, we fractionated the nuclei of SCC
FAK-WT cells and demonstrated that nuclear FAK was present
in the chromatin-containing fraction (Figure 6A). Transcriptional
regulation of Ccl5 is mediated predominantly through six short
regulatory elements contained within a region of the Ccl5 pro-
moter spanning "300 base pairs (Fessele et al., 2002). These
regulatory elements contain binding sites for a number of
TFs, including AP-1, C/EBP, IRF-1, NF-kB, and TATA box-bind-
ing protein (TBP), which is part of the transcription factor IID
complex (TFIID). Using FAK immunoprecipitation and quantita-
tive label-free mass spectrometry, we identified FAK binding
partners in purified nuclear extracts and contextualized these
by mapping onto a network of proteins associated with pre-

dicted Ccl5 TFs (constructed in silico; Figure 6B). This integra-
tive approach identified a subset of Ccl5 TFs and regulators of
these that interact with FAK in SCC cell nuclei (Figures 6C, S6
and Table S1). Interaction network analysis of this protein sub-
set revealed nuclear FAK binding partners with roles in multiple
transcriptional pathways, including regulators of AP-1, C/EBP,
IRF-1/-7, NF-kB/Rel, and TFIID. Thus, we identified nuclear
FAK binding partners that can interact, directly or indirectly,
with five of the six main regulatory elements reported to control
transcription of Ccl5 in multiple cell types (Fessele et al., 2002).
Given that our interaction network was somewhat dominated
by proteins associated with the TFIID pathway, including three
TBP-associated factors (TAFs) (Figures 6C and S6), we used
co-immunoprecipitation to confirm the interaction of nuclear
FAK with one of these, TAF9, a core component of the TFIID
complex (D’Alessio et al., 2009) (Figure 6D). Our data show
that FAK binds to core components of the transcriptional ma-
chinery, many of which are known to be located on the pro-
moter of genes undergoing active transcription and that are
known or predicted to regulate Ccl5. Therefore, in SCC cells,
nuclear FAK associates with chromatin and is physically linked
to a network of TFs and their regulators known to modulate
Ccl5 expression.

Small-Molecule FAK Kinase Inhibitor Promotes
Immune-Mediated Tumor Clearance
Therapeutic targeting of FAK kinase activity using small-mole-
cule inhibitors will inhibit FAK signaling not only in tumor cells,
but also potentially in multiple host cell types. To complement
expression of the FAK-KD mutant protein in the cancer cells
and investigate whether a FAK inhibitor could induce immune-
mediated regression of SCC tumors, we used the FAK/Pyk2 ki-
nase inhibitor VS-4718 (Shapiro et al., 2014), which is currently
in clinical development. Mice were treated with VS-4718 at
75 mg/kg for 24 hr prior to injection of 1 3 106 FAK-WT or
FAK!/! SCC tumor cells and twice daily thereafter. This resulted
in VS-4718-induced regression of SCC FAK-WT tumors by day
24 (Figure 7A). Following cessation of VS-4718 treatment, no
tumor regrowth was observed (data not shown). SCC FAK!/! tu-
mor growth and clearance was not greatly affected by VS-4718
treatment, suggesting that the anti-tumor effects of VS-4718 can
be explained by FAK inhibition in tumor cells. Activity of VS-4718
was confirmed using an ELISA to measure FAK autophosphory-
lation on tyrosine-397 in tumor lysates from mice treated with
75 mg/kg VS-4718 (Figure S7). Regression of VS-4718-treated
SCC tumors was not accompanied by loss of cell viability at
day 7, as measured by FACS using a viability stain following tu-
mor disaggregation (Figure 7B). There was a significant but small
increase in leukocytes in VS-4718-treated SCC FAK-WT tumors
(Figure 7C) and a significant increase in total CD4+ T cells (Fig-
ures 7D andS2 and Table S2) and effector CD4+CD44hiCD62Llow

T cells (Figures 7E and S2 and Table S2). A significant increase in
CD8+ T cells was also evident in SCC FAK-WT VS-4718-treated
tumors (Figures 7F and S2 and Table S2), although there was no
change in effector CD8+CD44hiCD62Llow T cells (Figures 7G and
S2 and Table S2). Crucially, there was a significant reduction in
CD4+CD25+FoxP3+ Treg cells in VS-4718-treated SCC FAK-
WT tumors, which was similar to that observed in vehicle and
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VS-4718-treated SCC FAK!/! tumors (Figures 7H and S4 and
Table S2).

Thus, VS-4718 promoted robust anti-tumor activity, with
similar immune cell changes to that observed upon FAK deletion
or expression of a kinase-deficient form of FAK. Furthermore,
anti-tumor efficacy of VS-4718 was also dependent on CD8+

T cells, and SCC FAK-WT tumors treated with VS-4718 on a
CD8+ T cell-depleted background exhibited a growth delay but

did not undergo tumor regression (Figure 7I). We conclude that
the FAK kinase inhibitor targets mechanisms of immune
suppression andmay therefore represent a form of effective ‘‘im-
muno-modulatory’’ therapy that reduces Tregs in the tumor envi-
ronment. Importantly, the FAK kinase inhibitor does not affect
the cytotoxic function of antigen-primed CD8+ T cells. We also
found that VS-4718 treatment that was initiated 5 days post-
inoculation of 1 3 106 SCC FAK-WT cells, when these had

Figure 6. Nuclear FAK Interacts with Regulators of Ccl5 Transcription
(A) Sucrose fractionation of soluble chromatin prepared from SCC FAK-WT cell nuclei. Protein preparations recovered from each fraction were analyzed by

western blotting (top). DNA recovered from each fraction was analyzed by agarose gel electrophoresis (bottom, 1 kilobase [kb] and 100 base pair [bp] ladders

shown). Fraction 7 (black arrowhead) represents the chromatin-containing fraction.

(B) Schematic detailing the workflow used for proteomic analysis of the nuclear FAK interactome in the context of Ccl5 transcription factors (TFs).

(C) Interaction network analysis of proteins that bind FAK in the nucleus of SCC cells. PredictedCcl5 TFs (squares, bottom) and respective TF binders (circles, top)

enriched by at least 4-fold in nuclear FAK immunoprecipitations (SCC FAK-WT over SCC FAK!/! controls; p < 0.05) are shown (stringent network). Ccl5 TFs not

detected (ND) are shown as gray squares. TF complexes or groups are indicated; proteins are labeledwith gene names for clarity. TF binders are aligned above TF

groups with which there are the greatest number of reported interactions. For full network, see Figure S6; for protein interaction list, see Table S1.

(D) Isolation of the TFIID component TAF9 by FAK immunoprecipitation (IP) from SCC FAK-WT cell nuclear extracts.
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Figure 7. The FAK Kinase Inhibitor VS-4718 Leads to Immune-Mediated SCC Clearance
(A) SCC FAK-WT and SCC FAK!/! tumor growth in FVB mice treated with either vehicle or VS-4718. Treatment started 24 hr pre-tumor cell inoculation and

continued for the duration of the experiment.

(B) FACS analysis of cell viability from disaggregated tumors treated with either vehicle or VS-4718.

(C) FACS analysis of vehicle- or VS-4718-treated tumor-infiltrating leukocytes expressed as a percentage of viable CD45+ cells relative to the total number of

single cells.

(D) FACS analysis of tumor-infiltrating CD4+ T cells from vehicle- or VS-4718-treated tumors.

(E) FACS sub-categorization of tumor-infiltrating CD4+ T cells into CD45+CD3+CD4+CD8!CD44hiCD62Llow, CD45+CD3+CD4+CD8!CD44hiCD62Lhi, and

CD45+CD3+CD4+CD8!CD44lowCD62Llow populations.

(F) FACS analysis of tumor-infiltrating CD8+ T cells from vehicle- or VS-4718-treated tumors.

(G) FACS sub-categorization of tumor-infiltrating CD8+ T cells into CD45+CD3+CD4!CD8+CD44hiCD62Llow, CD45+CD3+CD4!CD8+CD44hiCD62Lhi, and

CD45+CD3+CD4!CD8+CD44lowCD62Llow populations.

(H) FACS analysis of tumor-infiltrating CD4+CD25+FoxP3+ Tregs expressed as a percentage of tumor-infiltrating CD4+ T cells.

(I) SCC FAK-WT tumor growth in FVB mice treated with either vehicle or VS-4718 and either isotype control or CD8-depleting antibodies.

(J) SCC FAK-WT and SCC FAK!/! tumor growth in FVB mice treated with either vehicle or VS-4718. Treatment started 5 days post-tumor cell inoculation (gray

dashed line) and continued for the duration of the experiment.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant; Tukey-corrected one-way ANOVA (E and G, CD44hiCD62Llow only). Data are represented as

mean ± SEM; n = 6 tumors.
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already formed palpable tumors of"50mm3, led to complete tu-
mor regression (Figure 7J).

DISCUSSION

We show that nuclear FAK in SCC cancer cells drives the tran-
scription of chemokines and cytokines, including Ccl5 and
TGFb2, which promote the formation of an immuno-suppressive,
pro-tumorigenic microenvironment. This is dependent on FAK
kinase activity, and expression of a catalytically inactive mutant
FAK protein (FAK-KD) or treatment with a small-molecule inhib-
itor causes tumor regression. This is effective even when tumors
are already established, raising the exciting possibility that tar-
geting of FAK kinase activity may have immune-mediated anti-
tumor efficacy in patients. We established that nuclear FAK is
associated with chromatin and interacts with a number of TFs
and transcriptional regulators, including components of the
TFIID complex, that are linked to regulation of Ccl5 expression.
Our data imply that FAK interacts with core transcriptional
machinery to influence gene transcription and promote tumor
immune escape.

Historically, FAK has been recognized as an adhesion-related
non-receptor protein tyrosine kinase that clusters at focal adhe-
sion (FA) structures and regulates cancer-associated processes,
including adhesion, migration, invasion, survival, and prolifera-
tion (reviewed in Frame et al., 2010). FAK was also found to
translocate to the nucleus (Lim et al., 2008; Luo et al., 2009b),
leading to the idea of nuclear functions for FAK within the nu-
cleus. Our data show that, at least in cancer cells, FAK regulates
inflammatory transcriptional programs associated with genera-
tion and maintenance of a pro-tumorigenic and immuno-sup-
pressive microenvironment. FAK associates with chromatin,
and in the context of Ccl5 expression, it interacts with a number
of TFs, and regulators of TFs, that bind regulatory elements in the
Ccl5 promoter (Fessele et al., 2002). Our data imply that FAK ex-
ists in complexes with a number of TAF proteins, including TAF9
and TAF12, key components of the core promoter complex
TFIID that serves to initiate transcription by driving recruitment
of chromatin remodeling complexes, coactivators, and RNA po-
lymerase II to the promoter (D’Alessio et al., 2009). Therefore,
FAK interacts with components of the core transcriptional
machinery in order to drive transcription of chemokines and cy-
tokines that contribute to recruitment of Tregs into the tumor
environment, promoting immunological tolerance and permitting
tumor growth.

Recently, nuclear accumulation of active FAK (phosphory-
lated on Tyr-397) within tumor cells of patients with colorectal
cancer was reported to correlate with poor prognosis (Albasri
et al., 2014), highlighting the need to understand the nature of
FAK’s role within the nucleus. Studies using endothelial cells,
muscle cells, and fibroblasts have previously reported low
steady-state levels of nuclear FAK that are substantially
increased in response to cellular stress (Lim, 2013; Lim et al.,
2008; Luo et al., 2009b). Our work implies that oncogenic stress
is another route to inducing high levels of nuclear FAK and that
this, in turn, can influence transcriptional programs, such as the
chemokine and cytokine networks that control the tumor
microenvironment.

A number of therapeutic strategies targeting components of
the immuno-suppressive tumor microenvironment are currently
being tested, with the aim of restoring anti-tumor immunity by
releasing the break on CD8+ T cell cytotoxic activity. In pre-clin-
ical models of cancer, targeting Tregs (Ali et al., 2014; Bos et al.,
2013) has shown anti-tumor efficacy, either alone or when used
in combination with agents that enhance CD8+ T cell activation.
A clinical study combining agents targeting cytotoxic-T-lympho-
cyte-associated antigen 4 (CTLA-4), which is thought to influ-
ence Treg function (Peggs et al., 2009; Quezada et al., 2006;
Simpson et al., 2013; Wing et al., 2008), and PD-1, which blocks
signals that inhibit T cell function, has reported impressive re-
sponses in patients with advanced melanoma (Wolchok et al.,
2013). However, this combination of checkpoint blockade anti-
bodies elicits substantial side effects in >50% of patients, high-
lighting the need to find alternative combinations with improved
tolerability. We have shown that targeting FAK kinase activity has
the potential to modulate intra-tumoral Treg levels, resulting in
robust CD8+ T cell anti-tumor immunity, while others have re-
ported previously that FAK kinase inhibitors block monocyte/
macrophage and cancer-associated fibroblast recruitment into
tumors by virtue of FAK’s role in regulating their migration
(Stokes et al., 2011). Taken together, these findings suggest
that targeting the pleiotropic cellular functions of FAK may
have a broad impact on the immuno-suppressive tumor micro-
environment, differentiating these agents frommany therapeutic
approaches that target single immune cell populations.
Targeting a molecular pathway that is upregulated in cancer

cells may provide tumor specificity and help to overcome
some of the potential issues with severe autoimmunity when
modulating immune cell populations. FAK inhibitors, such as
VS-4718, are in clinical development. VS-4718 is currently in a
phase I dose escalation clinical trial in patients with solid tumors
(www.clinicaltrials.gov NCT01849744). Our findings provide
good rationale for pre-clinical and clinical testing of FAK kinase
inhibitors alongside agents that stimulate CD8+ T cell activity,
such as the checkpoint blockade therapies that target PD-1
and CTLA-4, which are both in clinical development (Pardoll,
2012).

EXPERIMENTAL PROCEDURES

Experiments involving animals were carried out in accordance with the

UKCCCR guidelines by approved protocol (HO PL 60/4248). Brief experi-

mental procedures are listed here. For details, please see the Supplemental

Experimental Procedures.

Generation of FAK Nuclear Localization Mutant
Mutations were introduced into FAK-WT at R177A, R178A, K190A, K191A,

K216A, and K218A using PCR-based site-directed mutagenesis.

Cell Lines
Isolation and generation of the FAKSCC cell model is described in Serrels et al.

(2012). Keratinocyte cultureswere prepared as detailed inMcLean et al. (2004).

Western Blot Analysis
To prepare whole-cell lysates, cells were washed in cold PBS and lysed in

RIPA buffer. Cytoplasmic and nuclear extracts were prepared as described

in Lim et al. (2008). Lysates were resolved by gel electrophoresis, transferred

to nitrocellulose, and probed with respective antibodies.
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Subcutaneous Tumor Growth
Cells were injected into both flanks of either CD-1 nude mice or FVB mice and

tumor growth measured twice-weekly. Animals were sacrificed when tumors

reached maximum allowed size or when signs of ulceration were evident.

For treatment with VS-4718, drug was prepared in 0.5% carboxymethyl cellu-

lose + 0.1% Tween 80 and mice treated at 75 mg/kg BID by gavage. No signs

of toxicity were observed.

Tumor Growth following Re-Challenge
SCC FAK!/! cells were injected into the left flank of FVBmice. Following tumor

regression, mice were left for 7 days before being challenged with SCC FAK-

WT or FAK!/! cells injected into the right flank. Tumor growth was measured

twice-weekly. Control groups were injected into both flanks at day 28 using

mice that had not been pre-challenged with SCC FAK!/! cells.

CD4+, CD8+, and CD25+ T Cell Depletion
T cell depletion was achieved following IP injection of 150 mg of depleting anti-

body into female age-matched FVB mice for 3 consecutive days and was

maintained by further IP injection at 3 day intervals until the study was termi-

nated. SCC FAK-WT or FAK!/! cells were injected into both flanks 6 days after

initial antibody treatment and tumor growth measured. The extent of T cell

depletion was determined at the end of the study using FACS (Figure S1).

FACS Analysis of Immune Cell Populations
Tumors established following injection of SCC cells into both flanks of an FVB

mouse were removed at day 7. Tumor tissue was processed to obtain single

cell suspension for staining and subsequent FACS analysis (antibodies listed

in Table S2).

Gene Expression Profiling
RNA was analyzed using the GeneChip Mouse Genome 430 2.0 Array.

Normalized data for differentially expressed genes were median centered

and clustered using Cluster 3.0 and Java TreeView. Functional enrichment

analysis was performed using ToppGene.

Quantitative RT2-PCR Array Analysis of Cytokine, Chemokine,
and Chemokine Receptor Expression
RNA prepared from SCC cells was analyzed using the mouse cytokine and

chemokine RT2 Profiler PCR Array and that from isolated Tregs was analyzed

using the mouse chemokine and receptor array. Relative gene expression

(2!DCt) values were log transformed, median centered, and subjected to hier-

archical clustering as for microarray analysis. An interactome of chemokine

ligands and receptors was constructed using the IUPHAR/BPS Guide to Phar-

macology database and curated from the literature, onto which expression

data for detected genes were mapped and visualized using Cytoscape.

Expression of selected cytokine and chemokine genes was assessed by stan-

dard quantitative RT-PCR.

shRNA-Mediated TGFb2 and Ccl5 Knockdown
Cells were subject to two rounds of lentiviral infection prior to selection with

puromycin. shRNA constructs used were part of the pLKO lentiviral TRC

library.

Preparation and Fractionation of Nuclei and Chromatin
Nuclei were prepared as described (Gilbert et al., 2003) but with a reduced

concentration (0.05%) of NP-40 in nuclei buffer B. Soluble chromatin was pre-

pared as described (Gilbert et al., 2004) and fractionated on a sucrose step

gradient to separate soluble and chromatin-associated nuclear proteins.

DNA was recovered from fractions and subjected to agarose gel electropho-

resis. Protein was purified using TCA precipitation. Samples were analyzed

by SDS-PAGE and blotted using anti FAK, HP1a, and histone H3 antibodies.

Proteomic Analysis of Nuclear FAK Protein Complexes
FAK nuclear protein complexes were subjected to on-bead proteolytic diges-

tion, desalting, and liquid chromatography-tandem mass spectrometry, as

described (Turriziani et al., 2014). For interaction network analysis, Ccl5 tran-

scription factors were extracted from the DECODE database and used to seed

a network of 1,000 transcription factor-related proteins using the GeneMANIA

plugin in Cytoscape. Proteins specifically isolated in nuclear FAK protein com-

plexes were mapped onto the interactome, and those with physical or pre-

dicted direct or indirect interactions with Ccl5 transcription factors were

analyzed using the NetworkAnalyzer plugin in Cytoscape.

CD8 T Cell Fluorescent Immunohistochemistry
Tumors were removed 7 days post-implantation and frozen by submersing in

liquid nitrogen. Tumor sections were cut, processed and stained. They were

imaged using an Olympus FV1000 confocal microscope.
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cı́a-Muñoz for help with mass spectrometry, Elisabeth Freyer for help with

FACS, and Arkadiusz Welman for help with manuscript preparation. J.E.R.

and J.A.P. are employees of Verastem Inc.

Received: March 6, 2015

Revised: July 17, 2015

Accepted: August 27, 2015

Published: September 24, 2015

REFERENCES

Albasri, A., Fadhil, W., Scholefield, J.H., Durrant, L.G., and Ilyas, M. (2014). Nu-

clear expression of phosphorylated focal adhesion kinase is associated with

poor prognosis in human colorectal cancer. Anticancer Res. 34, 3969–3974.
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Supplemental Figures

Figure S1. T Cell FACS Analysis Post Antibody-Mediated T Cell Depletion, Related to Figure 1
(A) FACS analysis of spleen and thymus tissue from non-tumor-bearing animals 6 days after commencing antibody treatment. (B) FACS analysis of T cell

populations from spleen and thymus tissue from tumor-bearing animals at the end of T cell depletion studies in Figures 1C and 1D.
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Figure S2. T Cell FACS Gating Strategy, Related to Figures 2 and 7
(A) FACS gating strategy applied for identification of T cell sub-populations. E = effector, CM = central memory, and N = naive. (B) FMO (full antibody set minus

one) control samples used to determine correct gating for T cell sub-population identification.
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Figure S3. Macrophage FACS Gating Strategy, Related to Figure 3
(A) FACS gating strategy applied for identification of macrophage sub-populations. (B) FMO control samples used to determine correct gating for macrophage

sub-population identification.
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Figure S4. MDSC and Treg FACS Gating Strategy, Related to Figures 3 and 7
(A) FACS gating strategy applied for identification of MDSC sub-populations. M-MDSC – Monocytic Myeloid Derived Suppressor Cell; G-MDSC – Granulocytic

Myeloid Derived Suppressor Cell. (B) FMO control samples used to determine correct gating for MDSC sub-population identification. (C) FACS gating strategy

applied for identification of regulatory T cells (Treg).

S4 Cell 163, 160–173, September 24, 2015 ª2015 The Authors



Figure S5. Tregs Infiltrating SCC FAK-WT Tumors Express the ThymicMarker Helios; Nuclear FAK Regulates Transcription of TGFb2, which
Contributes to Treg Expansion and Tumor Growth, Related to Figures 3 and 5
(A) FACS analysis of Helios expression in CD4+CD25+FOXP3+ SCC FAK-WT tumor-infiltrating Tregs and Tregs isolated from the thymus of tumor-bearing mice.

Control represents background signal from a sample stained with CD4, CD25, and FoxP3 conjugated antibodies but not Helios. Representative replicates are

shown in different colors for thymus and SCC FAK-WT samples. (B) qRT-PCR analysis of Tgfb2 gene expression knockdown in SCC cells. ****p < 0.0001 (Tukey-

corrected one-way ANOVA). (C) SCC FAK-WT shRNA-TGFb2 tumor growth in FVB mice. Blue dashed line indicates growth of SCC FAK-WT shRNA-TGFb2

tumors that had to be sacrificed due to ulceration at day 14. Red dashed line indicates growth of SCC FAK-WT shRNA-TGFb2 tumors that showed no ulceration.

Green solid line indicates the mean growth of all SCC FAK-WT shRNA-TGFb2 tumors up until cohort numbers were reduced due to ulceration. n = 6 tumors /

group. (D) FACS analysis of SCC FAK-WT shRNA-TGFb2 tumor infiltrating Tregs. ****p < 0.0001 (Tukey-corrected one-way ANOVA) (E) qRT-PCR analysis of

Tgfb2 gene expression in SCC FAK-NLS mutant cells. ***p < 0.001, ****p < 0.0001 (Tukey-corrected one-way ANOVA). Data are represented as mean ± SEM.
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Figure S6. Nuclear FAK Interactome in the Context of Ccl5 Transcription Factors, Related to Figure 6 and Table S1
(A) Interaction network analysis of proteins that bind FAK in the nucleus of SCC cells. Predicted Ccl5 transcription factors (TFs) (squares; bottom) and respective

TF binders (circles; top) enriched by at least two-fold in nuclear FAK immunoprecipitations (SCC FAK-WT over SCC FAK!/! controls; p < 0.05) are shown. Ccl5

TFs not detected (ND) are shown as gray squares. TF complexes or groups are indicated; proteins are labeled with gene names for clarity. TF binders are aligned

above TF groups with which there are the greatest number of reported interactions. Overrepresented molecular functions determined by functional enrichment

analysis are displayed as a heat map (log10-transformed color scale) (inset). Displayed terms satisfy p < 0.01 (Benjamini–Hochberg-corrected hypergeometric

test) with > 5 proteins assigned per term. (B) Topological analysis of Ccl5 TF–associated proteins identified in the nuclear FAK interactome. Ccl5 TF binders were

clustered using the yFiles Organic algorithm implemented in Cytoscape. Topological parameters were computed using NetworkAnalyzer, excluding self-in-

teractions. Protein node size is proportional to the number of interaction partners in the network (degree); node color indicates betweenness centrality

(normalized number of shortest paths between proteins; a measure of the control a protein exerts over the interactions of other proteins in the network). Box-and-

whisker plots (inset) show the distributions of degree and betweenness centrality for Ccl5 TF–associated proteins that bind nuclear FAK compared to those that

were not enriched in nuclear FAK immunoprecipitations, indicating that FAK binders tend to havemore interactions and bemore central in the interaction network

than undetected Ccl5 TF–associated proteins. Plots display the median (line), interquartile range (box) and 1.5 3 interquartile range (whiskers) (n = 169 and 761

Ccl5 TF–associated proteins detected and not detected, respectively, with degree R 1 based on physical or predicted interactions). ****p < 0.0001 (two-tailed

Mann–Whitney test).

See also Table S1.
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Figure S7. Analysis of FAK pY397 Phosphorylation in Tumors following Treatment with VS-4718, Related to Figure 7
Phosphorylation of FAK on Y397 was measured in protein lysates isolated from tumors following treatment with VS-4718 using ELISA. Tumors were removed

within 30 min of treatment. n = 5. Data are represented as mean ± SEM.
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