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Abstract. 

Immune checkpoint inhibitors (ICIs) targeting Cytotoxic T-Lymphocyte-Associated protein 4 

(CTLA-4) or Programmed cell Death protein 1 (PD-1) receptors have demonstrated remarkable 

efficacy in subsets of patients with malignant disease. This emerging treatment modality holds 

great promise for future cancer treatment and has engaged pharmaceutical research interests 

in tumour immunology. While ICIs can induce rapid and durable responses in some patients, 

identifying predictive factors for effective clinical responses has proven challenging. This review 

summarises the mechanisms of action of ICIs and outlines important pre-clinical work that 

contributed to their development. We explore clinical data that has led to disease-specific drug 

licensing, and highlight key clinical trials that have revealed ICI efficacy across a range of 

malignancies. We describe how ICIs have been used as part of combination therapies, and 

explore their future prospects in this area. We conclude by discussing the incorporation of these 

new immunotherapeutics into precision approaches to cancer therapy.     

 

Introduction. 

There are extensive interactions between tumour cells and the components of the immune 

system. The process of immune surveillance ensures that aberrant cells with tumorigenic 

potential can undergo immune destruction before they develop into cancers, and from the very 

earliest stages of tumour development the tumour microenvironment (TME) contains often-

substantial populations of leukocytes, including various subsets of T-cells [1, 2]. Effector T-cell 

responses against tumour antigens are induced early during tumour development. Local 

dendritic cells (DCs) can acquire and process tumour proteins from lysed tumour cells, including 

mutated versions of normal proteins, and present peptides from these proteins to naïve T-cells 

in secondary lymphoid organs. This has the potential of generating potent tumour-specific 

effector T cells that could home to the tumour and facilitate selective tumour cell killing. 

However, tumours evolve diverse mechanisms of immune evasion and immunosuppression to 

prevent or restrain anti-tumour T-cell responses [3, 4]. This includes changing their antigen 

profile (to make them unrecognisable to effector T-cells [5, 6]), blocking T-cell recruitment [7, 8], 

and exploiting immunosuppressive leukocytes, such as regulatory T-cells (Tregs) and tumour-

associated macrophages [9-11]. In addition, cancer cells and/or the tumour microenvironment 

(TME) can produce molecules that actively inhibit any tumour-specific T-cells that do manage to 
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enter the tumour [12-14]. All these processes are potential targets for therapeutic interventions 

that aim to induce, re-instate or enhance anti-tumour T cell responses. There have been several 

exciting recent successes with cancer immunotherapies: principal among these are antibodies 

targeting the ‘immune checkpoint’ proteins CTLA-4 or PD-1. 

Enhancing anti-tumour T cell responses with anti-CTLA-4 antibodies. 

Full activation of naïve T-cells results in clonal expansion and the development of effector 

functions. This requires positive signals from several membrane receptors. ‘Signal one’ comes 

from the T cell receptor (TCR) after it engages cognate antigen displayed on target cell MHC, but 

secondary positive signals (co-stimulation) are also essential, while further signals through 

cytokine receptors shape effector T-cell phenotype [15-18]. Co-stimulatory signals are 

principally delivered through CD28 receptors after they bind CD80 and CD86 (also known as 

B7.1 and B7.2, respectively), which are abundantly expressed on mature DCs. CTLA-4 also binds 

to CD80/86 with higher affinity than CD28 but it negatively regulates co-stimulation [19, 20]. 

CTLA-4 is transiently induced on activated T-cells, peaking 2-3 days after initial activation [19], 

and is strongly expressed by Treg: naturally occurring Treg (nTreg) are the major cell type 

constitutively expressing this molecule [9]. The receptor CTLA-4 is reported to transduce 

negative intracellular signals [21, 22] and enhance T cell motility [23, 24], but perhaps more 

significant is its ability to outcompete CD28 molecules for CD80/86 binding [19, 24, 25]; displace 

CD28 to distal regions of the immunological synapse [26, 27]; and strip CD80/86 from the 

surface of dendritic cells [28, 29]. These immunosuppressive activities prevent or restrain T-cell 

activation, and ensure that auto-reactive T-cells, or those that bind weakly to antigen, fail to 

become activated and instead enter a state of unresponsiveness (anergy).  

The immunosuppressive properties of CTLA-4 are evident in Ctla4-deficient mice, which develop 

fatal lymphoproliferative disease and multi-organ failure due to unopposed T-cell activation and 

loss of immunological tolerance [30, 31]. These phenotypes are rescued by blocking or deleting 

CD80/86 or CD28. Moreover, germline heterozygous mutations in CTLA4 in humans are linked 

to severe immune dysregulation [32, 33], and a CTLA4 variant is associated with early onset 

Crohn’s disease and autoimmunity [34]. Individuals with CTLA4 mutations have defective Treg 

function, hyperactivated effector T cells, and reduced numbers of circulating B cells [32, 33]. 

It is well established that anti-CTLA-4 monoclonal antibodies can block the immunosuppressive 

properties of CTLA-4 and enhance anti-tumour T-cell responses in animal models [35, 36]. 
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Blockade induces a reduction in Tregs and an increase in effector T-cells within the TME, and 

simultaneous blockade of CTLA-4 on these cells can synergise to enhance anti-tumour responses 

in animal models [37-43]. Anti-CTLA-4 antibodies can also bind Fcγ receptors (FcγRs) to mediate 

antibody-dependent cell-mediated cytotoxicity against CTLA-4+ Tregs, leading to their selective 

depletion [40-43]. This is largely dependent on the presence of atypical, FcγR-expressing 

macrophages in the tumour [40-43] and this mechanism of intra-tumoural Treg depletion has 

been identified in humans treated with ipilimumab [44]. 

The functional effects of anti-CTLA-4 antibodies on anti-tumour responses in a patient depend 

on the characteristics of the patient’s tumour, the underlying TME, and the nature of any 

previous or concurrent therapies. Predicting responses is challenging and, given the profound 

immunological consequences of Ctla4 deletion, or genetic variation in CTLA4, the potential side 

effects of administering anti-CTLA-4 antibodies may be significant. However the preclinical 

research and clinical trial data from CTLA4 blockade has provided a proof-of-principle and laid 

the groundwork for further targeted disruption of other immune checkpoints such as the PD-1 / 

PL-L1 axis. 

Dismantling tumour defence by inhibiting PD-1 activity. 

PD-1 is a surface receptor for the cognate ligands PD-L1 and PD-L2. It is expressed 

predominantly by activated T cells, but is also found on other leukocyte subsets, including 

activated B-cells, DCs, monocytes and NK cells [45-47]. PD-L1 can be found on activated T- and 

B-cells, DCs, macrophages and many tissue cells [47-50], while PD-L2 appears limited to DCs and 

macrophages and some stromal cells [47]. On effector T-cells, PD-1 ligation causes 

dephosphorylation of key signalling molecules that lie downstream of the TCR, thereby 

dampening TCR-mediated T-cell activation [51, 52]. It has also recently been identified that PD-1 

/ PD-L1 interactions trigger dephosphorylation of CD28 preferentially over the TCR, and is the 

primary mechanism of T cell suppression [53]. PD-1 also enhances T-cell motility to limit T-

cell/DC interactions [54]. PD-L1 has also been reported to bind to CD80 and might, like CTLA-4, 

compete with CD28 [55]. Deletion of Pd-1 leads to autoimmune disease [56, 57], but this 

develops later in life than the more severe, early onset disease in Ctla4-/- mice [30, 31]. 

Expression of PD-L2 in lymphoid organs is thought to help maintain tolerance [51], while PD-L1, 

which is upregulated in response to interferons, particularly IFN-γ, protects tissues from 

excessive immune cell activity [48, 49]. This occurs during chronic viral infection when persistent 

viral antigen exposure causes T-cell exhaustion, a form of anergy [58, 59]. In this context, 
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blockade of PD-L1 by administration of anti-PD-L1 antibodies causes a resurgence of effector T-

cell activity [60], predominantly through reactivation of the CD28 signalling pathway [61]. Thus, 

the physiological functions of the PD-1 pathway are to maintain T-cell tolerance and suppress 

effector T-cell responses in peripheral tissues. 

Cancers can exploit the PD-1 pathway, upregulating PD-1 ligands to suppress T-cell-mediated 

cytolysis. Up-regulated PD-1 expression by tumour-infiltrating lymphocytes is associated with 

poor outcomes in many human cancers and correlates with an exhausted T-cell phenotype that 

impedes tumour immunity [62-67]. Early in vivo experiments demonstrated that myeloma cells 

were more effectively targeted when Pd-1 was absent, and that anti-PD-L1 antibodies could 

suppress myeloma in wild-type mice [68]. In other mouse models, transplantation of Pd-1-/- T 

cells [69] or administration of anti-PD-L1 antibodies [68, 69] induced regression of established 

tumours. PD-L1 expression by infiltrating myeloid cells has also been shown to impair anti-

tumour T-cell immunity [72, 73], but interestingly this may be due in part to the induction and 

regulation of peripherally induced Treg subsets (iTreg) by the PD-L1-expressing myeloid cells 

[74]. Disruption of this process may represent an additional mechanism underpinning the 

enhanced anti-tumour immunity that can be induced by PD-1 blockade.  

Translating efficacy from bench to bedside. 

CTLA-4 and PD-1 provide critical but discrete mechanisms of physiological immunoregulation. A 

wealth of experimental data shows that antibodies blocking these checkpoints can enhance 

anti-tumour immune responses in animal models. Despite some concerns over potential 

toxicities, this drove the development of humanised monoclonal antibodies targeting these 

molecules. These novel immunotherapies are referred to as ‘immune checkpoint inhibitors’ 

(ICIs). These have now been licensed in a number of different tumour types (Figure 1), and are 

discussed briefly here. 

 

Anti-CTLA-4: licensing ipilimumab for metastatic melanoma. 

Ipilimumab (Bristol Myers Squibb), an anti-CTLA-4 antibody, was licensed for malignant 

melanoma in 2011 [73]. This followed a landmark phase III clinical trial involving around 600 

patients with previously treated malignant melanoma [76] (Table 1). There were three 

treatment arms: ipilimumab plus gp100 vaccine, ipilimumab alone, or gp100 vaccine alone. The 

This article is protected by copyright. All rights reserved.



 6 

gp100 vaccine targets a protein abundantly expressed by melanomas [77, 78]. The treatments 

containing ipilimumab conferred greatest median overall survival (OS): 10.0 months 

(ipilimumab/gp100) and 10.1 months (ipilimumab monotherapy) versus 6.4 months (gp100 

vaccine alone). Severe immune-related adverse effects (IAEs) were reported in 10-15% of 

patients receiving ipilimumab, and were of longer duration in the ipilimumab/gp100 cohort [76]. 

Established protocols for managing immune-mediated toxicities were adopted from previous 

trials [79-81]. Subsequent analysis of data from 1,861 metastatic melanoma patients in 12 

individual clinical trials of ipilimumab showed that OS at 3 years was 20% for previously treated 

patients and 26% for treatment-naive patients [82]. The survival curve plateaued at around 3 

years, with evidence of long-term progression-free survival of up to 10 years in some patients.  

PD-1 blockade moves into the clinic.   

The safety and efficacy of pembrolizumab (Merck), a monoclonal antibody targeting PD-1, was 

demonstrated in patients with ipilimumab-refractory malignant melanoma. In an expansion 

cohort of a phase I trial, 173 patients were treated every 3 weeks with pembrolizumab [83]. 

Equivalent efficacy, as determined by overall response rates (ORR) [84], was observed at both 

dosing regimens (ORR=26%). Pembrolizumab was well tolerated: only 12% of patients 

developed drug-related grade 3 / 4 toxicities. Given the promising clinical responses, good 

safety profiles and absence of other effective therapies, pembrolizumab was licensed for 

ipilimumab-resistant advanced melanoma in 2014 [85].  

In 2015, Robert and colleagues demonstrated significant improvements in progression-free 

survival, OS, response rates, and treatment related adverse events of pembrolizumab 

monotherapy compared with ipilimumab in advanced melanoma [86] (Table 1). A total of 834 

patients were randomised to either pembrolizumab every 2 weeks, pembrolizumab every 3 

weeks, or four cycles of ipilimumab every 3 weeks. The 12- and 24-month OS was significantly 

greater in the pembrolizumab groups, and progression-free survival at 6 months was 47.3%, 

46.4% and 26.5%, respectively, with more durable responses seen in the pembrolizumab groups 

at 7.9 months [87]. Lower rates of significant immune-mediated toxicities were also seen in the 

pembrolizumab groups. 

A phase I clinical trial of another anti-PD-1 monoclonal antibody, nivolumab (Bristol Myers 

Squibb), was conducted in 296 patients with melanoma, non-small-cell lung cancer (NSCLC), 

renal cell carcinoma (RCC) or other selected treatment-refractory malignancies [88]. Melanoma 
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patients were treated every 2 weeks with increasing doses of 0.1-10mg/kg and showed overall 

objective response rates of 28%, with the highest response rate (41%) at a dose of 3mg/kg. 

Responses were durable in many responders. Grade 3/4 treatment related adverse events 

occurred in 14% of patients, with IAEs in 6%. Longer-term follow up of melanoma patients 

showed 1- and 2-year survival rates of 62% and 43% respectively, with an OS of 16.8 months 

[89]. Long-term safety evaluation was comparable to the original analysis, with 22% 

experiencing grade 3/4 treatment related adverse events and 5% having grade 3/4 IAEs. 

Toxicities were not cumulative and almost exclusively occurred in the first 6 months of therapy. 

In an open-label, randomized, phase III study involving patients with ipilimumab-refractory 

melanoma, nivolumab was associated with a higher ORR than chemotherapy (32% versus 11%) 

[90]. Subsequently, nivolumab was compared with dacarbazine in patients with previously 

untreated metastatic melanoma without BRAF mutation [91]. Nivolumab gave superior 1-year 

survival (72% versus 42%), progression-free survival (5.1 versus 2.2 months), and ORRs (40% 

versus 13.9%). The survival benefit with nivolumab was observed across pre-specified subgroups, 

including those defined by PD-L1 status. Grade 3/4 drug-related adverse events occurred in 11.7% 

of nivolumab-treated patients and 17.6% of those receiving dacarbazine.   

Combination regimens of ICIs in patients with advanced melanoma. 

The distinct mechanisms of actions of anti-PD-1 and anti-CTLA-4 infer that their co-

administration could have enhanced efficacy (Figure 2). The first phase I study combining two 

ICIs, nivolumab and ipilimumab, was undertaken in patients with malignant melanoma and used 

an initial dose-escalation trial design to identify safe doses of these drugs when used in 

combination regimens [92]. 1mg/kg nivolumab and 3mg/kg ipilimumab were the maximum 

doses associated with acceptable levels of adverse events. This regimen yielded objective 

responses in 21/52 patients (40%). Durable responses, ranging from 6.1 to 72.1 weeks, were 

ongoing in 19 patients at the time of publication. Impressively, 16 patients had tumour 

reduction ≥80% at 12 weeks, including 5 with a complete response, although treatment-related 

grade 3/4 adverse events were reported in 53% of patients. Updated OS data was 82% and 75% 

for 1- and 2-year survival, respectively (Table 1) [93]. Thus, this preliminary trial data indicated 

that simultaneous targeting of PD-1 and CTLA-4 could be tolerated and result in durable 

responses.  
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The Checkmate 069 trial compared nivolumab plus ipilimumab, with ipilimumab monotherapy 

in patients with untreated malignant melanoma (Table 1). Greater objective responses were 

seen with combination therapy (61% versus 11% with ipilimumab alone), with complete 

responses in 22% of patients on combination therapy but none with ipilimumab alone [94]. 1- 

and 2-year OS was 73.4% and 63.8%, respectively, in the combination cohort, compared with 

64.8% and 53.6% with ipilimumab alone [95]. Importantly, 2-year survival was not significantly 

affected by BRAF mutation or tumour PD-L1 expression status at diagnosis. A large subsequent 

phase III trial (Checkmate 067) compared nivolumab alone, ipilimumab alone, and nivolumab 

plus ipilimumab: median progression-free survival was 6.9 months, 2.9 months and 11.5 months, 

respectively [96]. Notably, in patients with PD-L1-negative tumours, progression-free survival 

was greater with combination therapy than either monotherapy. Furthermore, with a minimum 

follow-up of 36 months, the median overall survival has not been reached in the combination 

regimen arm and was 37.6 months in the nivolumab arm of the study compared with 19.9 

months with ipilimumab monotherapy (HR = 0.55, P<0.001 for combination versus ipilimumab; 

HR= 0.65, P<0.001 for nivolumab versus ipilimumab). The overall survival at 3 years was 58%, 52% 

and 34% for the combination regimen, nivolumab, and ipilimumab monotherapy respectively. 

However, treatment-related grade 3 / 4 toxicities occurred in 59%, 21% and 28% of patients 

treated with the combination regimen, nivolumab, and ipilimumab respectively [97].  

A phase II trial (Checkmate 064) has also revealed intriguing results of switching between 

nivolumab and ipilimumab [98]. Melanoma patients underwent induction with either nivolumab 

(3mg/kg every 2 weeks; six doses) and then ipilimumab (3mg/kg every 3 weeks; four doses), or 

the reverse sequence. This was followed by maintenance therapy with nivolumab (3mg/kg every 

2 weeks) in both cohorts. Greater efficacy was observed in the nivolumab followed by 

ipilimumab cohort, with significantly greater 1-year OS than the reverse sequence (Table 1). As 

expected from previous combination trials, the frequency of IAEs was relatively high (43-50%), 

although this was not affected by the order of drug administration. 

Collectively, these trials have allowed ICIs, either alone or in combination, to herald in a new era 

of immunotherapy for the treatment of malignant melanoma. Impressive durable responses 

have led to unprecedented improvements for some patients with metastatic disease. 

Administering ICIs in combination with other therapeutics will no doubt further expand their use 

in cancer patients. 

New therapeutic approaches for non-small-cell lung cancer. 
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Anti-CTLA-4 therapy has been trialled in patients with NSCLC but promising outcomes akin to 

those seen in patients with melanoma have not been forthcoming. One initial trial used 

tremelimumab, an anti-CTLA-4 antibody, but it showed minimal efficacy and a significant side 

effect burden [99], and, when used in combination with chemotherapy, anti-CTLA-4 antibodies 

have consistently demonstrated only modest improvements in responses in NSCLC patients [100, 

101]. However, antibodies targeting the PD-1/PD-L1 axis have shown greater efficacy and 

marked reductions in side effects so have largely replaced anti-CTLA-4 antibodies as the ICI of 

choice in NSCLC.   

In 2015, nivolumab received FDA approval for use in patients with advanced squamous-cell 

NSCLC who progressed during or after, platinum chemotherapy (Table 2) [85]. This followed a 

phase III trial (CheckMate-017) of nivolumab compared with docetaxel chemotherapy in 

patients with progressive disease following first-line chemotherapy [102]. Median OS was 9.2 

months in the nivolumab cohort, compared with 6.0 months in those receiving docetaxel. At 12 

months, OS was 42% with nivolumab, and 24% with docetaxel. Pre-treatment tumour PD-L1 

expression was not predictive of efficacy. A similar phase III trial (CheckMate-057) demonstrated 

considerable improvements in survival for patients with advanced non-squamous NSCLC treated 

with nivolumab compared to those receiving docetaxel [103]. OS at 12 and 18 months was 

higher for patients on nivolumab compared with those on docetaxel. An additional phase II trial 

(CheckMate-063) supports the survival benefit of nivolumab, reporting a 1-year OS of 40.8% 

[104]. Similarly, compared with docetaxel, pembrolizumab showed greater efficacy than 

docetaxel in advanced NSCLC in a phase II/III trial (KEYNOTE-010) [105, 106]. Patients with ≥1% 

PD-L1 expression on the tumour received 2mg/kg pembrolizumab, 10mg/kg pembrolizumab, or 

docetaxel, resulting in median OS of 10.4, 12.7 or 8.5 months, respectively. Greater efficacy was 

seen in patients with high tumour PD-L1 expression. These results echo findings from a similar 

phase I study (KEYNOTE-001) investigating pembrolizumab in NSCLC [107], while a phase III trial 

(KEYNOTE-024) demonstrated survival benefits, durable responses, increased response rates 

and reduced treatment-related adverse events with pembrolizumab compared with platinum-

based chemotherapy in previously untreated patients with ≥50% tumoural PD-L1 expression 

[108]. This has led to pembrolizumab being licensed for treatment of naïve metastatic NSCLC 

with ≥50% PD-L1 expression [83]. In contrast, nivolumab did not improve progression-free or 

overall survival compared with chemotherapy in patients (n=423) with previously untreated 

stage IV or recurrent NSCLC and with a PD-1 expression of 5% or more [109]. This suggests that 

robust predictive markers are required to optimally select patients for anti-PD-1 therapy, and 
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that the sequence of administration with other standard therapies may also be relevant for 

optimal treatment strategies.  

In the phase II POPLAR trial, atezolizumab (Genentech), an antibody targeting the PD-L1 rather 

than PD-1, showed improved OS for NSCLC patients who had progressed following platinum 

chemotherapy [110]. This study included prospective evaluation of tumour PD-L1 expression, 

and used immune gene expression to define and quantify effector T-cell activity within the TME. 

It was clear that efficacy was closely related to both PD-L1 expression and effector T-cell 

abundance in the tumour. Future studies should consider incorporating this pre-treatment 

analysis of the presence of active tumour-infiltrating effector T-cells that may be a predictive 

marker of ICI efficacy. The clinical outcomes of POPLAR were reiterated in OAK, a phase III 

clinical trial demonstrating improved median OS with atezolizumab versus docetaxel (13.8 

versus 9.6 months) in NSCLC patients progressing on platinum chemotherapy, although 

improvement in OS was seen regardless of tumour PD-L1 expression [111, 112]. As a result of 

these trials, in 2016 the FDA approved atezolizumab for the treatment of metastatic NSCLC that 

has progressed on platinum chemotherapy [85].  

Significantly, PD-L1/PD-1 inhibitors not only improve OS but they are also associated with fewer 

treatment-related adverse events (≥ grade 3) than chemotherapy [102, 103, 105, 108-111]. 

Moreover, they may have broad usage: although strongest responses were seen in patients with 

high tumour PD-L1 expression, they also showed similar, if not greater, efficacy than 

chemotherapy in patients with very low tumour PD-L1 expression [102-107, 110, 111]. It has not 

yet been possible to accurately stratify patient responses based on PD-L1 expression, although 

this typically involves the analysis of a single pre-treatment tumour biopsy, sometimes taken 

long before starting checkpoint blockade therapy. In the Checkmate-063 trial, for example, 

there was a median of 1.3 years between biopsy and commencing nivolumab [104]. Thus, more 

detailed studies are required to explore the prognostic value of tumour PD-L1 expression, and 

ideally analysis of effector T-cell abundance and phenotype should also be included.  

ICIs offer new hope for treating NSCLC, which historically has poor survival outcomes in patients 

with metastatic disease, and they have become standard second-line therapies in NSCLC 

patients. They are also being used as first-line treatments, particularly for patients with PD-L1-

expressing tumours, although optimal ICI treatment strategies, with or without chemotherapy, 

still need to be more precisely defined in this context [113]. Trials using a combination of anti-

CTLA4 and anti-PD-L1 antibodies have begun in NSCLC patients, with two phase I studies 
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demonstrating safety profiles comparable to those seen in melanoma patients (Table 2) [114, 

115]. The results of on-going phase II/III trials are eagerly anticipated [116-118]. Other studies 

have focused on including ICIs into treatment strategies either in combination or sequentially 

after other existing therapies in NSCLC. For example, patients (n=713) with locally advanced 

unresectable NSCLC were randomly assigned (2:1) to receive consolidation therapy with either 

the anti-PDL-1 antibody durvalumab, or placebo every 2 weeks for up to 12 months after 

definitive chemoradiotherapy (chemotherapy with concurrent radiotherapy). Patients treated 

with durvalumab had a significantly improved progression-free survival (16.8 months versus 5.6 

months; HR = 0.52, P<0.001) and objective response rates 28.4% versus 16%; P<0.001) [119].  

ICIs show efficacy in other cancers. 

ICIs have been, or are being, investigated in clinical trials across a broad range of other cancers 

in the hope that responses seen in patients with melanoma or NSCLC can be reproduced in 

patients with other tumour types. 

PD-L1 expression has long been known to be associated with tumour aggressiveness and poorer 

outcomes in patients with Renal Cell Carcinoma (RCC) [120, 121]. Nivolumab demonstrated 

efficacy in a phase II trial of 168 patients with metastatic RCC [122]. They received 0.2, 2 or 

10mg/kg of nivolumab: median OS was 18.2, 25.5 or 24.7 months, respectively. In a subsequent 

phase III study, patients that had previously received anti-angiogenic therapy had a median OS 

of 25.0 months on nivolumab compared with 19.6 months on everolimus (an mTOR inhibitor 

recommended after failed anti-angiogenic therapy) [123]. Nivolumab was subsequently 

approved for use in patients with advanced RCC after failing anti-angiogenic therapy [85]. 

Interestingly, high tumour PD-L1 expression was not associated with improved responses to 

therapy in this study: median OS in patients with PD-L1 expression ≥1% was 21.6 and 18.8 

months (nivolumab and everolimus, respectively), but 27.4 versus 21.2 months in patients with 

≤1% tumour PD-L1 expression. This emphasises the need to carefully consider the suitability of 

using PD-L1 expression alone to predict responses. 

Following two clinical trials [124, 125], atezolizumab, and more recently nivolumab, have been 

granted FDA approval for bladder cancer patients with disease progression within 12 months of 

treatment with platinum-containing chemotherapy [85]. The phase II trial using atezolizumab 

improved objective response rates compared with a historical control [124]. Approximately 15% 

of patients responded, and in this case, PD-L1 expression on tumour-associated immune cells 

This article is protected by copyright. All rights reserved.



 12 

correlated with objective responses. Ongoing responses in 84% of responders demonstrate 

excellent treatment durability, and for a small fraction (5%) a complete response was observed. 

This trial attempted to define features of the TME associated with responses. In addition to PD-

L1 expression, it determined CD8+ T-cell infiltration, mutational load, and molecular subtype. 

Several ‘immune cell’ genes were associated with complete and partial responses to 

atezolizumab, including the IFN-γ-inducible genes CXCL9 and CXCL10, which encode chemokines 

that direct leukocyte and CD8+ T-cell homing. Mutational load was also significantly higher in 

responders than non-responders (12.4 versus 6.4 mutations per Mb). High mutational load has 

also been correlated with responses to anti-CTLA-4 in malignant melanoma [126], and may 

predict better survival in melanoma patients treated with anti-PD1 therapy [127]. This is most 

likely because increased mutation will increase the generation of neoantigens recognizable by T-

cells. Thus, in addition to characterizing PD-L1 expression and the immune cell infiltrate, efforts 

to predict ICI responses should take into account the mutational landscape of the tumour.  

Tumours with mismatch-repair (MMR) defects contain a large number of somatic mutations so 

may be particularly sensitive to ICIs. Indeed, in a recent phase II trial pembrolizumab was 

administered every two weeks to patients with MMR–deficient colorectal cancers (n=11), 

MMR–proficient colorectal cancers (n=21), or MMR–deficient cancers that were not colorectal 

(n=9) [128]. The objective response rate and progression-free survival rate at 20 weeks were 40% 

and 78% for MMR–deficient colorectal cancers; 71% and 67% for non-colorectal MMR–deficient 

cancers; and 0% and 11% for MMR–proficient colorectal cancers. This apparent sensitivity of 

MMR–deficient tumours supports the rationale of combining DNA repair inhibitors with ICIs in 

clinical trials, and a Phase I/II study combining the poly ADP Ribose Polymerase (PARP) inhibitor, 

olaparib, with durvalumab in patients with selected advanced malignancies is ongoing [129]. 

PD-1 blockade has shown positive outcomes in classical Hodgkin’s lymphoma. Nivolumab and 

pembrolizumab are now FDA-approved for treatment of patients who have relapsed after other 

therapies. Two clinical trials have reported ORRs of 65% and 87%, with complete response rates 

in 16% and 17% of patients [130, 131]. Nivolumab and pembrolizumab are also approved for use 

in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) 

whose disease has progressed after administration of platinum-based therapeutics [85]. 

Pembrolizumab treatment gave a clinically significant ORR, and durable responses were evident 

in some patients [132], while nivolumab improved overall survival compared to standard single-

agent therapy (methotrexate, docetaxel or cetuximab) [133]. However, in a phase III study of 
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pembrolizumab versus standard of care in patients with recurrent or metastatic SCCHN, 

pembrolizumab yielded a 19% reduction in the risk of death compared with standard of care, 

but this did not meet the pre-specified efficacy boundary, although it is possible that 

subsequent immunotherapy use in the standard of care arm may have confounded the overall 

survival analysis [134]. Nonetheless, greater differences in overall survival, progression-free 

survival, and objective response rates were seen in patients with PD-1-expressing tumours [134].  

Based on a phase II clinical trial involving 88 patients, avelumab (Merck – Pfizer), a PD-L1 

blocking antibody, received FDA approval for use in patients with metastatic Merkel cell 

carcinoma [85, 135]. This is the first ever drug approved for this rare skin cancer, in which 

Merkel cell polyomavirus infection is a major aetiological factor [136]. Nearly a third of patients 

showed objective responses, with eight complete responses reported: five grade 3 treatment-

related adverse events were noted [135]. Pembrolizumab has also been trialled on 26 patients 

with this disease, with an ORR of 56% being reported, including four complete responses [137].   

In a large phase III trial involving 1,132 patients with extensive late-stage small-cell lung cancer 

(SCLC), ipilimumab with chemotherapy versus placebo with chemotherapy demonstrated no 

significant difference in OS [138]. A previous phase I/II trial had also given disappointing results 

in SCLC, with no survival advantage for patients receiving ipilimumab [139]. However, nivolumab, 

either alone or in combination with ipilimumab, showed anti-tumour activity with durable 

responses and manageable safety profiles in previously treated patients with SCLC [140]. 

Patients were administered nivolumab (3mg/kg); nivolumab (1mg/kg) plus ipilimumab (3mg/kg); 

or nivolumab (3mg/kg) plus ipilimumab (1mg/kg). Objective responses were seen in 10%, 23% 

and 19% patients, respectively. Pembrolizumab is currently under investigation in patients with 

PD-L1+ (≥1% expression) SCLC, who have progressed during or after platinum-based 

chemotherapy [141]. Initial results indicate good tolerability and, while the data are preliminary, 

the initial report shows that 25% of SCLC patients developed a partial response.  

A phase III trial compared ipilimumab against placebo, following radiation, in patients with 

metastatic castration-resistant prostate cancer that progressed on docetaxel chemotherapy 

[142]. They reported no significant improvement in OS: median OS was 11.2 months for 

ipilimumab and 10.0 months for placebo. However, subgroup analysis revealed improved OS 

outcomes for patients with better prognostic factors. This is perhaps unsurprising, as it is now 

established that immunotherapies often take longer to show measurable efficacy [143].  Final 

results from a completed Phase III trial comparing placebo with ipilimumab in minimally 
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symptomatic, previously untreated patients with metastatic castration-resistant prostate cancer 

should reveal whether there is a role for ICIs in this malignancy [144]. Finally, promising 

responses have also been observed with anti-PD-1 antibodiy treatment in patients with 

refractory gastric cancer [145, 146] or hepatocellular carcinoma [147]: results of randomized 

trials are eagerly awaited. 

Thus, in addition to melanoma and NSCLC, ICI monotherapies, particularly those targeting the 

PD-1 pathway, are yielding positive outcomes in a range of metastatic cancers. Toxicities are 

evident and need to be managed, and the long-term health implications of ICI monotherapy 

have yet to be determined. This might be significant, given the improvements in patient survival 

seen with ICIs, though the issue of resistance to ICIs raises the challenge of how to treat cancers 

which fail multiple therapies.  

Future prospects for ICIs in combination therapies. 

Clinical trial data have justifiably generated considerable excitement about the effectiveness of 

ICIs. In many cases, responses are durable, perhaps even curative, possibly because they release 

systemic personalized memory T-cell responses against multiple patient-specific tumour 

antigens. However, only subsets of patients respond to ICI monotherapy. Combining ICIs can 

improve outcomes, and further ICI combination trials, with careful side effect monitoring, are 

certainly merited. There are also a large number of ongoing clinical trials exploring ICIs in 

combination with other treatment modalities, such as radiotherapy, chemotherapy, or 

molecular targeted therapies [148]. The administration of ICIs after radiotherapy attempts to 

augment the ‘abscopal effect’, where localized radiation-induced tumour cell death can deliver 

anti-tumour immune responses against distant tumour deposits (Figure 1) [149-154]. ICIs even 

show activity against tumours classically viewed as poorly immunogenic, such as pancreatic 

adenocarcinoma and glioblastoma, with efforts aimed at administering ICIs while either 

modifying the TME, up-regulating neoantigen abundance [155] or, in glioblastoma, potentiating 

immune responses using adenovirus [156]. Modulating the chemokine composition of the TME 

[157], or blocking chemokine receptors [158], can also enhance ICI efficacy in animal models, 

and these approaches may translate to humans. Preliminary data in animal tumour models has 

shown that depletion of Tregs via modified anti-CD25 antibody plus anti-PD-1 antibody can 

induce complete regression of established tumours [159]. In short, combination therapies have 

the potential to further improve the activity and scope of ICIs, leading to the induction of 

durable effector T-cell responses in more patients, and across a greater range of malignancies.  
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Integrating ICIs into precision oncology.  

The future of oncology will undoubtedly involve a precision approach to patient care, with 

treatment tailored to an individual’s disease to maximise efficacy and ameliorate side effects as 

far as possible. Numerous factors determine a patient’s response to ICIs. These include, but are 

not limited to, the distribution of the target immune checkpoint protein; the immune cell 

context within the tumour; the availability, immunogenicity and frequency of tumour antigens; 

the pharmacodynamics and pharmacokinetics of the ICI; and the amenability of the TME for 

effective drug delivery [160]. The analysis of these factors must be incorporated into the design 

of future clinical trials so that combinations of biomarkers that predict response to ICI 

immunotherapy can be identified and exploited. It will also be important to further clarify the 

reciprocal relationship between tumour cells and the TME in the context of ICI therapies, 

particularly if they are to be implemented across a range of different malignancies. Clinical trials 

have evolved from when tumours were classified according to histological observations, and 

comprehensive molecular, cellular and genetic phenotyping is now possible. Genomic and 

transcriptomic analysis of pre-treatment melanoma has identified a transcriptional signature 

associated with innate resistance to anti-PD1 therapy, and demonstrated that mutations in the 

DNA repair gene BRCA2 are enriched in patients that do respond [161]. The analysis of serial 

tumour biopsies taken before, during and after ICI therapy will further enhance understanding 

of how anti-tumour responses are induced by ICIs, and how tumours adapt to evade or limit 

these responses. Interestingly, one study has identified mutations in melanoma cells in patients 

whose disease progressed after initially responding to PD-1 blockade [162], and at least one trial 

is underway that aims to understand the selection pressures and evolutionary changes that ICIs 

impose on tumour cells [163].   

Concluding remarks. 

The development and application of ICIs has been a major advance in the treatment of cancer, 

dramatically rekindling academic, clinical and commercial interest in anti-cancer 

immunotherapies. As monotherapies, they show considerable promise and remarkable 

responses have been seen in some patients. However it is clear that there is improved efficacy 

when these ICIs are used as part of a concerted therapeutic approach for management of 

malignant disease. The key issue to be resolved is generation of sufficient evaluable data from 

combinatorial trials to define effective parameters for treatment. Results from current trials 

where ICIs are combined with chemotherapy, radiotherapy or with other immunotherapies are 
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starting to demonstrate which malignancies are particularly susceptible to immune reactivation. 

These studies are also providing clear evidence that though ICIs have produced dramatic 

improvements in some patients, they are not necessarily sufficient to mediate long-term 

remission or cure in most. Identification and validation of suitable prognostic markers in patient 

cohorts will also help to stratify treatment modalities and target therapy to those patients most 

likely to respond. The corollary to this is that suitable prognostic criteria could also minimize the 

IAEs associated with ICI treatment and immune reactivation [164]. The management of side 

effects and the evolution of resistance are ongoing concerns, but further advances are 

anticipated as these new medicines are incorporated into combination therapies and integrated 

into precision oncology. Progress is likely to be swift given the current explosion in clinical trials 

of ICIs and the rapidly expanding number of preclinical studies involving these drugs will no 

doubt stimulate further clinical applications. The range of new ICIs becoming available, and the 

novel checkpoint targets being identified and characterised in preclinical studies, means that the 

resistance or relapse seen in some patients could be reversed by using alternative checkpoint 

inhibitors. There is also a significant new approach to tumour immunotherapy with the recent 

FDA approval for autologous gene-modified chimeric antigen receptor (CAR) T cell therapy. This 

cell therapy (Kymriah, Novartis) targets CD19 in B cell acute lymphocytic leukaemia and has 

shown significant efficacy [165]. There are several other CAR-T cell therapies in development, 

and combination therapy with ICIs is already planned, offering the potential for even greater 

benefits. ICIs are important new weapons in the oncologist’s arsenal and exciting times lie 

ahead in the field of cancer immunotherapy.  
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Figure 1: History of Checkpoint Inhibitors: Key Milestones 

Timeline showing when checkpoint inhibitors were approved for the treatment of specific 

cancers in the USA, Europe and Japan.  Tumour type is indicated by the colour of each ICI 

depicted in the figure, according to the key in the top left. 

Abbreviations: 1L, first line; 2L, second line; NSCLC, non-small cell lung cancer; NSQ, 

nonsquamous; PD-L1, programmed death ligand 1; RCC, renal cell carcinoma; R/M, 

recurrent/metastatic; SCCHN, squamous cell carcinoma of the head and neck; SQ, squamous.  

1 U.S. Food and Drug Administration. http://www.fda.gov. Accessed November 11, 2016. 2 

European Medicines Agency. http://www.ema.europa.eu. Accessed November 11, 2016. 3 ONO 

Pharmaceutical Co., Ltd. [press release] July 4, 2014. 4 ONO Pharmaceutical Co, Ltd. [press 

release]. March 23, 2015. 5 ONO Pharmaceutical Co, Ltd. [press release]. December 17, 2015. 6 

Merck [press release]. June 27, 2016. Accessed August 8, 2016. 7 Bristol-Myers Squibb Company 

[press release]. November 22, 2016. 8. Merck [press release]. December 19, 2016. 

 

Figure 2: ICI blockade reverses tumour-mediated immune suppression 

A) Established tumours block immune attack through a variety of mechanisms including 

inhibition of tumour-specific CTL and CD4 T cell activation and function (1). This is driven by 

tumour over-expression of PD-L1, interacting with tumour-specific T cell PD-1 receptor (2) and T 

cell anergy induced by tumour-mediated T cell expression of CTLA-4 inhibitory receptor (4). In 

addition, tolerogenic DC drive Treg induction and expansion via CTLA-4 (3) and accumulation of 

Tregs then contributes to the immunosuppressive milieu of the TME. 

B) After ICI therapy, there is re-activation and proliferation of tumour-specific CTLs via blockade 

of PD-1 axis (1), and return of functional cytotoxicity, resulting in perforin release and tumour 

cell killing (2). As tumour damage increases, the TME is disrupted allowing macrophages to 

deplete Tregs via FcR binding of anti-CTLA-4 antibody (3). Tumour antigen release is driven by 

immune lysis of tumour cells which are processed by conventional DC and presented to naive T 

cells in context of checkpoint inhibition of CTLA-4, enhancing CTL proliferation and function (4). 

Tumour damage and antigen release is also supplemented by concomitant use of conventional 

chemo/radiotherapy, which can reveal new tumour-associated antigens and contribute to anti-

tumour immune responses (5). 
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Trial Name 
and/or Phase 
[Ref] 
 

Trial Drugs (dose) Patient 
Number 

1-Year OS 
Rate (%) 

18-Month OS 
Rate (%) 

2-Year OS Rate 
(%) 

Median OS (Months) 

Phase III [76] Ipi (3mg/kg) vs gp100 vaccine 676 45.6 vs 25.3 33.2 vs 16.3 23.5 vs 13.7 10.1 vs 6.4 

Phase II [79] Ipi (10mg/kg) + Budesonide vs Ipi (10mg/kg)  115 55.9 vs 62.4  N/R 40.5 vs 41.7 17.7 vs 19.3  

Phase II [80] Ipi (10 vs 3 vs 0.3mg/kg) 217 48.6 vs 39.3 vs 
39.6  

34.5 vs 30.2 vs 
23.0 

29.8 vs 24.2 vs 
18.4 

11.4 vs 8.7 vs 8.6  

Phase II [81] Ipi (10mg/kg) 226 47.2 39.4 32.8 10.2 

KEYNOTE-006 
Phase III [86, 87]  

Pembro (10mg/kg every 2 weeks) vs Pembro 
(10mg/kg every 3 weeks) vs   Ipi (3mg/kg 
every 3 weeks) 

834 74.1 vs 68.4 vs 
58.2 

N/R 55.1 vs 55.3 vs 
43.0 

N/A vs N/A vs 16.0 

Phase I [88, 89] Pembro (1-10mg/kg) 104 62 N/R 43 16.8 

Phase III [91] Niv (3mg/kg) vs Dacarbazine (1000mg/m2) 418 72.9 vs 42.1 N/A N/A N/A vs 10.8 

Phase I [92, 93] Cohort 1: Niv (0.3mg/kg) +Ipi (3mg/kg) 14 56 N/A N/A 14.8 

Cohort 2: Niv (1mg/kg) + Ipi (3mg/kg) 17 94 N/A N/A N/R 

Cohort 2a: Niv (3mg/kg) +Ipi (1mg/kg) 16 89 N/A N/A N/R 

Cohort 3: Niv (3mg/kg) + Ipi (3mg/kg) 6 100 N/A N/A  N/R 

CHECKMATE 069 
Phase II [94, 95] 

Niv (1mg/kg) + Ipi (3mg/kg) vs Ipi (3mg/kg) 142 73.4 vs 64.8 
 

N/R 63.8 vs 53.6 
 
 

N/R 

CHECKMATE 067 
Phase III [96, 97] 

Niv (3mg/kg)  316 N/A N/A 59 37.6 

Niv (1mg/kg) + Ipi (3mg/kg), then Niv 
(3mg/kg) maintenance 

314 N/A N/A 64 N/A 

Ipi (3mg/kg) 315 N/A N/A 45 19.9 

CHECKMATE 064  
Phase II [98] 

Niv (3mg/kg), then Ipi (3mg/kg) 68 76 N/A N/A N/A 

Ipi (3mg/kg), then Niv (3mg/kg) 70 54 N/A N/A 16.9 

 
Table 1: Key clinical trials of ICIs in patients with malignant melanoma, and their associated survival data. Ipi, ipilimumab; Pembro, 

pembrolizumab; Niv, nivolumab; OS, overall survival; N/A, not available; N/R, not reported. 
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Trial name, 
Phase [Ref] 

Disease Trial Drugs (dose) Patient 
Number 

1-Year OS 
Rate (%) 
 

Median 
OS 
(months) 

Objective 
Responses 
Rate (%) 

Median 
PFS 
(months) 

Correlation 
Between Tumour 
PD-L1 Expression 
and Response? 
 

Treatment-
Related Adverse 
Events (grade≥3) 
(%) 

CHECKMATE-
063 
Phase III [104] 

Sq NSCLC Niv (3mg/kg) 117 40.8 8.2 14.5 1.9 Yes 17 

CHECKMATE-
017 
Phase III [102] 

Sq NSCLC Niv (3mg/kg) vs 
Docetaxel  

272 42 vs 24 9.2 vs 6.0 20 vs 9  
 

3.5 vs 2.8 N/R 7 vs 55 

CHECKMATE-
057 
Phase III [103] 

Non-Sq 
NSCLC 

Niv (3mg/kg) vs 
Docetaxel 

582 51 vs 39 12.2 vs 
9.4 

19 vs 12  
 

2.3 vs 4.2 Yes 10 vs 54 

KEYNOTE-001 
Phase I [107] 

NSCLC Pembro  
(2-10mg/kg) 

495 N/R 12.0 19.4 3.7 Yes 9.5 

KEYNOTE-010 
Phase II/III [105, 
106] 

>1% PD-
L1+ 
NSCLC 
 

Pembro (2mg/kg) 
vs Pembro 
(10mg/kg) vs 
Docetaxel 

1034 43.2 vs 
52.3 vs 
34.6 

10.4 vs 
12.7 vs 
8.5 

N/R 3.9 vs 4.0 
vs 4.9 
 

Yes 13 vs 16 vs 35 

KEYNOTE-024 
Phase II [108] 

>50% 
PD-L1+ 
NSCLC 

Pembro (200mg) 
vs Docetaxel 

305 N/R N/R 44.8 vs 27.8 10.3 vs 
6.0 
 

High PD-L1 a 
prerequisite for 
inclusion in trial 

26.6 vs 53.3 

POPLAR 
Phase II [109] 

NSCLC 
 

Atezo (1200mg) vs 
Docetaxel  

277 47.9 vs 
37.8 

12.6 vs 
9.7 

15 vs 15 2.7 vs 3.0 
 

Yes 40 vs 53 

OAK Phase III 
[110, 111] 

NSCLC Atezo vs Docetaxel 1225 55 vs 41 13.8 vs 
9.6 

14 vs 13 2.8 vs 4.0 Yes 37 vs 54 

Phase 1b [112] NSCLC Durvalumab + 
Tremelimumab 

102 N/R N/R 0-23 N/R N/R 36 

CHECKMATE-
012 
Phase 1 [115] 

NSCLC Niv (3mg/kg) + Ipi 
vs Niv (3mg/kg) + 
Ipi 

77 Not 
calculated 
vs 69 

N/R 47 vs 38 8.1 vs 3.9 Yes 37 vs 33 

 
Table 2: Key trials of ICIs targeting the PD-1 pathway in patients with non-small-cell lung cancer (NSCLC). Sq, Squamous; Non-Sq, non-

squamous; Niv, nivolumab; Pembro, pembrolizumab; Atezo, atezolizumab; Ipi, ipilumumab; OS, overall survival; PFS, progression-free survival; 

N/R, not reported.  
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