10 research outputs found

    Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport

    Get PDF
    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4T804M mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Article Discovering Small Molecules that Promote Cardiomyocyte Generation by Modulating Wnt Signaling

    No full text
    SUMMARY We have developed a robust in vivo small-molecule screen that modulates heart size and cardiomyocyte generation in zebrafish. Three structurally related compounds (Cardionogen-1 to Cardionogen-3) identified from our screen enlarge the size of the developing heart via myocardial hyperplasia. Increased cardiomyocyte number in Cardionogen-treated embryos is due to expansion of cardiac progenitor cells. In zebrafish embryos and murine embryonic stem (ES) cells, Cardionogen treatment promotes cardiogenesis during and after gastrulation, whereas it inhibits heart formation before gastrulation. Cardionogen-induced effects can be antagonized by increasing Wnt/b-catenin signaling activity. We demonstrate that Cardionogen inhibits Wnt/ b-catenin-dependent transcription in murine ES cells and zebrafish embryos. Cardionogen can rescue Wnt8-induced cardiomyocyte deficiency and heartspecific phenotypes during development. These findings demonstrate that in vivo small-molecule screens targeting heart size can reveal compounds with cardiomyogenic effects and identify underlying target pathways

    Discovering Small Molecules that Promote Cardiomyocyte Generation by Modulating Wnt Signaling

    Get PDF
    SummaryWe have developed a robust in vivo small-molecule screen that modulates heart size and cardiomyocyte generation in zebrafish. Three structurally related compounds (Cardionogen-1 to Cardionogen-3) identified from our screen enlarge the size of the developing heart via myocardial hyperplasia. Increased cardiomyocyte number in Cardionogen-treated embryos is due to expansion of cardiac progenitor cells. In zebrafish embryos and murine embryonic stem (ES) cells, Cardionogen treatment promotes cardiogenesis during and after gastrulation, whereas it inhibits heart formation before gastrulation. Cardionogen-induced effects can be antagonized by increasing Wnt/β-catenin signaling activity. We demonstrate that Cardionogen inhibits Wnt/β-catenin-dependent transcription in murine ES cells and zebrafish embryos. Cardionogen can rescue Wnt8-induced cardiomyocyte deficiency and heart-specific phenotypes during development. These findings demonstrate that in vivo small-molecule screens targeting heart size can reveal compounds with cardiomyogenic effects and identify underlying target pathways

    CD36 Deficiency Impairs the Small Intestinal Barrier and Induces Subclinical Inflammation in MiceSummary

    Get PDF
    Background & Aims: CD36 has immunometabolic actions and is abundant in the small intestine on epithelial, endothelial, and immune cells. We examined the role of CD36 in gut homeostasis by using mice null for CD36 (CD36KO) and with CD36 deletion specific to enterocytes (Ent-CD36KO) or endothelial cells (EC-CD36KO). Methods: Intestinal morphology was evaluated by using immunohistochemistry and electron microscopy. Intestinal inflammation was determined from neutrophil infiltration and expression of cytokines, toll-like receptors, and cyclooxygenase-2. Barrier integrity was assessed from circulating lipopolysaccharide and dextran administered intragastrically. Epithelial permeability to luminal dextran was visualized by using two-photon microscopy. Results: The small intestines of CD36KO mice fed a chow diet showed several abnormalities including extracellular matrix accumulation with increased expression of extracellular matrix proteins, evidence of neutrophil infiltration, inflammation, and compromised barrier function. Electron microscopy showed shortened desmosomes with decreased desmocollin 2 expression. Systemically, leukocytosis and neutrophilia were present together with 80% reduction of anti-inflammatory Ly6Clow monocytes. Bone marrow transplants supported the primary contribution of non-hematopoietic cells to the inflammatory phenotype. Specific deletion of endothelial but not of enterocyte CD36 reproduced many of the gut phenotypes of germline CD36KO mice including fibronectin deposition, increased interleukin 6, neutrophil infiltration, desmosome shortening, and impaired epithelial barrier function. Conclusions: CD36 loss results in chronic neutrophil infiltration of the gut, impairs barrier integrity, and systemically causes subclinical inflammation. Endothelial cell CD36 deletion reproduces the major intestinal phenotypes. The findings suggest an important role of the endothelium in etiology of gut inflammation and loss of epithelial barrier integrity. Keywords: Neutrophils, Endothelium, Fibronectin, Collage

    Chemical approaches to studying stem cell biology

    No full text
    Stem cells, including both pluripotent stem cells and multipotent somatic stem cells, hold great potential for interrogating the mechanisms of tissue development, homeostasis and pathology, and for treating numerous devastating diseases. Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology, and to translate stem cells into regenerative medicine. Chemical approaches have recently provided a number of small molecules that can be used to control cell self-renewal, lineage differentiation, reprogramming and regeneration. These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes. Ultimately, this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation
    corecore