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ORIGINAL RESEARCH

CD36 Deficiency Impairs the Small Intestinal Barrier and
Induces Subclinical Inflammation in Mice
Vincenza Cifarelli,1 Stoyan Ivanov,2 Yan Xie,3 Ni-Huiping Son,5 Brian T. Saunders,2

Terri A. Pietka,1 Trevor M. Shew,1 Jun Yoshino,1 Sinju Sundaresan,1 Nicholas O. Davidson,3

Ira J. Goldberg,5 Andrew E. Gelman,4 Bernd H. Zinselmeyer,2 Gwendalyn J. Randolph,2 and
Nada A. Abumrad1

1Department of Medicine, Center for Human Nutrition, 2Department of Pathology and Immunology, 3Department of Medicine,
Division of Gastroenterology, and 4Department of Surgery, Washington University School of Medicine, St Louis, Missouri; and
5Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center,
New York, New York

SUMMARY

This study documents that CD36 is important for intestinal
homeostasis. CD36 deletion associates in the gut with
altered extracellular matrix, neutrophil infiltration, and
defective epithelial barrier. Systemically, the deletion results
in subclinical inflammation with depletion of the Ly6Clow

anti-inflammatory monocytes. Specific loss of endothelial
cell CD36 recapitulates most intestinal phenotypes of
germline CD36KO mice.

BACKGROUND & AIMS: CD36 has immunometabolic actions
and is abundant in the small intestine on epithelial, endothelial,
and immune cells. We examined the role of CD36 in gut
homeostasis by using mice null for CD36 (CD36KO) and with
CD36 deletion specific to enterocytes (Ent-CD36KO) or endo-
thelial cells (EC-CD36KO).

METHODS: Intestinal morphology was evaluated by using
immunohistochemistry and electron microscopy. Intestinal
inflammation was determined from neutrophil infiltration and
expression of cytokines, toll-like receptors, and
cyclooxygenase-2. Barrier integrity was assessed from circu-
lating lipopolysaccharide and dextran administered intra-
gastrically. Epithelial permeability to luminal dextran was
visualized by using two-photon microscopy.

RESULTS: The small intestines of CD36KO mice fed a chow
diet showed several abnormalities including extracellular
matrix accumulation with increased expression of extracel-
lular matrix proteins, evidence of neutrophil infiltration,
inflammation, and compromised barrier function. Electron
microscopy showed shortened desmosomes with decreased
desmocollin 2 expression. Systemically, leukocytosis and
neutrophilia were present together with 80% reduction of
anti-inflammatory Ly6Clow monocytes. Bone marrow trans-
plants supported the primary contribution of non-
hematopoietic cells to the inflammatory phenotype. Specific
deletion of endothelial but not of enterocyte CD36 reproduced
many of the gut phenotypes of germline CD36KO mice
including fibronectin deposition, increased interleukin 6,
neutrophil infiltration, desmosome shortening, and impaired
epithelial barrier function.

CONCLUSIONS: CD36 loss results in chronic neutrophil infil-
tration of the gut, impairs barrier integrity, and systemically
causes subclinical inflammation. Endothelial cell CD36 deletion
reproduces the major intestinal phenotypes. The findings sug-
gest an important role of the endothelium in etiology of gut
inflammation and loss of epithelial barrier integrity. (Cell Mol
Gastroenterol Hepatol 2017;3:82–98; http://dx.doi.org/10.1016/
j.jcmgh.2016.09.001)

Keywords: Neutrophils; Endothelium; Fibronectin; Collagen.

The scavenger receptor CD36 mediates intracellular
signaling in response to its ligands in a cell-type and

context-dependent manner.1 In the small intestine, CD36 is
abundantly expressed on enterocytes, endothelial cells, and
immune cells. CD36 present on the apical membrane of
enterocytes recognizes dietary long-chain fatty acids and
cholesterol and is important for chylomicron production.2

CD36 null (CD36KO) mice have delayed intestinal lipid
absorption, resulting in more fat reaching the distal gut, and
produce smaller chylomicrons that are slowly cleared from
the circulation.3,4 The absorptive intestinal epithelium
functions as a tight barrier limiting entry of pathogens and
related toxins such as lipopolysaccharides.5 Recruitment of
immune cell to the gut elicits the acute inflammation
necessary for host defense and later contributes to inflam-
mation resolution and tissue healing.6,7 CD36’s role in gut
immunity is unknown, but on monocytes/macrophages
CD36 functions in recognizing pathogen-associated and

Abbreviations used in this paper: COX-2, cyclooxygenase 2; ECM,
extracellular matrix; FITC, fluorescein isothiocyanate; IL, interleukin;
MPO, myeloperoxidase; PBS, phosphate-buffered saline; qRT-PCR,
quantitative reverse transcription-polymerase chain reaction; SEM,
standard error of the mean; a-SMA, smooth muscle actin alpha; TLR,
toll-like receptor; TNF, tumor necrosis factor; TUNEL, deoxyuride-5’-
triphosphate biotin nick end labeling.
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danger-associated molecular pattern molecules that can
initiate and sustain inflammatory responses.8,9 CD36 also
participates in resolution of inflammation by inducing
polarization of macrophages to the anti-inflammatory M2
phenotype important for phagocytic clearance of apoptotic
neutrophils10 and tissue healing.11,12 On endothelial cells,
CD36 functions as a receptor for extracellular matrix (ECM)
components such as thrombospondin 1 and collagen and
acts as a signaling platform for several integrins.13,14

Interaction of immune cells with the ECM is crucial to
their activation and survival.15,16 ECM dysregulation pro-
motes tissue inflammation and might contribute to etiology
of inflammatory bowel disease.17

The range of functions for intestinal CD36 (absorption,
immunity, ECM) suggests it could play an important role
in intestinal homeostasis, but this remains unexplored. In
the present study, we examined the impact of CD36
deletion on intestinal barrier integrity and inflammation
in mice fed a chow diet under basal conditions and after
administration of a fat bolus. We show that germline CD36
deletion results in abnormal ECM remodeling, defective
epithelial barrier, and neutrophil infiltration in the prox-
imal intestine. Systemically, the deletion associates with
endotoxemia and subclinical inflammation. Specific dele-
tion of endothelial CD36 also results in a leaky epithelium
and gut neutrophil infiltration, supporting a primary role
in eliciting the gut abnormalities of the germline CD36KO
mouse.

Materials and Methods
Animals

All studies followed guidelines of the animal ethics
committee of Washington University School of Medicine
(St Louis, MO). CD36-null (CD36KO), enterocyte null (Ent-
CD36KO), endothelial null (EC-CD36KO), and wild-type
(WT) mice, all on the C57BL/6 background, were
housed in a facility with a 12-hour light-dark cycle and fed
chow ad libitum (Purina, St Louis, MO) or when indicated
fasted for 12 hours with ad libitum access to water. CD36
floxed (Fl/Fl) mice were generated by using a plasmid
with LoxP sites flanking CD36 exons 2 and 3. After elec-
troporation, selection, and screening, properly targeted ES
clones were injected into blastocyst for generation of
chimeric mice. Mice carrying the CD36 floxed allele were
crossed with C57BL6 mice expressing Cre recombinase
driven by the villin promoter (B6.Cg-Tg(Vil-cre)997Gum/
J, stock number 021504; Jackson Laboratory, Bar Harbor,
ME) to disrupt CD36 expression in enterocytes (Ent-
CD36KO).

To delete endothelial CD36 (EC-CD36KO), CD36 floxed
mice were crossed to C57BL6 mice expressing Cre driven
by the Tie2 promoter. To avoid germline transmission,
breeding involved Creþ males with Cre– females. Geno-
types were confirmed by polymerase chain reaction and
immunohistochemistry. Endothelial cells were isolated
from lungs of Fl/Fl and EC-CD36KO mice by using CD146
MicroBeads (Miltenyi Biotech, Cambridge, MA; cat.
#130-092-007), and RNA from w500,000 CD146þ cells

was used to measure CD31 and CD36 mRNA levels by
quantitative reverse transcription-polymerase chain re-
action (qRT-PCR).

For the bone marrow chimera experiments, B6.SJL-
PtprcaPep3b/BoyJ mice (Jackson Laboratories) with the
CD45.1 allelic version of the CD45 leukocyte common
antigen were irradiated (1100 rad by using a cesium
source) and injected retro-orbitally with the appropriate
WT or CD36KO bone marrow suspension (2 � 106 cells)
as previously described.18 Blood and intestines were
collected 8 weeks later for flow cytometry and
immunohistochemistry.

Intestine Permeability and
Endotoxin Measurement

Fluorescein isothiocyanate (FITC)–conjugated dextran
(4 kDa) (Sigma-Aldrich, St Louis, MO) was intragastrically
administered to mice (n ¼ 6/genotype) sedated initially
with 4%–5% isoflurane and maintained with 1%–2%
isofluorane. Blood was collected retro-orbitally at 0, 2, 4,
and 6 hours, and level of FITC-dextran was measured at
excitation 485/20 and 528/20 emission (Synergy HT;
BioTek Instruments Inc, Winooski, VT). One week later, the
experiment was repeated by using the same mice groups,
but a bolus of triolein (4.5 mL/g body weight) was admin-
istered intragastrically 30 minutes before the FITC-dextran.
For endotoxin determinations, sera were diluted 1:20,
heated (70�C, 15 minutes), and assayed by using the limulus
amebocyte lysate chromogenic endotoxin quantification
(Lonza Inc, Walkersville, MD).

Histology and Immunohistochemistry
Small intestines were gently washed in cold phosphate-

buffered saline (PBS), opened longitudinally, fixed in 10%
formalin, and paraffin embedded. Sections (5 mm) were
deparaffinized, followed by antigen retrieval (99�C, 18 mi-
nutes) in a pressurized chamber (Biocare Medical, Concord,
CA) and blocked (1 hour) in donkey serum (2%) (Jackson
Laboratories) and bovine serum albumin (3%) (Sigma-
Aldrich). Incubation with primary antibodies (Table 1) was
performed overnight (4�C), followed by incubation with
horseradish peroxidase (Jackson Immuno Research Labora-
tories, West Grove, PA) or fluorescently labeled secondary
antibodies (1 hour) (Alexa Fluor; BDBioscience, San Jose, CA).
For bonemarrow staining, mouse femurs were fixedwith 4%

Table 1.List of Antibodies, Source, and Dilution Used

Antigen Host Source Dilution

MPO Rabbit Abcam 1:200

TLR2 Mouse R&D Systems 1:100

Collagen 1a Rabbit Abcam 1:250

Fibronectin Rabbit Abcam 1:250

a-SMA Rabbit Sigma-Aldrich 1:500

CD36 Goat R&D Systems 1:100

CD31 Mouse BD Bioscience 1:500
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paraformaldehyde in PBS at 4�C for 2 days, decalcified in 20%
ethylenediamine tetraacetic acid (4�C, 2–4 weeks), and
paraffin embedded. Longitudinal 5-mm sections were stained
for myeloperoxidase (MPO) (Thermo Fisher Scientific, Wal-
tham, MA; dilution 1:200) and deoxyride-5’-triphosphate
biotin nick end labeling (TUNEL) (Roche Life Science, Indi-
anapolis, IN), and imageswere taken by using aNikon (Tokyo,
Japan) Eclipse TE2000-U microscope.

Intravital Two-Photon Microscopy
Gut imaging was as previously described.19 Mice

anesthetized by intraperitoneal injection of ketamine (50
mg/kg) and xylazine (10 mg/kg) were given halved doses
(25 mg/kg and 5 mg/kg) every hour. A small vertical
incision in the shaved mouse abdomen exteriorized the
proximal jejunum (w6 cm), which was maintained moist
with PBS irrigation. Dextran (10 kDa) conjugated to fluo-
rescein (Thermo Fisher Scientific; cat. #D1820) was
injected into the lumen (1 mg/100 mL PBS) and DyLight
594–conjugated tomato lectin (Vector Laboratories Inc,
Burlingame, CA) retro-orbitally 10 minutes before imag-
ing. The exteriorized intestine was irrigated with 0.5%
scopolamine in PBS to dampen peristaltic movements. To
image from the luminal surface, a small longitudinal inci-
sion was made avoiding large blood vessels, and images
were collected for w2 hours by using a customized Leica
SP8 2-photon microscope (Brähler et al, 2016) equipped
with �25/0.95 NA water-dipping objective and Mai Tai HP
DeepSee Laser (Spectra-Physics, Newport Corporation,
Santa Clara, CA) tuned to 900 nm. Fluorescence emission

was separated by 3 high-efficiency dichroic mirrors cutting
at 458, 495, and 560 nm (Semrock Inc, Rochester, NY) and
directed to 4 supersensitive external detectors. Three-
dimensional stacks consisting of between 21 and 31
planes (2.5 mm step size) were captured every 30 seconds.
During imaging the mice body temperature was main-
tained at 37�C by using a customized heatable box (Life
Imaging Services GmbH, Basel, Switzerland). The leakage
is expressed as fold change of FITC-dextran fluorescence
measured inside the villus versus FITC-dextran fluores-
cence measured between epithelial cells in 5 random villi/
mouse.

Transmission Electron Microscopy
Small intestines (n ¼ 4/genotype) were collected,

washed with cold PBS, opened longitudinally and fixed
(1 hour, room temperature) with 2% paraformaldehyde/
2.5% glutaraldehyde (Polysciences Inc, Warrington, PA) in
100 mmol/L cacodylate buffer, pH 7.2. Samples were
washed in cacodylate, postfixed (1 hour) in 1% osmium
tetroxide (Polysciences Inc), rinsed extensively in dH2O,
stained (1 hour) with 1% aqueous uranyl acetate (Ted Pella
Inc, Redding, CA), and rinsed before dehydration in graded
ethanol and embedding in Eponate 12 resin (Ted Pella).
Sections of 95 nm were cut with a Leica Ultracut UCT
ultramicrotome (Leica Microsystem Inc, Bannobuckburn,
IL), stained with uranyl acetate and lead citrate, and viewed
on a JEOL 1200 EX transmission electron microscope (JEOL
USA Inc, Peabody, MA) with an AMT 8 megapixel digital
camera (Advanced Microscopy Techniques, Woburn, MA).

Table 2.List of Primer Sequences

Gene Forward Reverse

Ncf-1 CTGGAGGGCAGAGACAATCC AGGGATAGGAGCCGTCTAGG

Ncf-2 TAAACTGAGCTACCGGCGTC CTGGCGTCTGAGTTTTCCCT

Ncf-4 AAGTGAGAGGTGAACTCGGC AAGCTGCTCAAAGTCGCTCT

s100a8 GGAAATCACCATGCCCTCTA GCTACTCCTTGTGGCTGTCTTT

S100a9 ACACCCTGAGCAAGAAGGAA CCATCAGCATCATACACTCCTC

CD31 TCACCAAGAGAACGGAA TTACTGCTTTCGGTGGG

CD36 GATGACGTGGCAAAGAACAG CAGTGA AGGCTCAAAGATGG

Desmocollin 2 CTCTGGCTAGTTGCTGGTACT GTGGGAAGGGACCCAATGAA

IL6 AGCCAGAGTCCTTCAGAGAGAT GCACTAGGTTTGCCGAGTAGAT

IL1b GTGTGTGACGTTCCCATTAGAC GTCGTTGCTTGGTTCTCCTT

COX-2 CTCACGGAACTCAGCACT TAGAATCCAGTCCGGGTACAGT

TNF-a GATCGGTCCCCAAAGG CACTTGGTGGTTTGCT

IL10 GGCGCTGTCATCGATTTCTCCCC AGCTCTGTCTAGGTCCTGGAGTCC

IL22 GCTCAGCTCCTGTCACATCA TCCCCAATCGCCTTGATCTC

TLR4 ATGGCATGGCTTACAC GAGGCCAATTTTGTCT

Collagen 1a CGATGGATTCCCGTTCGAGT CGATCTCGTTGGATCCCTGG

Fibronectin GCCACCATTACTGGTCTGGA GGAAGGGTAACCAGTTGGGG

a-SMA GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA

JNK 1 CAAGCACCTTCACTCTGCTG GTTCTCCTTGTAGCCCATGC

JNK 2 TGGCGGACTCAACTTTCAC AGTTCACGGTAGGCTCTCTTTG

36B4 GCAGACAACGTGGGCTCCAAGCAGAT GGTCCTCCTTGGTGAACACGAAGCCC
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Figure 1. CD36 deletion causes remodeling of ECM proteins and immune cell infiltration in the small intestine. (A)
Microarray analysis on proximal intestines showing the 9 most upregulated pathways in CD36KO mice as compared with
controls, including those related to leukocyte transendothelial migration and ECM. (B) Altered ECM remodeling in intestines of
CD36KO mice; qRT-PCR showing increased expression of ECM proteins: collagen 1a (P ¼ .01), fibronectin (P ¼ .0003), and a-
SMA (P ¼ .04) (n ¼ 6/genotype; typical of 3 experiments). Immunostaining of collagen 1a, fibronectin, and a-SMA was also
increased (n ¼ 4/genotype; representative of 2 experiments). (C and D) Neutrophil infiltration of CD36KO intestines. (C)
Increased expression of neutrophil cytoplasmic protein (Ncf)-1 (P ¼ .04), Ncf-2 (P ¼ .02), Ncf-4 (P ¼ .03), S100A8 (P ¼ .007),
and S100A9 (P ¼ .01) in CD36KO mice as compared with WT controls (n ¼ 6/genotype; representative of 3 experiments) and
(D) MPO immunohistochemical (top panels) and fluorescent (bottom panels) staining. Graph shows quantification of immu-
nofluorescence (P ¼ .01) (n ¼ 4/genotype; representative of 2 experiments). (E and F) Altered expression of inflammatory
mediators in CD36KO intestine: (E) COX-2 (P ¼ .0006), IL6 (P ¼ .03), IL10 (P ¼ .028), TLR4 (P ¼ .04), IL22 (P ¼ .03) (n ¼ 6/
genotype; representative of 3 experiments), and (F) TLR2 immunostaining (images representative of 2 experiments, n ¼ 4/
genotype). Immunoblots show levels of COX-2 and TLR2 measured in intestinal lysates; middle lane: molecular weight
markers, 25, 72, and 90 kDa. Scale bars: 25 mm for (B), lower col1a, a-SMA, and (D) 100 mm for (B), upper col1a, fibronectin,
and for (F). All bar graphs show means ± standard error of the mean (SEM). *P < .05 by 2-tailed Student t test.
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To measure desmosome length, AMT Image Capture Engine
Software 602.524 (Advanced Microscopy Techniques) was
used.

Flow Cytometry Analysis
Blood, bone marrow, and spleen samples were prepared

as previously described.20 Flow cytometry used an LSR II
(Becton Dickinson, Franklin Lakes, NJ) and data analysis
FlowJo software (Tree Star, Ashland, OR). Combinations of
fluorochrome- or biotin-conjugated antibodies were used in
staining: MHC class II I-A/I-E (clone M5/14.15.2), CD11b
(clone M1/70), CD45 (clone 30-F11), CD45.1 (clone A20),
CD45.2 (clone 104), CD115 (clone AFS98), Ly6C (clone
HK1.4), Ly6G (clone 1A8), CD19 (clone 1D3), NK1.1 (clone
PK 136), and Gr-1 (clone RBC-85).

RNA Extraction and Quantitative Reverse
Transcription-Polymerase Chain Reaction

RNA extracted from the proximal small intestine (n ¼ 6/
genotype) by using TRIzol (Invitrogen, Carlsbad, CA) was
subjected to cDNA reverse transcription and qRT-PCR (ABI
Prim 7000 Sequence Detection System; Applied Biosystems,
Foster City, CA) by using Power SYBR Green PCR Master Mix
(Applied Biosystems) on a 7500 Fast Real Time PCR System
(Applied Biosystems). Relative mRNA fold changes were
determined by using standard dCt calculations (primers
listed in Table 2).

Western Blotting
After electrophoresis (4%–12% acrylamide gradient),

proteins were transferred to polyvinlyidene fluoride mem-
branes (Merk Millipore Ltd, Cork, Ireland), blocked (Li-COR
Biosciences, Lincoln, NE), and incubated overnight at 4�C
with primary antibodies. Antibodies used were goat anti-
mouse Ran (1:2000; Sigma-Aldrich), mouse anti-mouse
TLR2 (1:1000; R&D Systems, Minneapolis, MN),
cyclooxygenase-2 (COX-2) (1:1000; R&D Systems), b-actin
(1:1000; Santa Cruz Technology, Santa Cruz, CA), occludin
(1:1000; Thermo Fisher Scientific), JNK and p-JNK (1:1000;

Cell Signaling Technology, Danvers, MA), and goat anti-
mouse CD36 (R&D Systems; 1:2000). Incubation with
infrared dye–labeled secondary antibodies was for 1 hour at
room temperature, and protein signals were detected by
using the Li-Cor Odyssey Infrared System (Li-COR
Biosciences).

Microarray Study and Pathway Analysis
Proximal small intestine (upper one-third of the gut)

was harvested and processed for RNA extraction and
microarrays (Affymetrix GeneChip Mouse Expression Set
430 2.0 array; Affymetrix Bioscience, San Diego, CA).
Parametric Analysis of Gene Set Enrichment (PAGE), as
previously described,21 used KEGG and C2: curated
gene sets (http://www.broad.mit.edu/gsea/msigdb/
msigdb_index.html). Z scores and P values were calculated
for each set. All data were analyzed by the R statistical
software package (http://www.bioconductor.org). P value
<.05 was considered significant.

Results
CD36 Deletion Induces Extracellular Matrix
Disruption, Neutrophil Infiltration, and
Inflammation in the Proximal Small Intestine

CD36’s function in lipid absorption is well-
documented,3,4,22 but little is known about its role in
intestinal homeostasis. We first performed gene expression
analysis of the proximal intestine, where CD36 is particu-
larly abundant, by using CD36KO and WT control mice. The
microarray analysis showed upregulation of pathways
involved in ECM remodeling and leukocyte transendothelial
migration (Figure 1A). Evidence of substantial ECM
remodeling was observed in the intestine of CD36KO mice
including increased mRNA for collagen 1a (P ¼ .01), fibro-
nectin (P ¼ .0003), and alpha-smooth muscle actin (a-SMA)
(P ¼ .04) (Figure 1B). Immunohistochemistry documented
increased collagen 1a deposition in the submucosa and on
vessels within villi (Figure 1B) and fibronectin accumulation
throughout villi and in the submucosa (Figure 1B). The

Figure 2. (See previous page). Gut barrier permeability is impaired in CD36KO mice. (A) Plasma level of FITC-dextran
(4 kDa) measured at indicated times after its intragastric administration. A week later, same mice group received triolein
bolus (4.5 mL/g body weight) 30 minutes before FITC-dextran. #WT versus CD36KO mice, *WTtriolein versus CD36KOtriolein
mice. Levels in WT mice did not change with or without triolein bolus. Intestinal permeability was increased in all CD36KO mice
at 2 hours (P ¼ .04; Ptriolein ¼ .032) and remained increased at 4 hours (P ¼ .043) and 6 hours (P ¼ .041) in CD36KO mice given
triolein. Right panel shows area under the curve (AUC) for CD36KO and CD36KOtriolein mice was increased compared with
appropriate controls (P < .001 and P ¼ .005, respectively) and before as compared with after triolein challenge (P < .001).
(B) Measurement of endotoxin in plasma of WT and CD36KO mice 4 hours after triolein challenge (n ¼ 4/genotype), P ¼ .03.
(C) Two-photon microscopy optical sections showing leakage across the epithelium; fluorescein-dextran (10 kDa) (green) was
administered intraluminally to intestines of anesthetized mice (n ¼ 3/genotype) and DyLight 594–conjugated tomato lectin
(red), a vascular marker, by retro-orbital injection 10 minutes before imaging from the luminal surface. Dextran leakage is
observed in CD36KO mice but not in WT mice (P < .01). Quantification of leakage is expressed as fold change of FITC-dextran
fluorescence inside the villus versus fluorescence between epithelial cells measured in 5 random villi/mouse. Blue fluores-
cence, 2-harmonic generation; light purple fluorescence, autofluorescence. Scale bars: WT, 150 and 50 mm; CD36KO, 100 and
25 mm. (D) Electron microscopy images showing shortened desmosomes in intestinal epithelium of CD36KO mice. Scale bar:
500 nm. Graph shows quantification of decrease in desmosome length (n ¼ 20/genotype, P ¼ .001). (E) Expression
of desmosomal protein desmocollin 2 is decreased in intestines of CD36KO mice compared with controls (P ¼ .01, n ¼ 8/
genotype). (F) Level of tight junctional protein occludin measured in intestinal lysates by immunoblotting and densitometry
quantification of change in occludin/b-actin as compared with WT control (P ¼ .01) (n ¼ 4/genotype). Data are representative
of 3 (A–E) and 2 (F) experiments. Bar graphs show means ± SEM.
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muscularis appeared thickened as shown by the a-SMA
staining (Figure 1B). Neutrophil infiltration in the CD36KO
gut was evident from increased mRNA abundance of
neutrophil cytosolic factors (Ncf)-1 (P ¼ .04), Ncf-2
(P ¼ .02), Ncf-4 (P ¼ .03), and proteins S100A8 (P ¼ .007)
and S100A9 (P ¼ .01) (Figure 1C) and from increased MPO
staining (Figure 1D). Levels of mRNA for markers of
inflammation and innate immunity were also increased
including COX-2 (P ¼ .0006), interleukin (IL) 6 (P ¼ .03),

IL10 (P ¼ .028), and toll-like receptor (TLR) 4 (P ¼ .04).
Expression of IL22 was decreased (P ¼ .03), whereas
expression of IL1b and tumor necrosis factor (TNF)-a did
not change (Figure 1E). Increased expression of COX-2 and
TLR2 in intestine of CD36KO mice was confirmed by
Western blot and immunofluorescence staining (Figure 1F).
These data indicated that CD36 deletion results in altered
ECM remodeling, inflammation, and neutrophil infiltration
in the proximal small intestine.

Figure 3. Deletion of CD36 in enterocytes does not alter gut permeability or associate with inflammation. (A–C) Gen-
eration and validation of a mouse with enterocyte specific CD36 deletion (Ent-KO). (A) Ent-KO CD36 mice were obtained by
crossing CD36 floxed mice with mice carrying the villin-Cre recombinase. (B) PCR showing specific deletion of CD36 in the
intestine but not in other tissues, Duod, duodenum; Jej, jejenum. (C) Immunofluorescence of intestinal sections from floxed
controls (Fl/Fl) and Ent-KO mice showing absence of epithelial CD36 expression on enterocytes. Scale bar: 50 mm. (D) In-
testines of Ent-KO mice do not display altered expression of collagen, fibronectin, and markers of inflammation. (E) Ent-KO
mice did not show altered intestinal permeability measured by oral administration of FITC-dextran (4 kDa) as compared
with floxed control mice. Values shown are means ± SEM. Data (C–E) are representative of 2 experiments, n ¼ 6 per genotype.
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Increased Gut Permeability in CD36KO Mice
We next investigated whether the above changes

associated with compromised barrier integrity by
measuring plasma levels of intragastrically administered
FITC-dextran (4 kDa) (n ¼ 6 mice/genotype). To monitor
the effect on permeability of intestinal fat absorption,
which can induce transient inflammation,23 a week later an
intragastric fat challenge (4.5 mL triolein/kg body weight)
was administered 30 minutes before the FITC-dextran to
the same mice groups. As compared with WT controls,
intestinal permeability was increased 2-fold in CD36KO

mice at 2 hours, and the increase was similar when a tri-
olein challenge was included (P ¼ .04; Ptriolein ¼ .032)
(Figure 2A). However, the increased leakage was sustained
at 4 hours (P ¼ .043) and 6 hours (P ¼ .041) only in
CD36KO mice given triolein (Figure 2A). Consistent with
this, serum endotoxin was 2-fold higher (P ¼ .03) in
CD36KO mice after 4 hours of a triolein bolus (Figure 2B).
Barrier permeability in the small intestine was evaluated
further by using intravital two-photon microscopy, and a
larger molecular weight fluorescein-dextran (10 kDa) was
given intraluminally to anesthetized mice. CD36KO mice

Figure 4. CD36 deletion
induces systemic leuko-
cytosis and neutrophilia.
Peripheral blood was
analyzed for white blood
cells (WBC) and neutro-
phils by flow cytometry
(n [ 8/genotype). As
compared with WT mice,
CD36KO mice have (A)
increased WBC count
(P ¼ .007) and (B) circu-
lating neutrophils (CD11bþ/
Ly6Gþ) (P ¼ .004). (C)
Bone marrow neutrophil
content (Ly6Gþ/Gr-1þ) is
increased in CD36KO mice
(P ¼ .0015) as compared
with WT controls. (D)
Representative images
and quantification (based
on 5 random fields/section)
of bone marrow stained for
MPO (P ¼ .01) and TUNEL
(P ¼ .002) (n ¼ 4/geno-
type). Scale bar: 2 mm. (E)
Spleen neutrophil content
(Ly6Gþ/Gr-1þ) is increased
in CD36KO as compared
with WT mice (P ¼ .0067)
(n ¼ 5/genotype). A–E,
representative of 3 experi-
ments. Graphs show mean
± SEM.
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showed significant dextran leakage across the epithelium,
whereas no leakage was observed in control mice (P < .01)
(Figure 2C and Supplementary Videos 1 and 2). The
above data suggest that CD36 deletion, which results in gut
neutrophil infiltration, also impairs integrity of the
epithelial barrier.

Neutrophils can undergo transepithelial migration,
impairing barrier function that may be transient or sus-
tained.7,24 The intercellular junction complexes (desmo-
somes, adherens, and tight junctions) provide barriers to
neutrophil migration in paracellular spaces, and alterations
of these structures affect barrier integrity. Electron mi-
croscopy on intestinal sections showed significant desmo-
some shortening in the epithelium of CD36KO mice
(Figure 2D) (P ¼ .001). Expression of the major desmo-
somal protein, desmocollin 2, was reduced in intestines of
CD36KO mice as compared with controls (P ¼ .01)
(Figure 2E). Electron microscopy did not show obvious
alteration of tight junction structures in the CD36KO
epithelium, and gene expression of the major claudins (2,
3, 7, 12, 15) in the proximal intestine25 was not altered on
microarrays (data not shown). However, expression of
occludin protein was reduced (P < .01) (Figure 2F) in
CD36KO mice as compared with controls. These data
suggest that altered desmosome structure and reduced
expression of occludin and desmocollin 2 contribute to the
impairment of epithelial barrier function observed in
CD36KO mice.

Deletion of Enterocyte CD36 Does Not
Alter Gut Permeability or Associate
With Inflammation

Crosstalk between gut epithelial cells and immune
cells is important for maintenance of tissue integrity and
barrier function.26,27 To determine whether loss of
epithelial CD36 contributes to the abnormalities observed
in CD36KO mice, we generated a mouse with enterocyte-
specific CD36 deletion (Ent-CD36KO) (Figure 3A–C). The
Ent-CD36KO mice showed no changes in expression of
genes related to either the ECM or to inflammatory
markers (Figure 3D) and displayed normal barrier integ-
rity (data not shown). Thus, loss of enterocyte CD36 does
not appear to play a primary role in driving the abnormal
gut permeability or inflammation observed in germline
CD36KO mice.

Presence of Leukocytosis and Neutrophilia in
CD36KO Mice

We next asked whether the intestinal inflammation
observed in CD36KO mice was associated with systemic
changes in immune cells. A significant increase of white
blood cell count (P ¼ .007) and a 3-fold increase (P ¼ .004)
in circulating neutrophils (Ly6Gþ/CD11bþ) were
measured in CD36KO mice (Figure 4A and B). Neutrophils
(Ly6Gþ/Gr-1þ) were also increased in the bone marrow
(P ¼ .0015) (Figure 4C), and activation was suggested by

Figure 5. Circulating
Ly6Clow monocytes are
decreased in peripheral
blood of CD36KO mice.
As compared with WT
controls, CD36KO mice
show (A) lower monocyte
number (CD115þ/CD11bþ)
(P ¼ .05), (B) similar num-
ber of Ly6Chigh monocytes,
and (C) lower number
of Ly6Clow monocytes
(P ¼ .01). (D) B-cell (CD19þ)
number trended higher,
whereas that of NK/NK T
cells (NK 1.1þ) was un-
changed in CD36KO mice.
(A–D) (n ¼ 9/genotype)
representative of 3 experi-
ments. Bar graphs show
means ± SEM. *P < .05 by
2-tailed Student t test.
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intense MPO staining (Figure 4D) (P < .01). The increase in
neutrophil numbers did not reflect lack of neutrophil
apoptosis because TUNEL staining was increased in
CD36KO bone marrow as compared with controls (P < .01)
(Figure 4D); thus it appeared to be a likely consequence of
defective phagocytosis by CD36 deficient macrophages.10

Higher neutrophil levels (Ly6Gþ/Gr-1þ) were also
observed in spleens of CD36KO mice (P ¼ .0067)
(Figure 4E) and in the lungs (data not shown). The increase
in circulating neutrophils (Figure 4B–E) and endotoxin
levels (Figure 2C) suggested systemic subclinical inflam-
mation in CD36KO mice.

Anti-inflammatory Ly6Clow Non-classic
Monocyte Subset Is Markedly Reduced in
CD36KO Mice

During tissue inflammation in addition to neutrophils,
other immune cells, notably inflammatory monocytes,28 are
recruited from the bloodstream. Circulating monocytes
(CD115þ/CD11bþ) were significantly lower in CD36KO

mice as compared with control mice (P ¼ .05) (Figure 5A).
Two functionally distinct monocyte populations are present
in mice and identified by expression of the lymphocyte an-
tigen 6 complex (Ly6C); the Ly6Chigh monocytes, referred to
as inflammatory, are recruited to tissues during homeosta-
sis29 and in response to acute infection or injury.30

The Ly6Clow monocytes, which can differentiate from the
Ly6Chigh 20, are referred to as anti-inflammatory. The
Ly6Clow monocytes are termed patrolling monocytes on the
basis of their chief function of surveying the luminal endo-
thelium of blood vessels at steady state and in response to
acute vascular inflammation.20,30–33 The number of Ly6Chigh

monocytes was similar in WT and CD36KO mice, but there
was marked reduction of Ly6Clow monocyte numbers
(P ¼ .01) (Figure 5B and C). We also investigated whether
the numbers of other immune cell types were changed and
found that B-cell number trended higher (P ¼ .09) as
previously reported,34 whereas NK/NK T-cell number did
not differ (P ¼ .2) for WT and CD36KO mice (Figure 5D).
The observation of reduced number of Ly6Clow mono-
cytes (Figure 5C) together with the increase in the

Figure 6. Bone marrow transplants support role of non-hematopoietic cells in the inflammation of CD36KO mice.
(A) Chimeric mice lacking CD36 on non-hematopoietic cells (WT/KO) show highest level of leukocytosis as compared
with control chimeric groups (WT/WT) (P ¼ .05) and (KO/KO) (P ¼ .02). WBC, white blood cells. (B) Neutrophil levels
are also highest in WT/KO as compared with WT/WT (P ¼ .011) and with KO/KO (P ¼ .05) groups. (C) MPO staining
showing neutrophil infiltration in small intestines of WT/KO group and quantification of MPOþ cells in intestinal sections
from 3 mice/group (P ¼ .01). (D) Monocyte levels are highest in WT/KO as compared with WT/WT (P ¼ .018) and
KO/KO (P ¼ .01) groups. (E) Levels of Gr-1low are increased in WT/KO as compared with KO/KO (P ¼ .0001) and
KO/WT (P ¼ .009) groups (n ¼ 4/chimeric mice per group). (A–E) representative of 2 experiments. Graphs show data as
means ± SEM.
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transendothelial leukocyte migration pathway (Figure 1A)
observed on microarrays suggested that the endothelium
might be altered in CD36KO mice.

Non-hematopoietic Source of Inflammation
in CD36KO Mice

To gain insight into the primary source of the systemic
inflammation observed in CD36KO mice, bone marrow
transplants were performed. The transfer of either CD36
sufficient or deficient bone marrow did not result in
inflammation in WT recipient mice (WT/WT or KO/WT).
However, inflammation was observed in CD36KO recipients
regardless of the bone marrow source (WT/KO and
KO/KO) (Figure 6A). Specifically, most significant leuko-
cytosis was observed in the WT/KO group (Figure 6A),
and a similar pattern was observed with neutrophil levels
(Figure 6B). Furthermore, increased neutrophil infiltration
was documented by MPO staining in small intestines of
WT/KO mice (Figure 6C) compared with controls
(WT/WT) (P ¼ .018) (Figure 6C). Monocytes were higher
only in the WT/KO group (Figure 6D) and reflected in-
creases in both subsets Gr-1high and Gr-1low (Figure 6E).
When compared with the KO/KO group, both Gr-1high and
Gr-1low increased (P ¼ .08 and P ¼ .0014, respectively)
in the WT/KO group, indicating that CD36 expression
enhances levels of both proinflammatory and anti-
inflammatory monocytes. There was no significant

difference in T-cell and B-cell content among groups (data
not shown). Overall, these data suggest that lack of CD36 on
non-hematopoietic cells drives the inflammatory state
observed in CD36KO mice.

Endothelial Cell–specific CD36 Deletion
Associates With Inflammation and
Neutrophil Infiltration

The CD36KO mice displayed reduced levels of Ly6Clow

monocytes, which patrol the endothelium and are important
for maintaining endothelial integrity,33 and our microarrays
showed upregulation of leukocyte transendothelial migra-
tion (Figure 1A). We next investigated whether loss of
endothelial CD36 (EC-CD36KO) would recapitulate the
phenotype observed in the intestines of CD36KO mice. CD36
floxed mice were crossed to C57BL6 mice expressing Cre
driven by the Tie2 promoter, and validation of the
EC-CD36KO mouse model is shown in Figure 7. The small
intestine of EC-CD36KO mice exhibited increased fibronectin
mRNA as compared with that of floxed controls (P ¼ .024)
(Figure 8A), but expression of collagen 1a or of a-SMA was
not increased (Figure 8A) as observed in germline CD36KO
mice. Among inflammation markers, there was upregulation
of IL6 (P ¼ .04), JNK 1 (P ¼ .05), JNK 2 (P ¼ .02), and p-JNK
(Figure 8B and C) in the proximal intestine of EC-CD36KO
mice as compared with controls. The mRNA expression of
TNF-a and IL10 did not differ, whereas that of IL22 was

Figure 7. Generation and validation of a mouse with endothelial cell specific CD36 deletion. (A) A mouse with endothelial
cell deletion of CD36 (EC-CD36KO) was generated by breeding floxed (Fl/Fl) CD36 mice with mice carrying the Tie2-Cre
recombinase (Creþ males with Cre– females). PCR of DNA isolated from liver, muscle, and lung tissues of EC-CD36KO and
floxed mice showing presence of null allele in EC-CD36KO mice. (B) Staining of intestinal villi from EC-CD36KO and Fl/Fl control
mice with CD31 (marker of endothelial cells) and CD36. Insert: Blowup of areas indicated by white arrows showing CD36
expression in CD31þ cells in Fl/Fl but not in EC-CD36KOmice; scale bar: 30 mm. (C) CD36 protein levels in lysates from proximal
intestines showing average 38% decrease in EC-CD36KO as compared with Fl/Fl mice (germline CD36KO mice are negative
controls) (P ¼ .05). (D) CD31 and CD36 mRNA expression in endothelial cells (CD146þ) isolated from lungs of Fl/Fl and EC-
CD36KO mice (n ¼ 3/genotype). CD36 mRNA levels are reduced in CD146þ cells from EC-CD36KO mice as compared with
Fl/Fl controls (P < .01), whereas CD31 mRNA levels are similar. Graphs show data as means ± SEM; n ¼ 3/genotype.
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reduced (P ¼ .041) (Figure 8B). Intestines of EC-CD36KO
mice showed significant neutrophil infiltration as
compared with Fl/Fl controls, which was evident from
increased MPO staining (Figure 8D) and higher mRNA levels
of Ncf-1 (P ¼ .05), Ncf-2 (P ¼ .041), and Ncf-4 (P ¼ .009)
(Figure 8E). Intestine permeability was also increased in
EC-CD36KO mice (Figure 9A). Serum FITC-dextran levels in
EC-CD36KO mice with or without a triolein challenge were
increased at 2 hours (P ¼ .035; Ptriolein ¼ .41) and 4 hours
(P ¼ .05; Ptriolein ¼ .048) as compared with floxed controls
(Figure 9A). Intestinal permeability in EC-CD36KO mice
challenged with triolein continued to be increased at 6
hours (P ¼ .043). Consistent with this, serum endotoxin was
higher in EC-CD36KO mice after 4 hours of a triolein bolus
as compared with the floxed control group (P ¼ .05)
(Figure 9B). Two-photon microscopy was used to ascertain
that the permeability increase was at the level of the in-
testinal epithelium. Leakage of luminal dextran (10 kDa)
across the epithelium was evident in proximal intestines of
EC-CD36KO mice, whereas no leakage was observed in the

Fl/Fl controls (P < .01). Electron microscopy showed that
similar to the small intestinal epithelium of germline
CD36KO mice, desmosomes were shorter in EC-CD36KO
mice (P < .01) (Figure 9D), and expression levels of des-
mocollin 2 mRNA were lower (P ¼ .05) (Figure 9E). Also as
in germline CD36KO, occludin protein levels were reduced
in intestine of EC-CD36KO mice compared with Fl/Fl con-
trols (P ¼ .042) (Figure 9F). These data show that endo-
thelial CD36 deletion disrupts intestinal homeostasis and
causes neutrophil infiltration and epithelial barrier leakage,
recapitulating notable abnormalities identified in germline
CD36KO mice.

Discussion
The central findings of this study suggest that CD36

plays a critical and unsuspected role in maintenance of ECM
remodeling and barrier integrity in the small intestine.
Among the hallmarks of the CD36KO mouse are the pres-
ence of gut leakiness with accumulation of infiltrating

Figure 8. CD36 deletion in endothelial cells causes fibronectin accumulation, neutrophil infiltration, and IL6 upre-
gulation in the small intestine. (A) Intestines of EC-CD36KO mice have increased level of fibronectin (qRT-PCR) as
compared with those of floxed (Fl/Fl) controls (P ¼ .024), but expression of col1a or of a-SMA is not increased. Increased
level of fibronectin in EC-CD36KO mice documented by fluorescent staining (right panel); scale bar: 100 mm (data
representative of 2 experiments). (B) Inflammation markers: proximal intestines of EC-CD36KO mice show increases in IL6
(P ¼ .04), JNK 1 (P ¼ .05), JNK 2 (P ¼ .02), and p-JNK (B and C) as compared with controls. Expression of TNF-a and IL10
is unaltered, whereas that of IL22 is reduced (P ¼ .041) (n ¼ 8/genotype). (D) Intestines of EC-CD36KO mice show
enhanced MPO staining as compared with Fl/Fl controls (P ¼ .01) (representative of 2 experiments) and (E) increased
mRNA levels for neutrophil proteins Ncf-1 (P ¼ .05), Ncf-2 (P ¼ .041), and Ncf-4 (P ¼ .009) (n ¼ 8/genotype). Scale bar: 30
mm. Graphs show mean ± SEM.
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neutrophils, systemic subclinical inflammation, and loss of
the anti-inflammatory patrolling Ly6Clow monocytes.
Although at first glance our data would appear to conflict
with the well-established proinflammatory actions of
CD36,9,35 the findings are consistent with the versatile re-
sponses mediated by this receptor,1,36 which, depending on
the context, can promote or impair tissue homeostasis.
There is extensive evidence to support contribution of CD36
in the inflammatory response, and targeting the protein has
been proposed in a number of settings including athero-
sclerosis, cardiomyopathy, and fatty liver.37,38 However,
there is also evidence to support a role of CD36 in anti-
inflammation or inflammation resolution. CD36 deletion
impairs macrophage conversion to the alternatively acti-
vated, anti-inflammatory M2 phenotype, which requires
CD36 lipid provision to lysosomes.11 On monocytes/
macrophages, CD36 facilitates phagocytosis of apoptotic
neutrophils, allowing tissue healing,10 and is important for
maintaining the Ly6low monocytes (Figure 5C), which func-
tion as endothelial housekeepers.31,33,39

Our bone marrow transplant data (Figure 6) indicate
that non-hematopoietic cells are responsible for the sys-
temic inflammation observed in CD36KO mice, and our
findings with mice models support a major role for endo-
thelial CD36 loss. Deletion of CD36 in endothelial cells
recapitulates many aspects of the abnormal gut phenotype
of germline CD36KO mice and is consistent with the altered
endothelium promoting leukocyte migration into the gut
(Figure 1A). Fibronectin accumulation and production of IL6
(Figure 8) are early signs of endothelial inflammation. In
particular, fibronectin accumulation regulates activation of
mediators such as nuclear factor kappa B,40,41 an estab-
lished inducer of cytokines including IL6.

IL6 promotes neutrophil recruitment and plays an
important role in regulating the gut barrier.42,43 IL6 level is
increased in serum and tissues of patients with Crohn’s
disease, and high IL6 has been implicated in etiology of
experimental colitis in mice.44,45 IL6 increases barrier
permeability by activating the JNK pathway and enhancing
expression of the TJ protein claudin-2.46,47 We did not

detect changes in claudin-2 expression despite JNK activa-
tion in intestines of mice with either global or endothelial
CD36 deficiency (data not shown). In addition to tran-
scriptional regulation, claudin-2 is subject to extensive
posttranslational modification (phosphorylation by multiple
kinases and SUMOylation), but the potential regulatory
effects of these modifications remain poorly understood48

and were not explored in this study.
In contrast to the increase in IL6, the level of IL22, a

member of the IL10-related cytokine family, was markedly
reduced in intestines of germline CD36KO and EC-CD36KO
mice. IL22 protects the mucosal barrier against pathogens
and promotes tissue healing.49,50 Administration of IL22
to obese mice was shown to reduce endotoxemia and
chronic inflammation.51 The lower level of IL22 together
with the higher level of IL6 in the intestines of germline
CD36KO and EC-CD36KO mice likely drive the disruption
of barrier integrity and chronic inflammation observed in
these mice.

Transepithelial migration of neutrophils associates with
disruption of barrier function and correlates with disease
flares and severity in inflammatory bowel disease.7,24 The
first intercellular adhesion complex encountered by
migrating neutrophils would be the desmosomes, and
reduction of desmocollin 2 expression correlated with
altered epithelial barrier function in inflammatory bowel
disease.52 We observed shortening of desmosomes with
lower expression of desmocollin 2 in both CD36KO and
EC-CD36KO mice (Figures 2 and 9), but whether this plays
an important role in the increase in intestinal permeability
remains unclear. We also report a decreased level of the
tight junction protein occludin in CD36KO and EC-CD36KO
mice models. Occludin inhibits transepithelial neutrophil
migration,53 and its level was shown to be reduced in in-
flammatory bowel disease.54 However, occludin deletion in
mice did not alter gut permeability,55 and understanding its
contribution to the intestinal phenotype of CD36KO and EC-
CD36KO mice will require further study. In contrast to
endothelial cell CD36 deletion, enterocyte CD36 deletion did
not cause gut neutrophil infiltration or altered intestinal

Figure 9. (See previous page). Epithelial barrier permeability is compromised in mice with CD36 deletion specific to
endothelial cells. (A) Plasma levels of FITC-dextran (4 kDa) at 0, 2, 4, and 6 hours after its intragastric administration to Flox/
Flox (Fl/Fl) and EC-CD36KO mice (n ¼ 6/genotype). A week later, the same mice groups received bolus of triolein (4.5 mL/g
body weight) 30 minutes before FITC-dextran. Intestinal permeability is increased in all EC-CD36KO mice at 2 hours (P ¼ .035;
Ptriolein ¼ .041) and 4 hours (P ¼ .05; Ptriolein¼ .048) and only in EC-CD36KO given triolein at 6 hours (P ¼ .43). #Fl/Fl versus
EC-CD36KO, *Fl/Fltriolein versus EC-CD36KOtriolein. Right panel shows area under the curve (AUC) for FITC-dextran assay;
AUCs for EC-CD36KO and EC-CD36KOtriolein are increased compared with appropriate Fl/Fl controls (P < .001 and P ¼ .002,
respectively). (B) Higher endotoxin levels in plasma of EC-CD36KO as compared with Fl/Fl mice at 4 hours after triolein bolus,
P ¼ .05 (n ¼ 4/genotype). (C) Two-photon optical images showing epithelial leakage of fluorescein-dextran in EC-CD36KO
mice (P < .01) compared with floxed control mice. Fluorescein-dextran 10 kDa (green) was injected intraluminally into
anesthetized mice, and DyLight 594–conjugated tomato lectin (red) was given by retro-orbital injection 10 minutes before
imaging from the luminal side (n ¼ 3 mice/genotype). Quantification of leakage is expressed as fold change of FITC-dextran
fluorescence inside the villus versus fluorescence between epithelial cells measured in 5 random villi/mouse. (D) Electron
microscopy showing reduced length of desmosomes in EC-CD36KO mice compared with Fl/Fl controls (P < .001). (E)
Desmocollin 2 expression is decreased in proximal intestines of EC-CD36KO (n ¼ 4/genotype) (P ¼ .05). (F) Immunoblots of
occludin in lysates of proximal intestines showing reduced levels in EC-CD36KO mice. Graph shows densitometry of occludin/
b-actin compared with that of Fl/Fl controls (P ¼ .042) (representative of 2 experiments). (A–E) representative of 3 experiments.
All graphs show means ± SEM.
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permeability, but the role of enterocyte CD36 cannot be
ruled out without additional studies under different in-
flammatory challenges.

Finally, CD36 has pleiotropic functions that involve
native immunity and lipid metabolism, and factors we did
not consider in this study could alter intestinal permeability.
For example, the gut microbiota that can shape the intestinal
environment driving homeostasis or inflammation56 might
be impacted by CD36 deficiency. In addition, alterations in
hepatic metabolism and inflammation could influence gut
barrier permeability.57 How CD36 deletion affects the
crosstalk between intestinal cells and microbiota as well as
the gut-liver axis is unknown.

Our findings in mice might be relevant to humans. CD36
deficiency has a relatively high frequency in populations of
African and Asian ancestry, and single nucleotide poly-
morphisms that reduce CD36 level are relatively common.58

Carriers of the minor allele (G) of coding single nucleotide
polymorphism rs3211938 (w20% of African Americans)
have w50% reduction of CD36 expression, and this asso-
ciates with increased endothelial stiffness and with an
altered nitric oxide–cyclic guanosine monophosphate
pathway.59 Our preliminary data show increased blood
levels of activated neutrophils in these subjects, suggesting
presence of subclinical inflammation (data not shown).
Reduction of CD36 gene expression was reported in the
ileum and colon of subjects with inflammatory bowel dis-
ease by array analysis.60

In conclusion, our findings suggest that the inflamed
endothelium, in this case a result of CD36 loss, plays an
important role in promoting neutrophil recruitment
impairing epithelial barrier integrity at the level of the small
intestine. The role of endothelial dysfunction in gut in-
flammatory diseases warrants further investigation.
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