3,030 research outputs found

    The Calibration of AVHRR Visible Dual Gain using Meteosat-8 for NOAA-16 to 18

    Get PDF
    The NOAA AVHRR program has given the remote sensing community over 25 years of imager radiances to retrieve global cloud, vegetation, and aerosol properties. This dataset can be used for long-term climate research, if the AVHRR instrument is well calibrated. Unfortunately, the AVHRR instrument does not have onboard visible calibration and does degrade over time. Vicarious post-launch calibration is necessary to obtain cloud properties that are not biased over time. The recent AVHRR-3 instrument has a dual gain in the visible channels in order to achieve greater radiance resolution in the clear-sky. This has made vicarious calibration of the AVHRR-3 more difficult to unravel. Reference satellite radiances from well-calibrated instruments, usually equipped with solar diffusers, such as MODIS, have been used to successfully vicariously calibrate other visible instruments. Transfer of calibration from one satellite to another using co-angled, collocated, coincident radiances has been well validated. Terra or Aqua MODIS and AVHRR comparisons can only be performed over the poles during summer. However, geostationary satellites offer a transfer medium that captures both parts of the dual gain. This AVHRR-3 calibration strategy uses, calibrated with MODIS, Meteosat-8 radiances simultaneously to determine the dual gains using 50km regions. The dual gain coefficients will be compared with the nominal coefficients. Results will be shown for all visible channels for NOAA-17

    Marine Boundary Layer Cloud Properties From AMF Point Reyes Satellite Observations

    Get PDF
    Cloud Diameter, C(sub D), offers a simple measure of Marine Boundary Layer (MBL) cloud organization. The diurnal cycle of cloud-physical properties and C(sub D) at Pt Reyes are consistent with previous work. The time series of C(sub D) can be used to identify distinct mesoscale organization regimes within the Pt. Reyes observation period

    Comparison of TWP-ICE Satellite and Field Campaign Aircraft Derived Cloud Properties

    Get PDF
    Cloud and radiation products derived from the MTSAT-1R satellite have been developed for TWP-ICE. These include pixel-level, gridded, and ground site and aircraft matched. These products are available from the Langley website and the ARM data center. As shown in Figs 2, and 4-6, these products compare favorably with in-situ ground and aircraft based measurements. With additional quantitative validation these products can provide valuable information about tropical convection and its impact on the radiation budget and climate. As new algorithm improvements, such as multi-layer cloud detection, are implemented these products will be reprocessed and updated

    Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy

    Get PDF
    Single-phase epitaxial films of the monoclinic polymorph of BiVO4 were synthesized by reactive molecular-beam epitaxy under adsorption-controlled conditions. The BiVO4 films were grown on (001) yttria-stabilized cubic zirconia (YSZ) substrates. Four-circle x-ray diffraction, scanning transmission electron microscopy (STEM), and Raman spectroscopy confirm the epitaxial growth of monoclinic BiVO4 with an atomically abrupt interface and orientation relationship (001)BiVO4 parallel to (001)(YSZ) with [100]BiVO4 parallel to [100](YSZ). Spectroscopic ellipsometry, STEM electron energy loss spectroscopy (STEM-EELS), and x-ray absorption spectroscopy indicate that the films have a direct band gap of 2.5 +/- 0.1 eV
    • …
    corecore