MARINE BOUNDARY LAYER CLOUD PROPERTIES FROM AMF **POINT REYES SATELLITE OBSERVATIONS**

Michael Jensen¹, Andrew M. Vogelmann¹, Edward Luke¹, Patrick Minnis², Mark A. Miller¹, Mandana Khaiyer³, Louis Nguyen² and Rabindra Palikonda^{2,3}

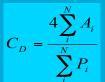
Corresponding author: Mike Jensen, mjensen@bnl.gov, (631) 344-7021

1. OBJECTIVES

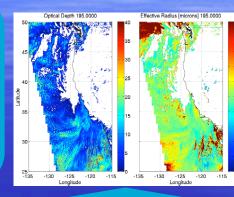
- Use satellite observations to place the AMF surface-based and aircraft observations into a larger-scale context relevant to GCM-sized grids (e.g. 300 x 300 km)
- Quantify the macro- and microphysical properties of California region marine boundary layer clouds.
- Quantify the diurnal cycle of MBL cloud properties from satellite observations

2. CLOUD SCREENING

- Identify GCM-sized boxes containing mainly MBL clouds (cloud fraction > 20%)
- Automated cloud identification algorithm screens to remove scenes containing overlying cirrus and other cloud types
- Compute scene-mean cloud macro- and -physical properties
- For details see: Jensen et al, 2007: Investigation of regional and seasonal variations in MBL cloud properties from MODIS observations, J. Climate, (submitted).


C. = 0.75

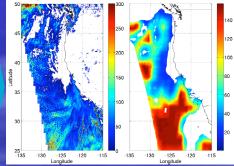
=1.0


 $C_{c} = 1.5$

3. MACROPHYSICAL PROPERTIES

• Mesoscale cloud structure is quantified using the effective cloud diameter:

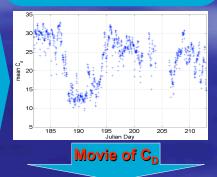
• A_i = Area of a single cloud element, P_i = Perimeter of a single cloud element, N = number of cloud elements

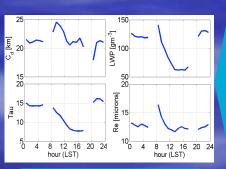

SUMMARY

- C_D offers a simple measure of MBL cloud organization
- The diurnal cycle of cloud -physical properties and C_{D} at Pt Reves are consistent with previous work.
- The time series of C_D can be used to identify distinct mesoscale organization regimes within the Pt. Reves observation period

4. CLOUD PROPERTIES

• Large values of C_D for solid cloud decks. Smaller values for scattered cloud scenes

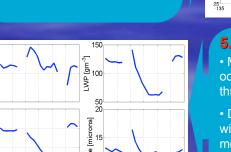

• Large C_D generally accompanied by largest optical depth and liquid water path



5. DIURNAL CYCLE

 Max optical depth, LWP and R_a occur in the morning decreasing through the daytime

• Diurnal cycle of C_D is consistent with more solid clouds in the morning becoming more scattered in the afternoon.



6. TIME SERIES

 July shows 4-6 day cycle from larger C_{D} (more solid) to smaller C_{D} (more scattered)

• Large C_p tends to correlate with large optical depth, large liquid water path

