65 research outputs found

    Remote Sensing of Green Leaf Area Index in Maize and Soybean: From Close-Range to Satellite

    Get PDF
    This dissertation seeks to explore alternative methodologies for estimating green leaf area index (LAI) and crop developmental stages. Specifically this research [1] developed an approach for creating a Moderate Resolution Imaging Spectroradiometer (MODIS) high spatial resolution product for estimating green LAI on the base of data collected using two different close-range sensors. It was determined that the vegetation indices (VIs) Wide Dynamic Range Vegetation Index (WDRVI) and Enhanced Vegetation Index 2 (EVI2) were capable of accurate estimation of green LAI from MODIS 250 m data using models developed from hyperspectral (RMSE \u3c 0.69 m2 m-2; CV \u3c 33%) or multispectral sensors (RMSE \u3c 0.69 m2 m-2; CV \u3c 34%). [2] Explored a new approach for maximizing the sensitivity of VIs to green LAI. Rather than use one VI, we suggested using multiple VIs in different LAI dynamic ranges. Thus, the sensitivity of the VI to the green LAI was preserved and simpler linear models could be used instead of complex non-linear ones. Two combined vegetation indices (CVI) were presented using near infrared and either the red or red edge bands and were accurate in estimating green LAI. While the red band is more common in satellite sensors, the indices use red edge band were found to be species independent for maize and soybean. The two species-independent VIs used in the CVI were Red Edge Normalized Difference Index (Red Edge NDVI) and Red Edge Chlorophyll Index (CIred edge). [3] Algorithms were developed for estimating green LAI in four vastly different crops (maize, potato, soybean, and wheat) that do not require re-parameterization. The most promising VIs for developing a unified algorithm utilized either a green or red edge bands. [4] It was found that, in addition to traditionally used (VIs), the 2-dimensional spectral spaces (e.g. red vs. green reflectance) were capable of identifying four distinct stages of crop development (e.g. soil/residue, green-up, vegetative, and senescence). Advisor: Anatoly A. Gitelso

    Assessment of Canopy Chlorophyll Content Retrieval in Maize and Soybean: Implications of Hysteresis on the Development of Generic Algorithms

    Get PDF
    Canopy chlorophyll content (Chl) closely relates to plant photosynthetic capacity, nitrogen status and productivity. The goal of this study is to develop remote sensing techniques for accurate estimation of canopy Chl during the entire growing season without re-parameterization of algorithms for two contrasting crop species, maize and soybean. These two crops represent different biochemical mechanisms of photosynthesis, leaf structure and canopy architecture. The relationships between canopy Chl and reflectance, collected at close range and resampled to bands of the Multi Spectral Instrument (MSI) aboard Sentinel-2, were analyzed in samples taken across the entirety of the growing seasons in three irrigated and rainfed sites located in eastern Nebraska between 2001 and 2005. Crop phenology was a factor strongly influencing the reflectance of both maize and soybean. Substantial hysteresis of the reflectance vs. canopy Chl relationship existed between the vegetative and reproductive stages. The effect of the hysteresis on vegetation indices (VI), applied for canopy Chl estimation, depended on the bands used and their formulation. The hysteresis greatly affected the accuracy of canopy Chl estimation by widely-used VIs with near infrared (NIR) and red reflectance (e.g., normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and simple ratio (SR)). VIs that use red edge and NIR bands (e.g., red edge chlorophyll index (CIred edge), red edge NDVI and the MERIS terrestrial chlorophyll index (MTCI)) were minimally affected by crop phenology (i.e., they exhibited little hysteresis) and were able to accurately estimate canopy Chl in two crops without algorithm re-parameterization and, thus, were found to be the best candidates for generic algorithms to estimate crop Chl using the surface reflectance products of MSI Sentinel-2

    Toward Generic Models for Green LAI Estimation in Maize and Soybean: Satellite Observations

    Get PDF
    Informative spectral bands for green leaf area index (LAI) estimation in two crops were identified and generic models for soybean and maize were developed and validated using spectral data taken at close range. The objective of this paper was to test developed models using Aqua and Terra MODIS, Landsat TM and ETM+, ENVISAT MERIS surface reflectance products, and simulated data of the recently-launched Sentinel 2 MSI and Sentinel 3 OLCI. Special emphasis was placed on testing generic models which require no re-parameterization for these species. Four techniques were investigated: support vector machines (SVM), neural network (NN), multiple linear regression (MLR), and vegetation indices (VI). For each technique two types of models were tested based on (a) reflectance data, taken at close range and resampled to simulate spectral bands of satellite sensors; and (b) surface reflectance satellite products. Both types of models were validated using MODIS, TM/ETM+, and MERIS data. MERIS was used as a prototype of OLCI Sentinel-3 data which allowed for assessment of the anticipated accuracy of OLCI. All models tested provided a robust and consistent selection of spectral bands related to green LAI in crops representing a wide range of biochemical and structural traits. The MERIS observations had the lowest errors (around 11%) compared to the remaining satellites with observational data. Sentinel 2 MSI and OLCI Sentinel 3 estimates, based on simulated data, had errors below 8%. However the accuracy of these models with actual MSI and OLCI surface reflectance products remains to be determined

    Informative spectral bands for remote green LAI estimation in C3 and C4 crops

    Get PDF
    Green leaf area index (LAI) provides insight into the productivity, physiological and phenological status of vegetation. Measurement of spectral reflectance offers a fast and nondestructive estimation of green LAI. A number of methods have been used for the estimation of green LAI; however, the specific spectral bands employed varied widely among the methods and data used. Our objectives were (i) to find informative spectral bands retained in three types of methods, neural network (NN), partial least squares (PLS) regression and vegetation indices (VI), for estimating green LAI in maize (a C4 species) and soybean (a C3 species); (ii) to assess the accuracy of the algorithms estimating green LAI using a minimal number of bands for each crop and generic algorithms for the two crops combined. Hyperspectral reflectance and green LAI of irrigated and rainfed maize and soybean were taken during eight years of observations (altogether 24 field-years) in very different weather conditions. The bands retained in the best NN, PLS and VI methods were in close agreement. The validity of these bands was further confirmed via the uninformative variable elimination PLS technique. The red edge and the NIR bands were selected in all models and were found the most informative. Identifying informative spectral bands across all four techniques provided insight into spectral features of reflectance specific for each species as well as those that are common to species with different leaf structures, canopy architectures and photosynthetic pathways. The analyses allowed development of algorithms for estimating green LAI in soybean and maize with no re-parameterization. These findings lay a strong foundation for the development of generic algorithms which is crucial for remote sensing of vegetation biophysical parameters

    Modeling Gross Primary Production of Midwestern US Maize and Soybean Croplands with Satellite and Gridded Weather Data

    Get PDF
    Gross primary production (GPP) is a useful metric for determining trends in the terrestrial carbon cycle. To estimate daily GPP, the cloud-adjusted light use efficiency model (LUEc) was developed by adapting a light use efficiency (LUE, ε) model to include in situ meteorological data and biophysical parameters. The LUEc uses four scalars to quantify the impacts of temperature, water stress, and phenology on ε. This study continues the original investigation in using the LUEc, originally limited to three AmeriFlux sites (US-Ne1, US-Ne2, and US-Ne3) by applying gridded meteorological data sets and remotely sensed green leaf area index (gLAI) to estimate daily GPP over a larger spatial extent. This was achieved by including data from four additional AmeriFlux locations in the U.S. Corn Belt for a total of seven locations. Results show an increase in error (RMSE = 3.5 g C m−2 d−1) over the original study in which in situ data were used (RMSE = 2.6 g C m−2 d−1). This is attributed to poor representation of gridded weather inputs (vapor pressure and incoming solar radiation) and application of gLAI algorithms to sites in Iowa, Minnesota, and Illinois, calibrated using data from Nebraska sites only, as well as uncertainty due to climatic variation. Despite these constraints, the study showed good correlation between measured and LUEc-modeled GPP (R2 = 0.80 and RMSE of 3.5 g C m−2 d−1). The decrease in model accuracy is somewhat offset by the ability to function with gridded weather datasets and remotely sensed biophysical data. The level of acceptable error is dependent upon the scope and objectives of the research at hand; nevertheless, the approach holds promise in developing regional daily estimates of GPP

    Developing the framework for a risk map for mite vectored viruses in wheat resulting from pre-harvest hail damage

    Get PDF
    There is a strong economic incentive to reduce mite-vectored virus outbreaks. Most outbreaks in the central High Plains of the United States occur in the presence of volunteer wheat that emerges before harvest as a result of hail storms. This study provides a conceptual framework for developing a risk map for wheat diseases caused by mite-vectored viruses based on pre-harvest hail events. Traditional methods that use NDVI were found to be unsuitable due to low chlorophyll content in wheat at harvest. Site-level hyperspectral reflectance from mechanically hailed wheat showed increased canopy albedo. Therefore, any increase in NIR combined with large increases in red reflectance near harvest can be used to assign some level of risk. The regional model presented in this study utilized Landsat TM/ETMþ data and MODIS imagery to help gap-fill missing data. NOAA hail maps that estimate hail size were used to refine the area most likely at risk. The date range for each year was shifted to account for annual variations in crop phenology based on USDA Agriculture statistics for percent harvest of wheat. Between 2003 and 2013, there was a moderate trend (R2 ¼ 0.72) between the county-level insurance claims for Cheyenne County, Nebraska and the area determined to be at risk by the model (excluding the NOAA hail size product due to limited availability) when years with low hail claims (\u3c400 ha) were excluded. These results demonstrate the potential of an operational risk map for mite-vectored viruses due to pre-season hail events

    Developing the framework for a risk map for mite vectored viruses in wheat resulting from pre-harvest hail damage

    Get PDF
    There is a strong economic incentive to reduce mite-vectored virus outbreaks. Most outbreaks in the central High Plains of the United States occur in the presence of volunteer wheat that emerges before harvest as a result of hail storms. This study provides a conceptual framework for developing a risk map for wheat diseases caused by mite-vectored viruses based on pre-harvest hail events. Traditional methods that use NDVI were found to be unsuitable due to low chlorophyll content in wheat at harvest. Site-level hyperspectral reflectance from mechanically hailed wheat showed increased canopy albedo. Therefore, any increase in NIR combined with large increases in red reflectance near harvest can be used to assign some level of risk. The regional model presented in this study utilized Landsat TM/ETMþ data and MODIS imagery to help gap-fill missing data. NOAA hail maps that estimate hail size were used to refine the area most likely at risk. The date range for each year was shifted to account for annual variations in crop phenology based on USDA Agriculture statistics for percent harvest of wheat. Between 2003 and 2013, there was a moderate trend (R2 ¼ 0.72) between the county-level insurance claims for Cheyenne County, Nebraska and the area determined to be at risk by the model (excluding the NOAA hail size product due to limited availability) when years with low hail claims (\u3c400 ha) were excluded. These results demonstrate the potential of an operational risk map for mite-vectored viruses due to pre-season hail events

    An alternative method using digital cameras for continuous monitoring of crop status

    Get PDF
    Crop physiological and phenological status is an important factor that characterizes crop yield as well as carbon exchange between the atmosphere and the terrestrial biosphere in agroecosystems. It is difficult to establish high frequency observations of crop status in multiple locations using conventional approaches such as agronomical sampling and also remote sensing techniques that use spectral radiometers because of the labor intensive work required for field surveys and the high cost of radiometers designed for scientific use. This study explored the potential utility of an inexpensive camera observation system called crop phenology recording system (CPRS) as an alternative approach for the observation of seasonal change in crop growth. The CPRS consisting of two compact digital cameras was used to capture visible and near infrared (NIR) images of maize in 2009 and soybean in 2010 for every hour both day and night continuously. In addition, a four channel sensor SKYE measured crop reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were acquired over crop fields. The six different camera- radiometer- and MODIS-derived vegetation indices (VIs) were calculated and compared with the ground-measured crop biophysical parameters. In addition to VIs that use digital numbers, we proposed to use daytime exposure value-adjusted VIs. The camera-derived VIs were compared with the VIs calculated from spectral reflectance observations taken by SKYE and MODIS. It was found that new camera-derived VIs using daytime exposure values are closely related to VIs calculated using SKYE and MODIS reflectance and good proxies of crop biophysical parameters. Camera-derived green chlorophyll index, simple ratio and NDVI were found to be able to estimate the total leaf area index (LAI) of maize and soybean with high accuracy and were better than the widely used 2g-r-b. However, camera-derived 2g-r-b showed the best accuracy in estimating daily fAPAR in vegetative and reproductive stages of both crops. Visible atmospherically resistant vegetation index showed the highest accuracy in the estimation of the green LAI of maize. A unique VI, calculated from nighttime flash NIR images called the nighttime relative brightness index of NIR, showed a strong relationship with total aboveground biomass for both crops. The study concludes that the CPRS is a practical and cost-effective approach for monitoring temporal changes in crop growth, and it also provides an alternative source of ground truth data to validate time-series VIs derived from MODIS and other satellite systems

    Incorporation of globally available datasets into the roving cosmic-ray neutron probe method for estimating field-scale soil water content

    Get PDF
    The need for accurate, real-time, reliable, and multi-scale soil water content (SWC) monitoring is critical for a multitude of scientific disciplines trying to understand and predict the Earth’s terrestrial energy, water, and nutrient cycles. One promising technique to help meet this demand is fixed and roving cosmic-ray neutron probes (CRNPs). However, the relationship between observed low-energy neutrons and SWC is affected by local soil and vegetation calibration parameters. This effect may be accounted for by a calibration equation based on local soil type and the amount of vegetation. However, determining the calibration parameters for this equation is labor- and time-intensive, thus limiting the full potential of the roving CRNP in large surveys and long transects, or its use in novel environments. In this work, our objective is to develop and test the accuracy of globally available datasets (clay weight percent, soil bulk density, and soil organic carbon) to support the operability of the roving CRNP. Here, we develop a 1 km product of soil lattice water over the continental United States (CONUS) using a database of in situ calibration samples and globally available soil taxonomy and soil texture data. We then test the accuracy of the global dataset in the CONUS using comparisons from 61 in situ samples of clay percent (RMSE=5.45 wt %, R2=0.68), soil bulk density (RMSE=0.173 g cm-3, R2=0.203), and soil organic carbon (RMSE=1.47 wt %, R2=0.175). Next, we conduct an uncertainty analysis of the global soil calibration parameters using a Monte Carlo error propagation analysis (maximum RMSE~0.035cm3 cm-3 at a SWC=0.40 cm3 cm-3). In terms of vegetation, fast-growing crops (i.e., maize and soybeans), grasslands, and forests contribute to the CRNP signal primarily through the water within their biomass and this signal must be accounted for accurate estimation of SWC. We estimated the biomass water signal by using a vegetation index derived from MODIS imagery as a proxy for standing wet biomass (RMSEm-2). Lastly, we make recommendations on the design and validation of future roving CRNP experiments

    An alternative method using digital cameras for continuous monitoring of crop status

    Get PDF
    Crop physiological and phenological status is an important factor that characterizes crop yield as well as carbon exchange between the atmosphere and the terrestrial biosphere in agroecosystems. It is difficult to establish high frequency observations of crop status in multiple locations using conventional approaches such as agronomical sampling and also remote sensing techniques that use spectral radiometers because of the labor intensive work required for field surveys and the high cost of radiometers designed for scientific use. This study explored the potential utility of an inexpensive camera observation system called crop phenology recording system (CPRS) as an alternative approach for the observation of seasonal change in crop growth. The CPRS consisting of two compact digital cameras was used to capture visible and near infrared (NIR) images of maize in 2009 and soybean in 2010 for every hour both day and night continuously. In addition, a four channel sensor SKYE measured crop reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images were acquired over crop fields. The six different camera- radiometer- and MODIS-derived vegetation indices (VIs) were calculated and compared with the ground-measured crop biophysical parameters. In addition to VIs that use digital numbers, we proposed to use daytime exposure value-adjusted VIs. The camera-derived VIs were compared with the VIs calculated from spectral reflectance observations taken by SKYE and MODIS. It was found that new camera-derived VIs using daytime exposure values are closely related to VIs calculated using SKYE and MODIS reflectance and good proxies of crop biophysical parameters. Camera-derived green chlorophyll index, simple ratio and NDVI were found to be able to estimate the total leaf area index (LAI) of maize and soybean with high accuracy and were better than the widely used 2g-r-b. However, camera-derived 2g-r-b showed the best accuracy in estimating daily fAPAR in vegetative and reproductive stages of both crops. Visible atmospherically resistant vegetation index showed the highest accuracy in the estimation of the green LAI of maize. A unique VI, calculated from nighttime flash NIR images called the nighttime relative brightness index of NIR, showed a strong relationship with total aboveground biomass for both crops. The study concludes that the CPRS is a practical and cost-effective approach for monitoring temporal changes in crop growth, and it also provides an alternative source of ground truth data to validate time-series VIs derived from MODIS and other satellite systems
    • …
    corecore