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Abstract: Gross primary production (GPP) is a useful metric for determining trends in the terrestrial
carbon cycle. To estimate daily GPP, the cloud-adjusted light use efficiency model (LUEc) was
developed by adapting a light use efficiency (LUE, ε) model to include in situ meteorological data and
biophysical parameters. The LUEc uses four scalars to quantify the impacts of temperature, water
stress, and phenology on ε. This study continues the original investigation in using the LUEc, originally
limited to three AmeriFlux sites (US-Ne1, US-Ne2, and US-Ne3) by applying gridded meteorological
data sets and remotely sensed green leaf area index (gLAI) to estimate daily GPP over a larger spatial
extent. This was achieved by including data from four additional AmeriFlux locations in the U.S.
Corn Belt for a total of seven locations. Results show an increase in error (RMSE = 3.5 g C m−2 d−1)
over the original study in which in situ data were used (RMSE = 2.6 g C m−2 d−1). This is attributed
to poor representation of gridded weather inputs (vapor pressure and incoming solar radiation)
and application of gLAI algorithms to sites in Iowa, Minnesota, and Illinois, calibrated using data
from Nebraska sites only, as well as uncertainty due to climatic variation. Despite these constraints,
the study showed good correlation between measured and LUEc-modeled GPP (R2 = 0.80 and RMSE
of 3.5 g C m−2 d−1). The decrease in model accuracy is somewhat offset by the ability to function
with gridded weather datasets and remotely sensed biophysical data. The level of acceptable error is
dependent upon the scope and objectives of the research at hand; nevertheless, the approach holds
promise in developing regional daily estimates of GPP.

Keywords: gross primary production (GPP); light use efficiency (LUE); AmeriFlux; U.S. Corn Belt;
gridded weather data

1. Introduction

Gross primary production (GPP) in maize and soybean crops is an important measure for
quantifying large scale carbon fluxes and plant productivity. GPP is defined as the total amount of
carbon dioxide fixed by photosynthesis in a given area over a unit of time. GPP is a useful metric
in determining the patterns and dynamics of the terrestrial carbon cycle [1] and it is essential in
the study of ecosystem respiration and biomass accumulation [2]. The need to quantify the North
American carbon sink necessitates precise carbon dioxide flux measurements [3] and while in situ
data sources are available for this quantification, they represent field level data collection at specific
locations. Extending GPP from field to regional scales can identify larger patterns and dynamics
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and helps quantify long-term carbon trends. Landscape level models created to derive an accurate
estimation of GPP at regional scales for managed and unmanaged ecosystems at coarse temporal scales
have varying degrees of accuracy; light use efficiency is at the core of these models. For example,
Matsushita et al. [4] reported a 20% error in estimating annual NPP while Heinsch et al. [5] reported an
18% error. Heinsch et al. [6] found errors of 20–30% in estimates of annual GPP. Xiao et al. [7] reported
errors in seasonally integrated GPP estimates of 3–20% while Cui et al. [1] reported root mean square
errors (RMSE) of 2.97 g C m−2 d−1. Although Tramontana et al. [8] reported good agreement between
estimated and observed GPP values when using only remotely sensed data, the best estimates of
GPP were obtained when meteorological data were included with vegetation indices. Zhang et al. [9]
provide a global GPP dataset for 2000-2016 (as an alternate to MOD17 GPP) based on a modified
vegetation photosynthesis model (VPM GPP V20) driven by MODIS and climate data. The model
utilizes ε, scalars for temperature and moisture, photosynthetically active radiation (PAR), and the
energy absorbed chlorophyll. Yuan et al. [10] tested seven LUE-based models and found that models
that incorporate environmental factors, including diffuse radiation, do not significantly underestimate
GPP for cloudy days, unlike models excluding diffuse radiation. Zhang et al. [11] explained about 67%
of tower-measured GPP accounting for the effect of diffuse radiation on ε.

Critically, many of the models referenced above do not estimate GPP at a daily temporal resolution.
Running et al. [12] provide a daily estimate of GPP in the MOD17A2/A3 algorithm using global
daily estimates of PAR (“a challenging problem”) and a biome lookup table to estimate light use
efficiency. Based on LUE-based models for estimating GPP on a regional scale, the use of satellite
imagery and modeled weather data, including diffuse radiation, is essential as monetary, personnel,
time, and equipment constraints hinder collection of daily in situ data at a broad scale. The overall
accuracy of models using satellite and modeled weather data input may be lower than those that utilize
in situ field-level input. This is due in part to generalization of model parameters for application to
heterogeneous regions, spatial and temporal restrictions of satellite data, and the accuracy of modeled
weather input data. However, the ability to study large regions may offset loss of accuracy, depending
upon research scope and objectives [1,4].

A daily light use efficiency model, known as the cloud-adjusted light use efficiency model (LUEc),
introduced by Nguy-Robertson et al. [13], combines aspects of the Vegetation Photosynthesis Model
(VPM) [7] and the LUE model [3]. The LUEc provides more reliable estimates of GPP by taking
into account the effects of environmental and canopy factors (e.g., light quality, water availability,
temperature, and phenology) on photosynthesis. This is achieved, using daily meteorological
measurements and in situ green leaf area index (gLAI). Gitelson et al. [14] concluded that gLAI
was preferable to total leaf area index, as nonphotosynthesizing portions of the canopy were not
contributing to photosynthesis. Thus, in the LUEc, maximum light use efficiency (ε0) is downregulated
as environmental conditions change. Temperature, water stress, and phenology are used to estimate
daily light use efficiency ε (e.g., [1,5,7,15]). However, to produce a more descriptive daily ε, the original
study [13] based the scalars on in situ mass and energy flux measurements, micrometeorological
observations and gLAI measurements to regulate ε0.

The main objective of this study was to evaluate the potential applicability of the LUEc-enhanced
four-scalar light use efficiency approach [13] to provide regional GPP estimates. This was accomplished
using input data derived from remotely sensed satellite data and gridded weather datasets to estimate
daily GPP over the entire growing season in seven U.S. Corn Belt agricultural sites. Thus, this study
also investigates the robustness of the scalar stressor parameterizations identified in the original
study [13] for regions outside eastern Nebraska. LUEc performance was evaluated by comparing
estimated and AmeriFlux measured GPP values and calculating root mean squared error (RMSE) and
mean normalized bias (MNB).
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2. Materials and Methods

2.1. Study Site Summary

Data from seven AmeriFlux Midwestern agricultural sites in Nebraska, Illinois, Iowa,
and Minnesota were used in this study (Figure 1 and Table 1). All sites are characterized by a
humid continental climate (Dfa Koeppen climate classification) with hot humid summers and cold
winters (Figure 2). The Nebraska sites are located at the University of Nebraska Eastern Nebraska
Research and Extension Center near Mead, NE. All three Nebraska sites (US-Ne1, US-Ne2, and US-Ne3)
have been under no-till or minimum-till management aside from initial disking conducted in 2001.
Conservation-plow tillage has been in effect at US-Ne1 (only) since 2005. Only US-Ne1 and US-Ne2 are
irrigated. Water applied was in accordance with best practices to reduce water stress and administer
fertilizer, herbicide, and pesticides. The Illinois site, US-Bo1, is located approximately 12 km south of
Champaign, Illinois. The site is not irrigated and is under no-till management administered by NOAA.
The two Iowa Brooks Field sites, US-Br1 and US-Br3, are located approximately 8 km southwest of
Ames, Iowa. The sites are not irrigated and are under a tillage management system typical throughout
the Upper Midwest Corn Belt. The Minnesota Rosemount site, US-Ro1, is located approximately 24 km
south of Saint Paul, Minnesota. This field is not irrigated and is under chisel plow tillage in the fall
following maize harvest and in the spring after soybean harvest in the fall. US-Ro1 is managed jointly
by the University of Minnesota and USDA.

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 21 

 

2.1. Study Site Summary 

Data from seven AmeriFlux Midwestern agricultural sites in Nebraska, Illinois, Iowa, and 
Minnesota were used in this study (Figure 1 and Table 1). All sites are characterized by a humid 
continental climate (Dfa Koeppen climate classification) with hot humid summers and cold winters 
(Figure 2). The Nebraska sites are located at the University of Nebraska Eastern Nebraska Research 
and Extension Center near Mead, NE. All three Nebraska sites (US-Ne1, US-Ne2, and US-Ne3) have 
been under no-till or minimum-till management aside from initial disking conducted in 2001. 
Conservation-plow tillage has been in effect at US-Ne1 (only) since 2005. Only US-Ne1 and US-Ne2 
are irrigated. Water applied was in accordance with best practices to reduce water stress and 
administer fertilizer, herbicide, and pesticides. The Illinois site, US-Bo1, is located approximately 12 
km south of Champaign, Illinois. The site is not irrigated and is under no-till management 
administered by NOAA. The two Iowa Brooks Field sites, US-Br1 and US-Br3, are located 
approximately 8 km southwest of Ames, Iowa. The sites are not irrigated and are under a tillage 
management system typical throughout the Upper Midwest Corn Belt. The Minnesota Rosemount 
site, US-Ro1, is located approximately 24 km south of Saint Paul, Minnesota. This field is not irrigated 
and is under chisel plow tillage in the fall following maize harvest and in the spring after soybean 
harvest in the fall. US-Ro1 is managed jointly by the University of Minnesota and USDA.  

 

Figure 1. Map indicating the locations of the seven agricultural AmeriFlux sites in the U.S. Midwest 
used in this study. 

Each site was equipped with an eddy covariance tower measuring key fluxes on a continuous 
basis. For these sensors, measurement heights were adjusted at each site (except US-Bo1) either once 
per season (US-Ne1, US-Ne2, US-Ne3) or at more frequent intervals (US-Ro1, US-Br1, US-Br3) based 
on crop height to keep the fetch area within the field during unstable, neutral, or moderately stable 
atmospheric conditions. 

Figure 1. Map indicating the locations of the seven agricultural AmeriFlux sites in the U.S. Midwest
used in this study.

Each site was equipped with an eddy covariance tower measuring key fluxes on a continuous
basis. For these sensors, measurement heights were adjusted at each site (except US-Bo1) either once
per season (US-Ne1, US-Ne2, US-Ne3) or at more frequent intervals (US-Ro1, US-Br1, US-Br3) based
on crop height to keep the fetch area within the field during unstable, neutral, or moderately stable
atmospheric conditions.
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Table 1. AmeriFlux study site locations, management status, crop rotation, field years, mean annual temperatures, precipitation, and field area information. Coordinates
and area determined from WGS 84 (EPSG:4326) system.

Approximate
Field Site
Location

AmeriFlux Site
Latitude,

Longitude,
Elevation

Management Maize Crop Soybean Crop Mean Annual
Temperature (◦C)

Mean Annual
Precipitation

[+Irrigation] (mm)
Area (ha)

Mead, NE

US-Ne1 41.1650◦ N,
96.4766◦ W, 361 m Irrigated 2002–2013 – 10 790 [+242] 49.8

US-Ne2 41.1650◦ N,
96.4700◦ W, 362 m Irrigated 2003–2013 Odd years;

2010, 2012 2002–2008 Even years 10 790 [+214] 53.5

US-Ne3 41.1797◦ N,
96.4396◦ W, 363 m Rainfed 2003–2013 Odd years 2002–2012 Even years 10 790 66.2

Brooks Field,
near Ames, IA

US-Br1 41.9749◦ N,
93.6906◦ W, 313 m Rainfed 2005–2011 Odd years 2006–2010 Even years 9 845 30.8

US-Br3 41.9747◦ N,
93.6935◦ W, 313 m Rainfed 2006–2010 Even years 2005–2011 Odd years 9 845 18.1

Bondville, IL US-Bo1 40.0062◦ N,
88.2904◦ W, 219 m Rainfed 2001–2007 Odd years 2002–2006 Even years 11 991 31.7

Rosemount, MN US-Ro1 44.7143◦ N,
93.0898◦ W; 290 m Rainfed 2005–2011 Odd years 2006–2012 Even years 6 879 17.7
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Figure 2. Climographs from cities near the AmeriFlux sites. US-Ne1, US-Ne2, and US-Ne3 are located at
the University of Nebraska’s Eastern Nebraska Research and Extension Center near Mead, NE; US-Br1
and US-Br2 located approximately 8 km southwest of Ames, Iowa; US-Bo1 is located approximately
12 km south of Champaign, Illinois and US-Ro1 is located near Rosemount, Minnesota which is located
approximately 24 km south of Saint Paul, Minnesota. (Source: 1981–2010 normals, usclimatedata.com).

2.2. Input Data

2.2.1. Daymet Data

Daymet weather data were obtained from the Oak Ridge National Laboratory (ORNL) Distributed
Active Archive Center (DAAC) Daymet (Version 2) [16]. The dataset was selected due to its relatively
fine spatial resolution of 1 × 1 km. The dataset provides a grid of mosaicked gridded estimates of
daily weather parameters. Parameters are generated using a network of ground observation sites
to provide input data which is then interpolated and extrapolated using Daymet model algorithms.
Daily data for respective years of the selected AmeriFlux study sites (referred to as “field years”)
were extracted from the various sites using the “Single Pixel Extraction” tool (https://daymet.ornl.gov/

dataaccess.html#SinglePixel) with specified latitude, longitude, and date range. Minimum temperature
(Tmin, ◦C), maximum temperature (Tmax, ◦C), incoming shortwave radiation (Rg, J m−2 d−1), average
vapor pressure (P, kPa), snow-water equivalent (kg m−2), precipitation (mm), and day length (s) were

https://daymet.ornl.gov/dataaccess.html#SinglePixel
https://daymet.ornl.gov/dataaccess.html#SinglePixel
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downloaded in CSV format in which average daily temperature, vapor pressure deficit, and incoming
PAR were calculated in Microsoft Excel. Average daily temperature (Tavg) was calculated as:

Tavg = (Tmin + Tmax)/2 (1)

Vapor pressure deficit (VPD) was calculated using vapor pressure, P, as:

VPD = (0.61078 · exp[(17.269)(Tavg)])/(Tavg + 237.8) − P (2)

Incoming PARin (µmol m−2 d−1) was calculated from incoming shortwave radiation (Rg) as:

PARin = Rg · 2.07 (3)

The constant 2.07 is computed as the product of the fraction of total shortwave at the top
of the atmosphere, 0.45 Rg, J m−2d−1 [17] and approximate energy conversion over the PAR
range, 4.6 µmol J−1 [18].

2.2.2. MODIS Data

MODIS v.5 eight-day composite surface reflectance (ρ) (products MOD09Q1 and MYD09Q1, Terra
and Aqua, respectively) for band 1 (620–670 nm, ρred) and band 2 (841–876 nm, ρNIR) at 250 m spatial
resolution were obtained using Google Earth Engine. Reflectances were used to calculate a wide
dynamic range vegetation index (WDRVI) time series at eight day intervals as:

WDRVI = [α(ρNIR) − ρred]/[α(ρNIR) + ρred] (4)

where α is a weighting parameter (typically 0.1–0.2 and set at 0.1 here). WDRVI is the normalized
difference vegetation index (NDVI) whenα equals 1; WRDVI equals zero whenα equals (ρred/ρNIR) [19].
WDRVI values from the pixel nearest the geographic center of each field were used for analysis to
avoid mixed pixels from adjacent areas due to the 250 m pixel resolution.

Green leaf area index (gLAI) values were estimated from the WDRVI time series following the
approach of Nguy-Robertson et al. [20], with coefficients determined from ground samples at the
Nebraska sites:

gLAI = 5.06 · (WDRVI value) + (−0.47) {Maize} (5)

gLAI = 3.68 · (WDRVI value) + (−0.24) {Soybean} (6)

The gLAI data were interpolated to continuous daily values for the growing season using
Curve Expert 1.4 software (Hyams Development, https://www.curveexpert.net) and a cubic spline
interpolation algorithm.

2.2.3. AmeriFlux Data

AmeriFlux (https://ameriflux.lbl.gov/) half-hourly or hourly GPP mean values were used to
calibrate and validate the LUEc. GPP mean values were calculated from AmeriFlux half-hourly
or hourly averages of net ecosystem exchange (NEE, µmol m−2 s−1) and ecosystem respiration
(Re, µmol m−2 s−1). At all non-Nebraska sites NEE was assumed equal to canopy carbon dioxide flux
(Fc, µmol m−2 s−1) as storage term calculations were not provided in these datasets and are likely
small for these crop systems. NEE values were screened employing light response relationships.
Values were graphed in relation to concurrent AmeriFlux measured half-hourly or hourly averages of
PAR (µmol m−2 s−1) and a nonrectangular hyperbola model fitted to a period of five days. Outliers,
typically more than three standard deviations from the model, were removed. For field years in which
PAR was not provided, Equation (3) was used to approximate incident PAR fluxes using values of
incoming solar radiation (Rg). Interpolation of daytime NEE and nighttime AmeriFlux measured

https://www.curveexpert.net
https://ameriflux.lbl.gov/
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ecosystem respiration (Re, µmol m−2 s−1) were then conducted. Half-hour averages were converted to
half hour fluxes by multiplying the averages by 1800 s (half-hour)−1; hourly averages were converted
to hourly fluxes by multiply the averages by 3600 s h−1. Daily GPP was determined as the sum of daily
NEE (half-hourly NEE fluxes (hourly for Mead sites)) and daily Re (half-hourly Re fluxes (hourly for
Mead sites)):

daily GPP = daily NEE − daily Re (7)

where NEE and Re are positive when the flux is toward the surface. Daily GPP values are in units
of g C m−2 d−1.

Field year growing season start dates were determined to be days in which daily GPP values
commenced to be greater than zero and field year growing season end dates were determined to be
days in which daily GPP values fell below the zero threshold.

2.3. GPP Modeling Approach

The cloud-adjusted light use efficiency model (LUEc) [13] is an adaptation of the simple light
use efficiency model of Monteith [21] based on earlier progressive work [3,7] to incorporate scalars to
estimate daily GPP as:

daily GPP = ε0 × Cscalar × Tscalar ×Wscalar × Pscalar × APAR (8)

ε0 is the daily light use efficiency during clear sky conditions, APAR is the daily photosynthetically
active photon flux absorbed by the green portion of the canopy (Equation (10)); the scalars account
for the impact of diffuse light (Cscalar), air temperature (Tscalar), water stress (Wscalar), and phenology
(Pscalar). ε0 and the four scalars combined represent the well-known daily light use efficiency term,
ε [21]:

daily GPP = ε × APAR (9)

where
APAR = PARin × [1 − exp(−k × gLAI)] (10)

Canopy extinction coefficients are the same as those used in the previous study [13] and are the
average value of k for each crop when gLAI is greater than 1.5 m2 m−2 and dead LAI is less than
0.5 m2 m−2. Calculations of the scalars follow those previously mentioned using gridded Daymet and
MODIS-derived LAI values instead of AmeriFlux on-site meteorological and biophysical observations
as model input. This was done to meet our objective of evaluating the LUEc applicability in using
input data derived from remotely sensed satellite data and gridded weather datasets to evaluate the
potential to provide regional GPP estimates. A summary of each scalar is provided here but the reader
is directed to Nguy-Robertson et al. [13] for details.

Cscalar. Cscalar accounts for the effects of diffuse lighting on photosynthesis [3]. Plants tend to use
diffuse light more efficiently than direct sunlight. εwill increase on overcast days, where lighting is
more diffuse than on clear days. Cscalar is calculated as:

Cscalar = a + β × [(PARd/PARin) − 0.17] (11)

The term β is the sensitivity of daily light use efficiency to diffuse light and PARd is the diffuse
PAR flux. As PARd is not commonly measured, the ratio PARd/PARin can be approximated using a
cloudiness coefficient (CC) term [13]:

PARd/PARin = 1.08CC + 0.21 (12)

which is determined from PARin and PAR potential (PARpot):

CC = 1 − (PARin/PARpot) (13)
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PARpot refers to the estimated potential amount of incoming PAR flux, accounting for influences
such as time of year, latitude, atmospheric pressure, and elevation as calculated by Weiss and
Norman [17] with corrections reported in Nguy-Robertson et al. [13].

Tscalar. Initially developed by Raich et al. [22] in regions excluding croplands, Tscalar takes into
account temperature effects on photosynthesis. The scalar is calculated using mean daily temperature,
Tavg, calculated as the average of Daymet minimum and maximum temperatures. The constants
for minimum temperature, maximum temperature, and optimal temperature (10, 48, and 28 ◦C,
respectively) of Kalfas et al. [23] designed specifically with maize were used to define Tscalar as:

Tscalar = [(Tavg − 10) × (Tavg − 48)]/{[(Tavg − 10) × (Tavg − 48)] − (Tavg − 28)2} (14)

while croplands were not examined in Raich et al. [22], values for ecoregions were consistent. Therefore,
for this study, soybean optimal temperatures were assumed to be similar to those of maize.

Wscalar. The Wscalar accounts for water stress effects on photosynthesis and was calculated based
on VPD using Equation (2) and associated constants [13]. This scalar was modeled by combining
the approach of Wu et al. [24] and Maselli et al. [25], as water stress can be introduced through both
atmospheric water deficits and soil water deficits. Unlike models in which the scalar remains constant
until a critical threshold for VPD is reached, the LUEc approach has no threshold for VPD and the
scalar was allowed to vary based on Daymet data.

σWscalar is a term for the curvature parameter for water stress, proposed by
Gilmanov et al. (2013) [26] to account for varying convexity in the relationship between photosynthesis
and water stress:

Wscalar = exp{−[(VPD/σWscalar)2]}. (15)

While famers can irrigate to mitigate the impacts of VPD, the site-specific volume of applied water to a
field is not inherent to the LUEc.

Pscalar. Pscalar accounts for leaf phenology, as immature leaves do not photosynthesize as efficiently
as mature leaves, and leaves that are senescing do not have an optimal photosynthetic capacity [27,28].
The scalar is calculated using gLAI, a constant maximum gLAI value (gLAImax) specific to each crop,
and σPscalar, the curvature parameter for the relationship between photosynthesis and phenology:

Pscalar = exp (−[((gLAImax − gLAI)/(σPscalar))2]) (16)

2.4. Calibration and Validation

Four basic steps were followed in this study:

(1) Field Year Selection. For statistical purposes, 75% of field years were chosen randomly without
replacement (i.e., 47 out of the 65 total field years) to calibrate the model (Table 2), to ensure at
least one field year was reserved for each crop type for validation purposes for a total of 18 field
years (Table 3).
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Table 2. AmeriFlux calibration field years.

Calibration Years

Site Maize Soybean

US-Ne1 (NE—irrigated) 2002–2005, 2007, 2009–2012 –
US-Ne2 (NE—irrigated) 2003, 2005, 2007, 2009, 2010, 2013 2002, 2004, 2008

US-Ne3 (NE) 2003, 2005, 2011, 2013 2006, 2008, 2010, 2012
US-Br1 (IA) 2005, 2007, 2009 2006,2008
US-Br3 (IA) 2006, 2010 2007, 2009, 2011
US-Bo1 (IL) 2001, 2005, 2007 2002, 2004

US-Ro1 (MN) 2005, 2009, 2011 2006, 2010, 2012

Field Years 30 17

Table 3. AmeriFlux validation field years.

Validation Years

Site Maize Soybean

US-Ne1 (NE—irrigated) 2006, 2008, 2013 N/A
US-Ne2 (NE—irrigated) 2011, 2012 2006

US-Ne3 (NE) 2007, 2009 2002, 2004
US-Br1 (IA) 2011 2010
US-Br3 (IA) 2008 2005
US-Bo1 (IL) 2003 2006

US-Ro1 (MN) 2007 2008

Field Years 11 7

(2) LUEc Calibration. The iterative training process using an R script as described in
Nguy-Robertson et al. [13] was used to determine ε0, β, σWscalar, and σPscalar values for
irrigated and nonirrigated maize and soybean crops. The training utilized input values from
the selected calibration field year flux data, Daymet derived Tavg, VPD, APAR, and Tscalar,
and remotely-derived gLAI. The iterative process trained the parameters using a step-by-step
method in which each scalar was estimated one at a time. During the iteration in which a
parameter is calculated, assumptions are made about the other parameters to mimic optimal
field conditions. Once the parameters are calculated, the iterations are repeated using the entire
calibration dataset to produce ε0, β, σWscalar, and σPscalar values with corresponding standard
deviations. The calibrated dataset includes AmeriFlux-derived GPP, Daymet-derived Tavg,
VPD, CC, APAR, and Tscalar, and remotely derived gLAI data. Additionally, gLAImax values
for irrigated and rainfed soybean and maize were estimated from MODIS-derived gLAI data
(Equations (5) and (6)). From these outputs, scalars were calculated (Equations (8)–(15)).

(3) Daily GPP Estimation. Data from validation field year datasets (Table 3) and parameters
derived from the iterative process along with specified constants (Table 4), were used to calculate
daily values of the scalars, Cscalar, Wscalar, and Pscalar (Equations (11), (14), and (15)) and APAR
(Equation (10)), from which daily GPP values were estimated (Equation (8)).
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Table 4. Parameters for the calculation of scalars for the cloud-adjusted light use efficiency model (LUEc). The parameters in the upper portion of the table were
calculated through the iterative process while those in the lower portion of the table are model constants from Nguy-Robertson et al. [13].

Nguy-Robertson et al. [13] This Study

Variables Symbol Equation Units Maize Soybean Maize Soybean

Derived through iterative process:
Maximal light use efficiency ε0 (8) g C mol−1 0.526 ± 0.007 0.374 ± 0.005 0.573 ± 0.002 0.407 ± 0.002

Sensitivity of ε to diffuse light β (11) unitless 0.347 ± 0.051 0.411 ± 0.056 0.181 ± 0.014 0.294 ± 0.020
Water stress curvature parameter σWscalar (14) kPa 6 ± 0.25 4 ± 0 6 ± 0 4 ± 0
Phenology curvature parameter σPscalar (15) m2 m−2 18 ± 4.59 18 ± 7.15 7 ± 0 8 ± 0

Calculated
Maximal green leaf area index [irrigated] gLAImax (10), (15) m2 m−2 4.93 [6.78] 4.63 [6.15] 5.04 [5.14] 3.86 [4.25]

Constants
Light extinction coefficient k (10) unitless 0.443 0.601 0.443 0.601

Minimum temperature for physiological activity Tmin
constant (1), (13) ◦C 10 10 10 10

Maximum temperature for physiological activity Tmax
constant (1), (13) ◦C 48 48 48 48

Optimal temperature for physiological activity Topt constant (13) ◦C 28 28 28 28
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(4) LUEc Validation. The estimated daily GPP values were compared to the observed AmeriFlux
determined daily GPP using linear regression (α = 0.05), with corresponding R2, root mean square
error (RMSE), and mean normalized bias (MNB).

3. Results

3.1. All Sites Years Combined

The parameters ε0, β, σWscalar, σPscalar, and gLAImax used to drive the LUEc, differed slightly
from those reported previously [13] (Table 4). By using field years from geographically separated
locations in the calibration process, the parameters were generalized to best fit conditions across all
study locations of the northern Midwest region rather than just for the Nebraska sites as in the original
Nguy-Robertson et al. [13] study.

Daily GPP for maize and soybean for the selected validation field years (Table 3), estimated
using calculated daily values of Cscalar, Wscalar, and Pscalar, and APAR, were compared to observed
AmeriFlux-determined daily GPP and indicate a strong correlation (r = 0.89; R2 = 0.80), a slope of
0.93 ± 0.02, and an overall RMSE of 3.5 g C m−2 d−1 (Figure 3a) for all field years; however, the MNB
was 30.5%. The results varied with crop. RMSE for overall maize field years was 3.7 g C m−2 d−1

(r = 0.90; R2 = 0.82, and slope of 0.93 ± 0.02), with a MNB of 17.9% (Figure 3b) while RMSE for overall
soybean field years was 3.2 g C m−2 d−1 (r = 0.80; R2 =0.64, and a slope of 0.89 ± 0.05) with a MNB of
53.6% (Figure 3c). Residual plots did not highlight any potential issues with the data and demonstrated
data were of a normal distribution.
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Figure 3. The relationship between AmeriFlux measured and LUEc modeled GPP for (a) all validation
data with slope confidence interval ± 0.02 (n = 2130), (b) all maize validation data with slope
confidence interval ± 0.02 (n = 1379), and (c) all soybean validation data with slope confidence
interval ± 0.05 (n = 751).

In a measure of cumulative bias, growing season GPP-modeled values agreed with measured
growing season values (RMSE = 126 g C m−2 y−1; r = 0.95; R2 = 0.90; and MNB of 4.5%) (Figure 4).
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3.2. Maize and Soybean Field Years

While several sites were relatively unbiased (<15% MNB), the model tended to overestimate GPP
overall. Most of the underestimation occurred at low GPP values (Figures 5 and 6). Another trend
is that the correlation between measured and modeled GPP values is stronger with maize than with
soybean datasets (R2 of 0.65–0.87 for maize and 0.55–0.75 for soybeans).
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4. Discussion

This study utilized seven fields from four geographic locations. The agreement between modeled
and measured values is not as strong as for maize and soybean GPP at sites in southeastern Nebraska
alone in the original study [13] (overall slope of 0.94 ± 0.02, R2 = 0.91, RMSE = 2.6 g C m−2 d−1,
and MNB = 1.7%). Thus, the MNB of 30.5% across all sites in the current study is of concern (Figure 3a).
It was expected that errors would be larger when using modeled input data as opposed to measured
input data specific to the site. This was the case for Cui et al. [1], who attained an RMSE of
2.97 g C m−2 d−1 when comparing their modeled GPP data to in situ derived GPP of mixed land cover
in the Heihe River Basin, China. Three of the seven fields, which include 36 of 65 total field years,
are located in southeastern Nebraska and are the same as those used in the original study. With over
half of the field years from this specific location, a calibration bias may have occurred. This bias may
have led to smaller errors for the Nebraska sites and larger errors for the non-Nebraska sites than
would be the case if the field years were more evenly represented for model calibration (Table 2).

In addition, there are inherent errors and uncertainties in the gridded Daymet data [29], attributed
to weaker agreement between measured and modeled daily GPP values. Additionally, the gLAI
algorithms used in this study were developed using the Mead, NE sites [20] and may not be ideal
estimators of gLAI for the other sites due to characteristics not captured in the site-specific algorithms
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used in this study. Unfortunately, ground data were not available at the other AmeriFlux locations to
generate more generic gLAI algorithms. The underestimation of early and late season GPP is attributed
to the sensitivity of gLAI algorithms to soil background at low LAI and the inaccurate representation
of canopy architecture with the given k constants when foliage density is low. In both cases, any noise
in the approach is amplified due to low values of GPP during these periods.

The correlation between measured and modeled GPP values tended to be higher with maize
than with soybean datasets (Figure 3b,c). The association among individual sites varied as well
(Figures 5 and 6). Factors contributing to a trend of a stronger association with the maize data include
(1) the increased sensitivity to diffuse light of soybean plants compared to maize (β of 0.294 ± 0.002 for
soybean, 0.181 ± 0.014 for maize) combined with the concerns regarding PARin data (discussed below);
(2) estimates of gLAI may be a factor as gLAI algorithms for maize and soybean were developed for
the Mead, NE training sites (US-Ne1, US-Ne2, and US-Ne3) and may not adequately estimate gLAI
for the other locations which may have different plant densities (there is also uncertainty associated
with separating green and nongreen leaf material during senescence [30]); (3) there were fewer
soybean field years (17) than maize field years (30) with which to train the scalars, which may have
allowed for more error in the soybean scalars due to the smaller sample size (Table 2); (4) the soybean
growing season is much shorter than for maize, so there are fewer data points to calibrate/validate the
model; (5) the temperature scalar was selected based on optimal temperatures for maize. There are
physiological differences between C3 and C4 plants that may account for minor shifts in the optimal
temperature range. However, using crop-specific temperature ranges will complicate the model and
require in-season crop type maps. This would reduce the applicability of generating regional estimates.

To further understand errors in the GPP estimates, preliminary investigations were undertaken to
determine the potential contribution of Daymet-derived values, scalars of the LUEc, and gLAI.

4.1. Daymet-Derived PARin and VPD

Daymet-derived values are compared to those measured at the AmeriFlux sites in Figure 7.
Tave values (Equation (1), using Daymet Tmin and Tmax) showed good agreement with AmeriFlux
measurements (Figure 7a). Daily PARin values and VPD (Equation (2) using Daymet vapor pressure)
were less consistent (R2 of 0.48 and 0.54, respectively) (Figure 7b,c).

Overestimation of PARin (Figure 7b) would result in a decrease in the Cscalar value and is
self-correcting in the calibration process which accounts for some of the differences in ε0 and β (Table 4).
By isolating PAR and LAI as variables for GPP modeling, Suyker and Verma [3] showed that PAR
was a predominant factor in GPP variability. Gilabert et al. [31] employed an optimization scheme by
adjusting values of PAR, the fraction of APAR, and ε (using the Monteith approach of Equation (9) with
the product of the fraction of APAR and PAR equal to APAR). They found that PAR and the fraction
of APAR were the most important factors in estimating daily GPP. The present study suggests an
unsystematic error in PARin (and thus APAR) values. This unsystematic error in PARin is attributed to
the Daymet calculation of shortwave radiation from which PARin is estimated (Equation (3)) and/or our
attempt to upscale field-level PARin and GPP measurements to the Daymet 1 km grid. Overestimation
of PARin will overestimate the amount of light available for photosynthesis in APAR calculations
(Equation (10)) and reduce the model’s ability to properly account for contributions of diffuse light to
GPP (Equation (11)). Other sources of input for PARin are likely needed [32,33].

Likewise, the apparent poor representation of the Daymet vapor pressure product for a specific
site location and the fact that the inherent error is less predictable implies that a new source may
be needed for this variable. One such source for both vapor pressure and PARin data could be
PRISM (Parameter-elevation Relationships on Independent Slopes Model; PRISM [34]), which
Mourtzinis et al. [29] found more accurate than Daymet. Underestimation of Daymet-derived VPD is
likely due to the air mass over agricultural fields, especially irrigated agricultural fields, having lower
VPD than reported for grids in which the fields are located. Underestimation of VPD increases the
Wscalar value, which may inaccurately represent water stress conditions at field sites. Additionally,
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the calibration is influenced by 17 irrigated field years at the Mead, NE sites (US-Ne1 and US-Ne2;
58% of the field years used to calibrate the LUEc). This may have biased the σWscalar parameter to
better reflect irrigated crop management practices while the other five fields are under rainfed crop
management. The modeled VPD would likely be overestimated at the two Mead, NE sites due to VPD
being anthropogenically lowered through the irrigation practice. While the rainfed sites have higher
annual precipitation rates than the Mead, NE sites, the timing is irregular and can contribute to greater
uncertainty; irrigation at US-Ne1 and US-Ne2 supplements rainfall and thus reduces uncertainty.
Thus, irrigation bias could increase error in modeled GPP at the rainfed sites.
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4.2. LUEc Scalars

The scalars were generalized to better estimate GPP across the various sites within the region
rather than calibrate scalars for each site, causing them to be less precise for any given location than
those calculated for the Nebraska sites in the previous study [13]. The LUEc was run with all scalars
set to a value of 1 to investigate their impact in the LUEc on the GPP calculation using the gridded
datasets. GPP calculated with the scalars set to 1 had an RMSE of 5.35 g C m−2 d−1, an R2 of 0.71, and an
MNB value of 104.3% (Figure 8). Although the scalars may have been more effective if more accurate
gridded input data were available, the model performed better overall with the scalars derived in this
study using the Daymet and MODIS data than when run strictly as a LUE model. This supports the
need to include meteorological data (stressors) in estimates of GPP, in contrast to an observation of
Tramontana et al. [8] that predictions based on remotely sensed data gave optimally accurate estimates.
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4.3. gLAI Estimates

LAI is a primary consideration in estimating net primary productivity [35]. The gLAI values
used in this study were not verified at the non-Nebraska sites as no gLAI measurements are available
for those sites. Thus relationships previously developed for the three Nebraska sites [13] were
used. Of concern is the relationship with the gLAI after peak green-up. In addition to the fact that
the algorithms were developed over a geographically limited area, the uncertainty associated with
separating green and nongreen leaf material during senescence likely also contributed to less reliable
gLAI estimates during senescence. Algorithms using a red edge band are less sensitive to nongreen leaf
material [20]; however, the temporal resolution would have been reduced and increased uncertainty in
interpolation had MERIS or Sentinel-2 data been selected.

4.4. APAR Importance in GPP Estimates

Overestimation of PARin greatly affects APAR in a manner that causes overestimation of GPP,
which will inflate the MNB. Estimated APAR (Equation (10)) for the three Nebraska sites was plotted
as a function of measured APAR in an attempt to determine how well the model was estimating the
variable. Similar data were not available from the AmeriFlux website for the other sites. Two of
the inputs in calculating APAR are gLAI and PARin, and a good portion of the increased error is
attributed to the APAR term in the GPP equation (Equation (9)). When compared to measured APAR,
estimated APAR for the three Nebraska sites (US-Ne1, US-Ne2, and US-Ne3) had a combined RMSE
of 10.5 mol m−2 d−1, with an r of 0.72 and an R2 of 0.53 (Figure 9a). When the data are separated
into green-up (DOY ≤ 220) and post-green peak (DOY > 220) sets, it becomes apparent that there is a
stronger correlation between measured and modeled APAR during the green-up phase than the post
green-up phase (Figure 9b,c).
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green-up (DOY ≤ 220) and post-green peak (DOY > 220) sets, it becomes apparent that there is a 
stronger correlation between measured and modeled APAR during the green-up phase than the post 
green-up phase (Figure 9b,c).  
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5. Conclusions

The main objective of this study was to evaluate the potential of the LUEc enhanced four-scalar
light use efficiency approach of Nguy-Robertson et al. [13] to provide regional GPP estimates.
By incorporating MODIS imagery and gridded weather data into the LUEc, daily GPP was estimated
over the entire growing season in seven U.S. Corn Belt agricultural sites in four Midwestern US locations.
Overall RMSE between measured GPP and modeled GPP for all field years was 3.5 g C m−2 d−1. This is
an increase in RMSE of 0.9 g C m−2 d−1 compared to the in situ-based study [13]. However, the MNB
of 30.5% is of particular concern. Generalized scalars were developed for maize and soybeans when
the model was calibrated with remotely sensed derived gLAI data and gridded weather data from all
seven sites. GPP estimates were better at some sites (Mead, NE) than at others. Accuracy of the LUEc
estimates decreased when remotely sensed and gridded weather data inputs were used compared to
the results of Nguy-Robertson et al. [13]. While accuracy decreased, so did the amount of resources
required to run the model. The findings of this study indicate that the LUEc can provide acceptable
daily GPP estimates for regions outside eastern Nebraska (for which the model was originally tested)
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using gridded and remotely sensed data. The LUEc performs better than a LUE model that does not
incorporate stressors, supporting the need to include meteorological data (stressors) in estimating daily
GPP. Future research should be conducted to determine if more generalized coefficients can be derived
to allow the model to function accurately at broader regional scales.
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