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a b s t r a c t

There is a strong economic incentive to reduce mite-vectored virus outbreaks. Most outbreaks in the
central High Plains of the United States occur in the presence of volunteer wheat that emerges before
harvest as a result of hail storms. This study provides a conceptual framework for developing a risk map
for wheat diseases caused by mite-vectored viruses based on pre-harvest hail events. Traditional
methods that use NDVI were found to be unsuitable due to low chlorophyll content in wheat at harvest.
Site-level hyperspectral reflectance from mechanically hailed wheat showed increased canopy albedo.
Therefore, any increase in NIR combined with large increases in red reflectance near harvest can be used
to assign some level of risk. The regional model presented in this study utilized Landsat TM/ETMþ data
and MODIS imagery to help gap-fill missing data. NOAA hail maps that estimate hail size were used to
refine the area most likely at risk. The date range for each year was shifted to account for annual vari-
ations in crop phenology based on USDA Agriculture statistics for percent harvest of wheat. Between
2003 and 2013, there was a moderate trend (R2 ¼ 0.72) between the county-level insurance claims for
Cheyenne County, Nebraska and the area determined to be at risk by the model (excluding the NOAA hail
size product due to limited availability) when years with low hail claims (<400 ha) were excluded. These
results demonstrate the potential of an operational risk map for mite-vectored viruses due to pre-season
hail events.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wheat (Triticum aestivum L.) is a major economic crop in
Nebraska ranking fifth in terms of cash receipts (Nebraska
Deparment of Agriculture, 2012) and third in volume exported
(Van Meter et al., 2012). Thus, there is a strong economic incentive
to minimize loss due to diseases. Economically important diseases
of wheat include those caused by viruses transmitted by the wheat
curl mite (WCM, Aceria tosichella Keifer). These viruses are wheat
streak mosaic virus (WSMV; Slykhuis, 1955), Triticum mosaic virus
(TriMV; Seifers et al., 2009; Tatineni et al., 2009), andWheatmosaic
virus (WMoV; Seifers et al., 2007). Surveys of wheat fields in the

Great Plains of the United States determined WSMV to be the most
prevalent of the three viruses (Burrows et al., 2009; Byamukama
et al., 2013). Single, double, or triple infections of wheat by the
viruses were confirmed, with a high frequency (91%) of co-infection
with WSMV and TriMV (Burrows et al., 2009; Byamukama et al.,
2013). Co-infection of wheat by WSMV and TriMV has been
shown to decrease yield by 81e96% (Byamukama et al., 2014).

WCM-transmitted viruses are commonly found throughout the
Great Plains of North America (Burrows et al., 2009), and the vi-
ruses have recently spread outside of North America (Schubert
et al., 2015; Ellis et al., 2003; Truol et al., 2004). However, the
highest risk for WSMV/TriMV outbreaks is volunteer wheat that
emerges before harvest as a result of hail storms. The WCM has a
short life cycle (egg to adult in 7e10 days) and cannot survive for
more than a few days off green plants (Wosula et al., 2015).
Volunteer wheat acts as a “green bridge” host for the WCM and
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viruses between summer harvest and winter wheat planting in the
fall (Gibson and Painter, 1956; Shahwan and Hill, 1984). If the
volunteer wheat survives until planting, WCMs disperse, aided by
wind or air currents, to the emerged winter wheat crop and
transmit the viruses (Somsen and Sill, 1970). Controlling volunteer
wheat through herbicide application or tillage before emergence of
the winter wheat crop minimizes the risk of virus infection
(Thomas et al., 2004). Therefore, identification of areas where pre-
harvest volunteer wheat is likely to occur due to hail damage will
facilitate timely control of volunteer wheat.

Hail damage has been successfully identified in different agri-
cultural settings by evaluating changes to the spectral properties of
vegetation (Gallo et al., 2012; Parker et al., 2005; Zhao et al., 2012).
Healthy vegetation has low reflectance in the visible range of the
electromagnetic spectrum due to absorption by pigments such as
chlorophyll, carotenoids, and anthocyanins. Low reflectance in the
visible range is contrasted by high reflectance in the near-infrared
(NIR) region due to scattering at the leaf cellular level and canopy
structure (Gitelson, 2011). The normalized difference vegetation
index (NDVI) measures the difference between canopy absorption
and scattering (Tucker, 1979) and is very sensitive to changes in
green (photosynthetically active) leaf area index (gLAI) values
below 3 m2 m�2 (Vi~na et al., 2011). Hail damage alters crop canopy
structure and reduces absorption by pigments, such as chlorophyll.
NDVI has been used in many studies to detect hail swaths due to its
sensitivity to these changes (Erickson et al., 2004; Kalb and Bentley,
2002; Molthan et al., 2013; Peters et al., 2000). However, many of
these studies were done in the middle of the growing season when
canopy chlorophyll is high. The period when wheat grain is most
likely to germinate if dislodged from heads by hail occurs at the end
of the growing season when NDVI is typically low. Therefore, an
approach using changes in NDVI may not be suitable, and alter-
natives should be explored.

The goal of this study was to develop a framework for using
remote sensing products to identify high risk areas for transmission
of WCM-vectored viruses to fall-planted wheat in the Nebraska
Panhandle. Such products will allow farmers to execute manage-
ment strategies to minimize the risk of future WSMV outbreaks.
The specific objectives were to 1) identify the spectral behavior of
wheat impacted by hail, 2) select suitable raster-based data that can
identify hail events and hail damage, and 3) develop a series of risk
maps for Cheyenne County, Nebraska, U.S.A. between 2003 and
2013.

2. Materials and methods

2.1. Mechanically hailed plots

Rainfed ‘Pronghorn’ winter wheat was mechanically hailed us-
ing a hail simulator at the High Plains Ag Lab (41.23019N,
102.99962W) near Sidney, Nebraska, U.S.A. Treatments were ar-
ranged in a randomized complete block, split-plot design with
eight replications. Themain plot treatments were four different hail
dates during the heading stages of wheat; middle milk (Zadoks 75),
early dough (Zadoks 83), soft dough (Zadoks 85), and hard dough/
ripe (Zadoks 87/91). Example photographs of the hailed plots are in
Fig. 1. The split-plot treatments were uncaged and caged
(2 m � 2 m) to represent rapid and slow drying conditions,
respectively, following the hail. Split-plot cages were placed one
day after the hail treatment and removed seven days later. Plots
were watered using a garden hose sprinkler with ca. 25 mm at 0, 2,
and 4 days after hail application to simulate the expected rainfall
accompanying a hail event.

Hail treatments were applied with a hail simulator attached to
and powered by a tractor. For each plot, five 9 kg ice bags were

placed in a hopper at the top of the machine and fed into a vertical
feeder housing containing a rotating horizontal cylinder with
spikes that crushed the ice into 4e5 cm pieces. Ice was then pro-
pelled from the machine at approximately 80 km h�1 through a 20-
cm diameter hose powered by a hydraulic air seeder fan. The hose
was directed toward the wheat across the entire plot (2 m� 2m) in
a continuous motion at a 45-degree angle for uniformity between
plots.

The spectral behavior of each plot was recorded one day prior to
the hail application and at 1, 7 and 14 days after hail application. An
adjacent field that did not have split-plot cages was used for
reflectance measurements at harvest. Spectral behavior was
recorded using a dual fiber system containing two USB2000 radi-
ometers (Ocean Optics Inc. Dunedin, FL, U.S.A.). These radiometers
have a sampling range of 400e900 nm, an interval of 0.3 nm, and a
spectral resolution of 1.5 nm. The upwelling fiber had a 25� field of
view and was held 1 m above the top of the canopy. This provided
an areawith a diameter of approximately 0.44 m. The downwelling
fiber was equipped with a cosine corrector to measure incoming
irradiance. The two radiometers were inter-calibrated using awhite
Spectralon panel (Labshere, Inc., North Sutton, NH, U.S.A.). The fi-
bers were attached to a painter’s pole to minimize the influence of
the user on the reflectance and the pole was stabilized using a
tripod. For more details on the radiometer system see Rundquist
et al. (2004). Each reflectance reading was an average of eight
scans collected over eight random positions over each plot. The plot
level reflectance was an average of these readings over both caged
and uncaged plots (n ¼ 128). Since the plots had not been divided
yet, there were fewer reflectance readings at the start of the
experiment (n ¼ 64). Similarly, there was an increased number of
reflectance observations at harvest (n ¼ 296) to fully characterize
the variability of the adjacent field. The median reflectance from
each of the split-plot treatments was used to determine the plot-
level reflectance. For statistical summaries, the hyperspectral
reflectance was used to simulate the Landsat 8 spectral response
curve where the standard error (SE) and coefficient of variation
(CV) were calculated using Excel (v. 2013, Microsoft Corporation,
Redmond, WA, U.S.A.) and the analysis of variance (ANOVA) be-
tween treatments was determined using R (v. 3.2.2 R Development
Core Team, 2015). The fixed effect for the ANVOA tests was hail
treatment and heading stage was a random effect.

2.2. Raster inputs for the risk model

Three remotely sensed products were utilized for this study: a
NOAA hail size estimation product, Landsat Surface Reflectance
from the Climate Data Record (CDR), and Moderate-resolution
Imaging Spectroradiometer (MODIS) surface reflectance. In gen-
eral, the NOAA hail size product provides information about the
presence of hail in an area and the reflectance products identify
changes in albedo and the details of themodel are outlined in Fig. 2.
The NOAA hail product is an optimal candidate for inclusion in the
model. This product is created by blending remotely sensed three
dimensional storm intensity data from multiple WSR-88D radars
covering the area of interest with the vertical atmospheric tem-
perature profile (Lakshmanan et al., 2007; Smith and Lakshmanan,
2011). This provides an estimate of maximal hail size aloft in a
thunderstorm, with a horizontal resolution of 0.01� longitude by
0.01� latitude (approximately 1 km2). Although the product is
intended for diagnosis of hail size aloft, Ortega et al. (2009) showed
a strong relationship between predicted and measured hail size.
The NOAA hail product is produced every two minutes; however,
this resolution is much more frequent than necessary for seasonal
use. One product representing maximal hail size over the period of
highest risk should be sufficient for the model.

A.L. Nguy-Robertson et al. / Crop Protection 89 (2016) 21e3122



Developing wheat grains are capable of germinating before
maturity (Gosling et al., 1981; Robertson and Curtis, 1967); there-
fore, a hail event that occurs any time after wheat flowering, but
before harvest, would increase the risk of producing volunteer
wheat. The date whenwheat reaches maturity varies each year, but
the United States Department of Agriculture (USDA) publishes a
crop progress report that includes the percentage of wheat har-
vested by date, which can be used to estimate the period between
flowering and harvest. For the product presented below, we used
the period starting three weeks (21 days) before 50% of wheat was
harvested and ending when 90% of wheat had been harvested as
reported for Nebraska, U.S.A. This encompasses a mean period of

31.8 ± 2.1 (SD) days for the study area between 2003 and 2013
(Table 1). This period may need to be adjusted when applied to
other locations as rates of crop maturity vary regionally.

There are several surface reflectance products available that
have a variety of benefits and limitations based on spatial and
temporal resolution. MODIS has an excellent temporal resolution
(daily and 8-day composites); however, the spatial resolution is
quite low (250, 500, or 1000 m depending on the spectral band).
Conversely, the Thermal Mapper (TM), Enhanced Thermal Mapper
Plus (ETMþ), and Operational Land Imager (OLI) sensors aboard the
Landsat series of satellites have higher spatial resolution (30 m) but
are limited by the reduced revisit time (ca. 16 days). When cloud

Fig. 1. Representative digital photos taken at nadir for the phenological stages of middle milk (MM), early dough (ED), soft dough (SD), and hard dough (HD) of the mechanically
hailed sites for healthy wheat and wheat <1, 7, and 14 days post-hail. Healthy wheat after harvest is provided for reference. Volunteer wheat can be identified in the HD post 14
days.

A.L. Nguy-Robertson et al. / Crop Protection 89 (2016) 21e31 23



cover and data gaps caused by the scan line corrector error for
Landsat 7 are accounted for, the gap between image acquisitions
can be quite large for some regions. Gaps can be filled using adja-
cent data (Maxwell et al., 2007), but this approach may not be ideal
due to the potentially limited spatial extent of a hail event.

A combination of both MODIS and Landsat images can be used

to provide adequate spatial and temporal coverage of the region of
interest. Surface reflectance products developed for both MODIS
(Vermote and Kotchenova, 2011) and Landsat (Masek et al., 2006)
have been shown to be consistent with ground-based measure-
ments (Maiersperger et al., 2013). Landsat 5 (LT) imagery was used
for this study; however after satellite failure, subsequent maps
were developed using Landsat 7 (LE). Landsat 8 imagery could be
used, but it was not explored as this product was not available at
the time of the study.

There are four, 8-day composites composed of MODIS surface
reflectance (09) available, which are based on either the Aqua
(MYD) or Terra (MOD) sensor at a 250 (Q1) or 500 m (A1) spatial
resolution. The CDR and MODIS surface reflectance products were
accessed as *.HDF files through EarthExplorer. All remaining pro-
cessing steps were conducted in ArcGIS (v. 10.2, ESRI, Inc.) using
python’s integrated development environment, IDLE, (v. 2.7.3 Py-
thon Software Foundation). Due to limitations in the IDLE envi-
ronment, the *.HDF files were converted to GeoTIFFs.

Bands 3, 4 and 17, corresponding to red, NIR and flags, were
extracted from the of the Landsat CDR product. While other bands
in the visible range (e.g. green) may be more useful for identifying
hail damage in immature wheat, the red band is frequently avail-
able from satellite sensors at better spatial resolutions (e.g. MODIS
250 m). A 1.02 km (34 pixel) buffer was placed around the cloud,
cloud shadow, and snow flagged pixels (band 17) since pixels

Fig. 2. Flowchart for the development of the mite-vectored virus risk product from hail events.

Table 1
Start and end dates (Julian day) for raster integration based on USDA harvest reports.

Year NOAA Landsat MODIS

Start End Early
reflectance

Late
reflectance

Early
reflectance

Late
reflectance

Start End Start End Start End Start End

2003 173 204 110 173 173 235 118 165 181 227
2004 173 204 110 173 173 235 118 165 181 227
2005 169 203 106 169 169 234 114 161 177 226
2006 162 195 99 162 162 226 107 154 170 218
2007 170 201 107 170 170 232 115 162 178 224
2008 179 209 116 179 179 240 124 171 187 232
2009 177 210 114 177 177 241 122 169 185 233
2010 179 210 116 179 179 241 124 171 187 233
2011 181 213 118 181 181 244 126 173 189 236
2012 158 186 95 158 158 217 103 150 166 209
2013 180 213 117 180 180 244 125 172 188 236

A.L. Nguy-Robertson et al. / Crop Protection 89 (2016) 21e3124



surrounding clouds can also be impacted (Irish et al., 2006). This
buffer was then used to remove these contaminated pixels from the
red and NIR reflectance bands. All Landsat scenes acquired on the
same day were mosaicked together. A similar pre-processing
approach was used for MODIS surface reflectance products. The
quality control flags are band 12 in the 500 m surface reflectance
products (MOD09A1 and MYD09A1). Pixels that were flagged as
cloud-contaminated were buffered by 1.0 km (2 pixels) and
removed from the red and NIR reflectance bands in the 250 m
surface reflectance products (MOD09Q1 and MYD09Q1).

2.3. Gap-filling approaches

Gap-filling methods using the same scene information, such as
those used to fill inmissing data from cloud covered pixels and gaps
in the Landsat 7 data after the scan-line correction failure, intro-
duce errors because of assumptions in interpolation (Maxwell et al.,
2007; Zhang et al., 2007). In order to reduce gaps between Landsat
scenes, we used a different approach that relies on measured data
rather than interpolation. The minimum values of red and the
maximum values of NIR reflectance for a given year were identified
for all imagery between 84 days before 50% harvest to when 50% of
wheat was harvested (Table 1). Imagery collected during this period
was defined as “early” imagery. This period represents healthy
wheat prior to harvest and/or hail damage. The maximum red and
NIR reflectance between when 50% of wheat had been harvested
and 31 days after 90% of wheat had been harvested (Table 1) rep-
resents senescing wheat, harvested wheat fields, and fields
impacted by hail. The imagery collected during this period was
defined as “late” imagery. Since hail damage causes increases in
both red and NIR reflectance, differences between “early” and “late”
products provide a change in reflectance that can be used to
identify wheat damaged by hail. This approach should maintain
small differences in reflectance due to hail damage, although
sensitivity to these differences may be reduced as true maximum
and minimum values may not be captured in the acquired imagery.

Even with this approach there are data gaps in the Landsat
imagery. To accommodate these regions we utilized a similar
approach using MODIS surface reflectance products. Since the day
of the 8-day composite is not the actual date of acquisition for a
given pixel, we used a slightly narrower range of imagery excluding
the 8-day composite at the start and end of each cycle based on the
USDA percent harvest threshold described for Landsat. See Table 1
for the exact dates.

2.4. Risk model development

Too many thresholds may be confusing to end-users. Thus, we
limited our study to four thresholds at each level. Very low risk was
assigned a ‘0’, low risk a ‘1’, moderate ‘2’, and high ‘3’. The U.S.
National Weather Service defines severe hail as being 25.4 mm (100)
or greater (Cavanaugh and Schultz, 2012); however, when winds
are strong enough, crop damage can occur with much smaller hail
sizes (Changnon, 1971; S�anchez et al., 1996; Schiesser and Backfile,
1990). Therefore, no measured hail was classified as ‘0’, hail less
than 12.7 mm (0.500) was classified as ‘1’, 12.7e25.4 mm as ‘2’, and
any measured hail greater than 25.4 mm was classified as ‘3’, the
highest risk level (Fig. 2).

Senescing wheat typically has a reduction in NIR; however, in-
creases in NIR can be attributed to hail damage (see Spectral
behavior of mechanically hailed plots for details regarding the impact
of hail on the wheat spectral signature). Increases of 10% in NIR
reflectance between the early and late imagery were classified as ‘3’
while any increase in NIR less than 10% was classified as ‘2’. Any
decrease in NIR was classified as ‘1’. Hail damage increases red

reflectance; but, so do senescence and chlorophyll degradation.
Therefore, an additional threshold was applied for reflectance in
the red region. Increases in red reflectance over 20% were classified
as ‘3’ while increases between 10 and 20% were classified as ‘2’.
Increases in red reflectance that were less than 10% and any de-
creases in reflectance were classified as ‘1’ (Fig. 2).

The final risk map for the entire region of interest was created
with the three reclassified risk inputs (hail size, NIR and red reflec-
tance; Fig. 2). The output for the risk map results in potential values
between 0 and 27, which can be reassigned to new risk thresholds.
Very low risk was classified to values ‘� 6’, low risk to values ‘7e17’,
moderate risk to values ‘18e26’, and high risk to the value ‘27’.

This product would be suitable to provide to wheat growers
within the region of interest as they know which fields or adjacent
fields were planted with wheat and were truly at risk. Because the
entire region of interest contains other land cover uses other than
wheat (e.g. urban, non-wheat crops, native vegetation), a land
cover classification approach would reduce false positives. Most
classification schemes require a large data set with many obser-
vations (i.e. high temporal resolution) to separate vegetation types
and accurate classification in real-time is difficult (Bargiel and
Herrmann, 2011; Starks et al., 2014). Although there have been
recent developments in real-time classification, they have generally
been broad and not ideal for separating individual crop types (Huth
et al., 2012).

This study utilized a simple classification scheme to mask most
of the non-wheat area during the study period. The approach used
NDVI maps during the spring growing season of wheat (April 15th
to June 15th), and during the summer (July 15th to August 31st).
Maximum NDVI values from all available Landsat imagery during
both time periods were calculated. Pixels in which NDVI was less
than 0.6 in the spring or above 0.6 in the summer were deemed to
be some vegetation type other than wheat and masked. One
drawback to using such a simple classification is that there will be
some misclassifications. For example, similar to wheat, perennial
crops like alfalfa are typically green early in the spring and are
harvested periodically during the growing season (Wardlow et al.,
2007). This creates a cyclical pattern in NDVI that may cause in-
clusion of some alfalfa fields, which would over-estimate risk for
the purpose of validating the model using county-wide hail claims.

The risk model was applied to Cheyenne County, NE (41.22�N
102.99�W). While much of western Nebraska is primarily
pastureland, the majority of Cheyenne County produces either hard
red or hard white winter wheat (Van Meter et al., 2012). While risk
maps using just Landsat reflectance data could be produced as far
back as the availability of Landsat surface reflectance products (i.e.
1982), this study focused on the time period when insurance data
were available for comparison with risk maps: 2003 to 2013. The
insurance data were provided by the USDA Risk Management
Agency (RMA) and aggregated only at the county-level due to
privacy concerns. Available information included county, crop, type
of damage, date of loss, and acreage. For each year in the study, the
acreage classified as hail damage in wheat was aggregated for
Cheyenne County, Nebraska, U.S.A. during the time period deter-
mined to be at risk (i.e. NOAA columns; Table 1). This excludes hail
damage towheat prior to heading that would not be of interest for a
WCM-vectored virus risk product.

3. Results and discussion

3.1. Spectral behavior of mechanically hailed plots

As was observed in other studies that attempted to identify hail
damage in various crops (Jedlovec et al., 2006; Yuan et al., 2002),
hail events decreased NDVI (Fig. 3; Table 2). However, NDVI was not
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always sensitive to hail damage. For example, there was no signif-
icant change in NDVI (ANOVA: f-value ¼ 0.08, p-value ¼ 0.79,
Df ¼ 1/51, Table 3) whenwheat was hailed at the early dough stage
(pre-hail NDVI ¼ 0.55 vs. post-hail NDVI ¼ 0.54, Table 2). Thus,
NDVI can be a poor indicator of hail damage by itself.

Whenwheat was hailed, both red and NIR reflectance increased
at all growth stages examined (Table 2) and were significantly
different from healthy wheat (ANOVA: f-values 16e127, p-
values < 0.001, Df ¼ 1/30, Table 3); however, for red reflectance at
the soft dough stage this was only weakly significantly different
from red reflectance at harvest (ANOVA: f-value ¼ 4.6, p-
value¼ 0.04, Df¼ 1/51, Table 3). This was not surprising as both the
hail damage and crop senescence increase red reflectance. Red
reflectance of hailed wheat remained distinguishable from back-
ground healthy wheat reflectance at the middle milk, early dough,
and soft dough stages for at least seven days (Table 3). However
within the seven to fourteen day window the hail signature for
both red and NIR reflectance faded and became indistinguishable
from reflectance of wheat at harvest (Fig. 3; Table 3). This indicates
that many observations (i.e. high temporal resolution) are needed
to identify the spectral signature of hail to senescing wheat. While
the week long intervals conducted in this study match the rough
timeframe of Landsat observations, it was not enough to determine
with specificity the length of the spectral signature, nor determine

the factors that caused it to degrade.
Since this study only examined mechanically hailed wheat, it is

possible that naturally hailed wheat reflectance may differ from
these results. The change in the orientation of the stalks was likely
the main contributor to increases in albedo as it is well known that
changes in view angle impact spectral behavior (e.g. Jackson et al.,
1990). Changes in albedo may be useful in identifying hail damage
on a regional scale in situations when vegetation is senescing.

Alternatively to identifying hail damage, identifying volunteer
wheat would be of value as WCM propagation is highest when
volunteer wheat emerges before harvest. Wheat grain is capable of
germinating into volunteer wheat at all four growth stages; how-
ever, the risk is rather low initially and increases as wheat matures
(Gosling et al., 1981; Robertson and Curtis, 1967). For the study
plots, volunteer wheat was only observed 14 days after hailing the
hard dough/ripe plots (Fig. 1). The emergence of volunteer wheat
only marginally increased NDVI (Table 2) with only a weakly sig-
nificant difference fromwheat at harvest (ANOVA: f-value ¼ 6.8, p-
value ¼ 0.01, Df ¼ 1/51). Additionally, NDVI will be an unreliable
indicator using moderate to coarse spatial (e.g. 30e500 m) imagery
as volunteer wheat emergence tends to be localized. Thus, the best
metrics using civil sensors will be to observe changes in albedo
such as the one that was used in developing the riskmodel (see Risk
model development for details).

Fig. 3. Plot-level wheat reflectance collected prior to and after mechanical hail damage at four physiological stages of grain maturity (A) middle milk, (B) early dough, (C) soft dough,
and (D) hard dough ripe. The Zadoks (Z) stage and days after reaching the middle milk stage at the hail event was indicated. Reflectance of harvested wheat and normalized
difference vegetation index (NDVI) values are shown for reference.
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3.2. Application of the risk model

The risk map (Fig. 4A) was a composite of the three inputs, the
NOAA hail product (Fig. 4B), NIR (Fig. 4C) and red (Fig. 4D)
reflectance based on the date ranges determined from USDA
harvest reports (Table 1). While the range of dates for 50% harvest
in Nebraska for the duration of the study was only 23 days, there
was some variation. Harvest happened the soonest in 2012 and
latest in 2011. This riskmapwas further processed tominimize the
inclusion of land cover types other than wheat fields (Fig. 5).
However, the NOAA hail product was still provisional and not
available for all years in this study. For the purpose of comparing
risk maps with hail claims (Fig. 6), only reflectance-based models

were used. The hail reports included in this comparison were
limited to the period in which the NOAA hail product was inte-
grated (Table 1) even though this product was not utilized in the
model. For years when the area for hail claims was more than
400 ha, there was a moderate trend (R2 ¼ 0.72) between the area
where hail claims were received and the area determined to be at
risk (Fig. 6B). When all years were included, this trend was not
significant and extremely weak (R2 < 0.01). The model over-
estimated when ‘low risk’ hail claim values were included.
Ideally, field-level data would be used to validate this model;
however, privacy concerns limit the access to these data. Adding
the NOAA hail product may improve this relationship as relying
entirely on the reflectance products will likely over-estimate

Table 2
Variation in red and NIR reflectance and the normalized difference vegetation index (NDVI) collected over mechanically hailed wheat at different growth stages.

Crop stage Days after hail n Red SE CV NIR SE CV NDVI SE CV

Middle milk a 8 4.79 0.41 8.64 38.21 3.17 8.29 0.77 0.0188 2.43
<1 16 11.49 2.09 18.17 45.61 5.39 11.82 0.60 0.0622 10.42
7 16 17.28 3.82 22.09 31.00 3.59 11.58 0.29 0.0632 21.80

14 16 14.38 1.75 12.19 24.90 1.58 6.36 0.29 0.0391 13.25
Early dough a 16 8.04 0.83 10.35 27.81 1.97 7.07 0.55 0.0466 8.47

0 16 11.30 1.84 16.32 38.35 5.63 14.67 0.54 0.0673 12.40
7 16 21.83 2.57 11.77 36.84 2.61 7.08 0.17 0.0199 11.78

14 16 23.91 2.46 10.29 30.96 2.82 9.11 0.13 0.0161 12.44
Soft dough a 16 13.42 1.51 11.23 29.19 3.44 11.78 0.37 0.0468 12.68

0 16 22.10 2.83 12.79 31.09 3.85 12.37 0.26 0.0601 23.34
7 16 26.31 2.60 9.88 34.04 2.61 7.67 0.13 0.0159 12.36

14 16 18.06 0.50 11.17 26.50 0.49 7.35 0.19 0.0091 19.07
Hard dough/ripe a 16 17.64 2.52 14.28 27.82 3.78 13.60 0.27 0.0161 5.95

0 16 27.69 3.02 10.91 37.45 3.79 10.11 0.15 0.0184 12.27
7 16 20.04 0.55 10.88 27.10 0.67 9.85 0.15 0.0032 8.41

14b 16 18.86 4.72 15.90 30.08 7.52 10.57 0.27 0.0680 21.37
Harvest a 37 18.77 0.93 30.20 27.11 1.08 24.23 0.19 0.0068 21.68

The sample size (n), standard error (SE), and coefficient of variation (CV) are reported.
a Spectra collected over non-hailed healthy wheat.
b Increased standard error are for sites with volunteer wheat.

Table 3
ANOVA results between the red reflectance, near-infrared (NIR) reflectance and the normalize difference vegetation index (NDVI) of healthy wheat collected prior to being
hailed, at harvest, or concurrently for those values collected pre-hail, <1, 7, and 14 days after being hailed. The fixed effect for the ANVOA tests was hail treatment and heading
stage was a random effect. aNo significant difference, all other values were significant at b90% or greater than 99% (no notation) levels of confidence. Bold indicates similarity
between measurements. *Indicates reflectance over healthy wheat was not collected for these dates.

Compared to healthy wheat: Days after hail Band or VI Middle milk Early dough Soft dough Hard dough/ripe

f-value p-value f-value p-value f-value p-value f-value p-value

Prior to hail event <1 Red 78.7 1.02E-8 41.2 4.39E-7 127 2.64E-12 106 2.32E-11
<1 NIR 15.8 6.51E-4 51.4 5.61E-08 44.9 1.99E-7 44.9 2.02E-7
<1 NDVI 57.3 1.45E-7 0.0752 0.786a 35.9 1.42E-6 164 1.09E-13
7 Red 83.9 5.83E-9 360 2.98E-18 292 5.33E-17 8.71 6.10E-3
7 NIR 14.6 9.45 E-4 8.95 5.51E-3 16.3 3.45E-4 2.55 0.120a

7 NDVI 428 6.61E-16 896 6.64E-24 381 1.33E-18 300 3.66E-17
14 Red 229 4.03E-13 592 2.63E-21 52.7 4.39E-8 1.70 0.203a

14 NIR 154 2.14E-11 11.2 2.26E-3 8.23 7.48E-3 2.76 0.107a

14 NDVI 1041 5.11E-20 1174 1.30E-25 150 3.39E-13 0.0361 0.851a

At harvest <1 Red 23.9 1.04E-5 25.3 6.42E-6 4.63 0.0361b 35.3 2.56E-7
<1 NIR 95.5 2.81E-13 34.1 3.65E-7 30.8 1.02E-6 35.0 2.74E-7
<1 NDVI 581 1.57E-29 410 4.87E-26 10.9 1.77E-3 12.9 7.54E-4
7 Red 0.782 0.381a 5.24 0.0262b 26.4 4.47E-6 0.781 0.381a

7 NIR 4.33 0.0424b 3.49 0.0676b 14.1 4.54E-4 0.245 0.623a

7 NDVI 29.7 1.48E-6 8.30 5.79E-3 34.8 2.96E-7 19.1 6.02E-5
14 Red 8.67 4.87E-3 12.5 8.77 E-4 0.199 0.657a 6.92E-3 0.934a

14 NIR 2.42 0.126a 3.00 0.0891b 0.422 0.519a 3.47 0.0684b

14 NDVI 23.9 1.07E-5 38.9 8.67E-8 0.531 0.469a 6.76 0.0121b

Collected within one day 7 Red * * 116 8.00E-12 94.5 8.86E-11 * *
7 NIR * * 1.12 0.297a 20.1 9.97E-5 * *
7 NDVI * * 262 2.30E-16 337 7.41E-18 * *

14 Red 170 6.82E-14 52.8 4.33E-8 * * * *
14 NIR 16.4 3.39E-4 2.37 0.134a * * * *
14 NDVI 314 1.92E-17 405 5.74E-19 * * * *
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actual risk. However, this remains to be examined due to limita-
tions in data access.

While Landsat data was sufficient for most years, MODIS risk
maps provided some additional coverage. Due to the more coarse
spatial resolution, the MODIS maps averaged the risk in an area and
extremes in scale were reduced. For example, there were fewer
areas in the very low and high risk categories but a higher per-
centage of areas in the low and moderate risk categories. This
suggests that improvements in accuracy for small target areas may

be possible when using higher spatial resolution four-band imag-
ery, such as GeoEye, WorldView-2, SPOT or RapidEye.

While hail increased NIR reflectance, over time NIR reflectance
decreased. Thus, the further the imagewas acquired from the actual
hail event, the lower the level of risk that was assessed by the
model. This means that some high risk areas will be under-
estimated. Inclusion of additional data sources may help resolve
some temporal and spatial issues, but will increase processing time
to produce the final map(s). Data fusion techniques may be

Fig. 4. The A) risk model for Cheyenne County, NE, U.S.A. in 2008 was based on three inputs: B) a radar-based maximal hail size during the period of highest risk for grain mature
enough for volunteer wheat, C) the difference between maximal near infrared reflectance before and after harvest, and D) the difference between minimum red reflectance before
harvest and maximum red reflectance after harvest.

Fig. 5. Example of a risk map from hail events in 2010 produced for Cheyenne County, NE U.S.A. after using the normalized difference vegetation index as a crude land cover
classification tool to separate wheat from surrounding vegetation.
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beneficial for timelier reflectance estimates; however, care must be
taken to not remove the hail signature during processing. Costs and
benefits, in addition to accuracy assessments, need to be fully
examined before the model can be put into operation.

3.3. Potential improvements for the model

There were several weaknesses in the current model. Spatial
and temporal resolution limited the current model. The increase in
reflectance due to a hail event was fairly short-lived (<¼7 days);
therefore, data with high temporal resolution was needed to catch
all events. In addition, hail events tend to be localized in Nebraska.
Data with high spatial resolution was also needed to identify risks
at the field-level. It was expected that if spatial and temporal res-
olution of the inputs were low, risks would be underestimated.
Utilizing alternative inputs, such as satellite imagery from newly
launched sensors or unmanned aerial vehicles, may help improve
the temporal and spatial resolution of reflectance data input into
the model. There is potential for improved temporal resolution by
including European Space Agency data as many Landsat-like
products are being developed for Sentinel-2 (Zhu et al., 2015).
Additionally, the spatial resolution of the NOAA hail product may
not be fine enough to identify fields impacted by hail in isolated
storms; however, minor improvements could be made using its
high observation frequency. For example, the highest risk of
volunteerwheat occurs when thewheat is mature. Early hail events
could be classified at a lower risk than those that occur near har-
vest. However, this does increase the complexity of the model.

Secondly, the model does not identify fields where volunteer
wheat was likely to occur. Identifying volunteer wheat growth or
the potential for its growth would be beneficial. Identifying
volunteer wheat was technically feasible using reflectance data;
however, there are several problems with this approach. Volunteer
wheat was generally localized, clumped, and stunted (Fig. 1: HD
Post 14). It will be difficult to distinguish between pre-harvest
volunteer wheat resulting from hail events and post-harvest
volunteer wheat that poses less risk for virus transmission. These
factors make it difficult to use reflectance for identifying volunteer
wheat, especially for coarse data sets that may result in many
mixed pixels. Alternatively, other elements that contributed to
volunteer wheat growth could be included in the model. For
example, the presence of dislodged grain increased the likelihood
of producing volunteer wheat, but the grains themselves must
germinate to pose a risk. Generally storms that bring hail provide

moisture needed for germination; however, it is not uncommon for
the soil to dry rapidly after a rain event, reducing the likelihood of
germination. Thus, incorporating local weather data may improve
risk determination. Additionally, residue remaining after harvest
can shelter dislodged grain and newly germinated volunteer wheat
and prevent it from drying quickly. Since farmers may not harvest
severely hailed fields, the increase in surface residue may help
protect dislodged grains. Methods for estimating residue cover
(Zheng et al., 2012) may also improve the risk model.

The maturity of the grain was another factor that impacted risk.
Identification of the phenological stage at the hail event could
improve the model through the assignment of different risk po-
tential to different stages. Several remote sensing approaches have
been developed for identifying phenological changes in wheat and
other crops (Lu et al., 2013; Nguy-Robertson et al., 2013); however,
the biggest limitation to incorporating these models was the spatial
and temporal resolution necessary to produce accurate results.
Some spatial limitationsmay bemitigated using a regional estimate
if planting dates and maturity rates for the wheat crop in the area
were similar. Temporal resolution issues can be mitigated, in part,
by using interpolation techniques as phenology progresses at a
predictable pace (Nguy-Robertson et al., 2013).

4. Conclusions

This study provided a conceptual framework for developing a
risk map for wheat diseases caused by WCM-vectored viruses
based on pre-harvest hail events. Traditional methods that use
NDVI were found to be unsuitable due to low chlorophyll content in
wheat at harvest. Hail events increased canopy albedo. While red
reflectance increased during senescence, NIR reflectance typically
decreased. Therefore, any increase in NIR combined with large in-
creases in red reflectance over time can be used to assign some
level of virus transmission risk due to hail damage. The model
presented in this study utilized Landsat TM/ETMþ data due to
necessary spatial resolution to resolve localized hail events
commonly found in the Central Plains of the U.S.A. MODIS imagery
was used to help gap-fill missing data due to cloud cover and the
scan-line error in Landsat 7 imagery. The model was also supported
by NOAA hail maps that estimated the size of hail that reached the
ground in a given region. Once the size of the hail was known, a risk
level was assigned. The final risk map was a combination of each of
these individual risk products.

We examined the risk maps developed for one county,

Fig. 6. Comparison of the risk maps with hail claims made during the integration of the NOAA hail product (Table 2): A) Area of hail claims and area identified as ‘at risk’ using the
reflectance only products in Cheyenne County, NE, U.S.A. by year and B) the relationship between these two measurements for years when hail claims totaling less than 400 ha were
excluded.
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Cheyenne County in Nebraska, and found that they roughly corre-
lated to insurance claims from hail damage, thus providing support
for the approach. However, there were some limitations in the
method that need to be addressed before this product can become
operational. First, the increase in albedo due to a hail event was
fairly short-lived (<7 days); thus, timely imagery was necessary.
While it could be technically feasible to use a data set with high
temporal resolution, such as MODIS, spatial resolution was also a
concern due to the localized nature of the hail events. These factors
will result in an underestimation of risk. In contrast, overestimation
will occur when fields other than wheat are included in the model.
Accurate classification is necessary for the validation of the model.

Further research is needed to verify hail damage predicted by
these maps in real-world situations. The biggest improvement in
risk predictions would be derived from having data sets with high
temporal and spatial resolution; however, this is unlikely to occur
in the near-future. This risk map provides a level of risk for
volunteer wheat to provide a summer “green bridge” for mites and
virus; however, other environmental factors govern the extent of
germination of grain shelled out by hail. Other improvements in
these predictions could potentially be made by incorporating
ancillary data such as weather and phenology to provide a level of
risk due to the potential for volunteer wheat germination.
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