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1. Introduction

In recent years, there have been many attempts to use remote sens-
ing techniques to quantitatively assess seasonal changes in vege-
tation growth in order to estimate phenological and physiological 
status of vegetation, predict yield, and understand the temporal fea-
tures of carbon exchange between the atmosphere and the terres-
trial biosphere. There is increasing momentum toward the expan-
sion of the phenology network in Japan, Phenological Eye Network 

(Nishida, 2007) and the United States, National Phenology Network 
(NPN) (Betancourt et al., 2005). There are several tower flux observa-
tion sites, where both downwelling and upwelling light is measured 
using automatically rotating custom-ordered spectral radiometers 
coupled with color digital cameras (Motohka et al., 2010; Nagai et al., 
2010; Nishida, 2007). However, unlike the weather monitoring net-
work, it is difficult to accumulate fixed point spectral reflectance ob-
servations of crop growth in multiple locations because of the high 
cost of spectral radiometers designed for scientific use. Alternatively, 
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Abstract
Crop physiological and phenological status is an important factor that characterizes crop yield as well as carbon exchange between 
the atmosphere and the terrestrial biosphere in agroecosystems. It is difficult to establish high frequency observations of crop sta-
tus in multiple locations using conventional approaches such as agronomical sampling and also remote sensing techniques that use 
spectral radiometers because of the labor intensive work required for field surveys and the high cost of radiometers designed for 
scientific use. This study explored the potential utility of an inexpensive camera observation system called crop phenology record-
ing system (CPRS) as an alternative approach for the observation of seasonal change in crop growth. The CPRS consisting of two 
compact digital cameras was used to capture visible and near infrared (NIR) images of maize in 2009 and soybean in 2010 for ev-
ery hour both day and night continuously. In addition, a four channel sensor SKYE measured crop reflectance and Moderate Res-
olution Imaging Spectroradiometer (MODIS) satellite images were acquired over crop fields. The six different camera- radiometer- 
and MODIS-derived vegetation indices (VIs) were calculated and compared with the ground-measured crop biophysical parameters. 
In addition to VIs that use digital numbers, we proposed to use daytime exposure value-adjusted VIs. The camera-derived VIs were 
compared with the VIs calculated from spectral reflectance observations taken by SKYE and MODIS. It was found that new camera-
derived VIs using daytime exposure values are closely related to VIs calculated using SKYE and MODIS reflectance and good proxies 
of crop biophysical parameters. Camera-derived green chlorophyll index, simple ratio and NDVI were found to be able to estimate 
the total leaf area index (LAI) of maize and soybean with high accuracy and were better than the widely used 2g-r-b. However, cam-
era-derived 2g-r-b showed the best accuracy in estimating daily fAPAR in vegetative and reproductive stages of both crops. Visible 
atmospherically resistant vegetation index showed the highest accuracy in the estimation of the green LAI of maize. A unique VI, 
calculated from nighttime flash NIR images called the nighttime relative brightness index of NIR, showed a strong relationship with 
total aboveground biomass for both crops. The study concludes that the CPRS is a practical and cost-effective approach for moni-
toring temporal changes in crop growth, and it also provides an alternative source of ground truth data to validate time-series VIs 
derived from MODIS and other satellite systems.

Keywords: Exposure value, Nighttime flash images, Crop phenology, MODIS, Radiometer, Vegetation index
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seasonal changes in vegetation is investigated using low to moder-
ate resolution satellite sensors in various ecosystems, including nat-
ural vegetation (e.g., forests) and crops. Commonly used satellite 
sensors include National Oceanic and Atmospheric Administration 
(NOAA)/Advanced Very High Resolution Radiometer (AVHRR) (Reed 
et al., 1994; Schwartz et al., 2002; White et al., 1997), SPOT/VEGE-
TATION (Brown and de Beurs, 2008; Delbart et al., 2005; Xiao et al., 
2004), and Terra/Moderate Resolution Imaging Spectroradiometer 
(MODIS) (Islam and Bala, 2008; Sakamoto et al., 2005, 2010b,  2011; 
Wardlow et al., 2006; Zhang et al., 2003). For satellite sensor-based 
high frequency observations, the observed time-series vegetation 
index (VI) profile will include various noise components caused by 
cloud coverage and/or mixed pixel effects because of low to moder-
ate spatial resolution of the sensor (250 m to 1 km per pixel). More-
over, the lack of ground-level observations of vegetation biophysi-
cal parameters makes it difficult to interpret the temporal and spatial 
features of satellite-derived VIs in reference to seasonal changes in 
the biophysical parameters of vegetation. Because of this situation, 
many alternative low-cost methods are proposed for continuous 
monitoring vegetation phenology (Gamon, 2010). One of the less 
costly methods used photodiodes, Ryu et al. (2010) developed two-
band spectral sensor using light emitting diodes (LEDs) to monitor 
vegetation reflectance. Garrity et al. (2010) developed a four-band 
filtered photodiode-based sensor system (Quadpd) for continuous 
measurement of the normalized difference vegetation index (NDVI) 
and the photochemical reflectance index (PRI) over vegetated cano-
pies. The use of digital cameras is also becoming popular, especially 
in CO2 tower flux monitoring sites for interpreting the seasonal vari-
ability of the gross primary production (Ahrends et al., 2009; Nishida, 
2007; Richardson et al., 2007; Rundel et al., 2006). Most digital cam-
eras are designed to operate in a simple manner so that scenes can 
be easily saved in the form of photographs. Because digital cam-
eras precisely record the appearance of photographic subjects in a 
non-destructive manner, they can also be considered to be remote 
sensing devices that objectively evaluate the visual characteristics 
of a subject. High-performance compact digital cameras are cur-
rently available for less than 200 US dollars. The most recent cam-
era models have various features, including high-resolution imaging 
elements, high ISO sensitivity, low power consumption, underwater 
photography functions, large storage capacity of a Secure Digital 
High-Capacity Card, and an optical adjustment mechanism. These 
features enable anyone to take good pictures, even if they have no 
specialized knowledge or skills related to photography. The camera 
parameters, including aperture and shutter speed, are automatically 
optimized to control the incoming incident light intensity on the 
charge-coupled device imaging element in response to the various 
illumination conditions. Although the camera-based optical method 
is no match for the photodiodes-based optical method in terms of 
cost, it has the advantage that a single digital color image itself en-
ables visual assessment of vegetation appearance, such as vegeta-
tion fraction, leaf color and plant type.

In agriculture, there has been a great deal of research on the 
practical utilization of digital camera images for crop management, 
for example, plant species identification (Meyer et al., 1999), weed 
detection (Perez et al., 2000), crop growth diagnosis in terms of veg-
etative fraction (Lukina et al., 1999; Woebbecke et al., 1995), leaf area 
index (LAI) (Demarez et al., 2008; Shibayama et al., 2011), leaf color 
(Adamsen et al., 1999; Shibayama et al., 2009a), and nitrogen con-
tent (Matsuda et al., 2003; Shibayama et al., 2009b).

Sakamoto et al. (2010a) devised a low-cost camera observa-
tion system called the crop phenology recording system (CPRS) to 
estimate seasonal changes in the biophysical parameters of rice, 
barley, and maize using daytime red, green, and blue (RGB) and 

nighttime-flash near-infrared (NIR) images. However, it remains un-
known if camera-derived VIs are comparable to ground-observed 
VIs, retrieved from reflectance data (measured upwelling and down-
welling radiation), or from frequent observations based on moder-
ate resolution satellite sensors.

The goal of this study is to verify the practical effectiveness of 
CPRS for estimating crop biophysical parameters such as green and 
total LAI and dry biomass, and its ability for crop monitoring. We 
compared camera-derived observations with reflectance data mea-
sured by 4-band SKYE radiometer, as well as with MODIS data. This 
study explores and test performance of new camera-derived VIs us-
ing exposure values (EV) of daytime RGB and NIR images, calculated 
from camera parameters, for estimating the biophysical parameters 
of maize and soybean.

2. Materials and methods

2.1. Experimental field and crops

The experimental field is located at the University of Nebraska–
Lincoln (UNL) Agricultural Research and Development Center near 
Mead, Nebraska, USA (41°10″46.8′N, 96°26″22.7′W), where CO2 
fluxes have been measured since 2001 as part of the Carbon Se-
questration Program (Verma et al., 2005). The total area of this non-
irrigated field (called site 3) is approximately 60 ha. The test crops for 
2009 and 2010 were maize (cultivar: Pioneer 33T57) and soybeans 
(cultivar: Pioneer 93M11), respectively.

Maize was planted on April 22–23 [DOY: 112–113] in 2009. The 
key developmental stages of maize were observed as follows: V1 
(beginning vegetative stage) on May 20 [DOY: 140], R1 (silking 
stage) on July 13 [DOY: 194], R4 (dough stage) on August 10 [DOY: 
222], R5 (dent stage) on August 13–28 [DOY: 225–240], and R6 (ma-
ture stage) on September 14 [DOY: 257]. The agronomic survey for 
maize, in which LAI and dry biomass weight of each organ (green 
leaf, dead leaf, stem, and reproductive organ) was measured, was 
conducted 14 times from May 21 [DOY: 141] to September 9 [DOY: 
252] in 2009. The planting date of soybean was May 19 [DOY: 139] 
in 2010. The key developmental stages of soybean were observed 
as follows: V1 (beginning vegetative stage) on July 11 [DOY: 162], 
R1 (beginning bloom) on July 1 [DOY: 182], R4 (full pod) on August 
6 [DOY: 218], R5 (beginning seed) on August 13 [DOY: 225], R6 (full 
seed) on September 3 [DOY: 246], and R7 (beginning maturity) on 
October 1 [DOY: 274]. The agronomic survey for soybean was also 
conducted 10 times from June 15 [DOY: 166] to October 1 [DOY: 
274] in 2010, however, we did not use the data obtained on the fi-
nal day of agronomic survey, October 1 [DOY: 274]. Due to a hail-
storm that caused blackouts around the experimental field, the fixed 
point observations using SKYE were stopped onSeptember13 [DOY: 
256] 2010. Spectral and agronomic data during late-September and 
early-October period was not critical to this study because the soy-
bean canopy was fully senesced and became leafless during this pe-
riod prior to harvest, which was well beyond the targeted vegetative 
and early reproductive growth stages in this study.

Measurements of photosynthetically active radiation (PAR) were 
obtained using the following procedures: Incoming PAR (PARinc) was 
measured with Li-Cor (Lincoln, NE) point quantum sensors pointing 
to the sky, and placed at 6 m from the ground. PAR reflected by the 
canopy and soil (PARout) was measured with Li-Cor point quantum 
sensors pointing down, and placed at 6 m above the ground. PAR 
transmitted through the canopy (PARtransm) was measured with Li-
Cor line quantum sensors placed at about 2 cm above the ground, 
looking upward; PAR reflected by the soil (PARsoil) was measured with 
Li-Cor line quantum sensors placed about 12 cm above the ground, 
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looking downward (details by Hanan et al., 2002; Viña and Gitelson, 
2005). Absorbed PAR (APAR) was calculated as:

APAR = PARinc − PARout – PARtransm + PARsoil

fAPAR was calculated as APAR/PARinc.
Daily fraction of absorbed photosynthetically active radiation 

(fAPAR) was calculated from hourly averages of radiant fluxes.

2.2. Instruments monitoring the experimental field

2.2.1. Crop phenology recording system (CPRS)
Two Nikon COOLPIX P5100 (Nikon Corporation, Tokyo, Japan) 

digital cameras were utilized in the CPRS (Sakamoto et al., 2010a). 
One camera was used to capture color images without any hard-
ware modification. In this paper, this camera is called the “RGB-cam.” 
The other camera was modified to capture NIR images by remov-
ing an NIR-cut filter inside the camera body and attaching an NIR 
band-pass filter on the camera lens. This camera is referred to as 
the “NIR-cam.” The center wavelength of the NIR band-pass filter 
was 830 nm. Both cameras were protected by custom-made water-
proof cases. The CPRS was connected to a 120 V AC power supply 
through a handmade uninterruptible power system (UPS) consist-
ing of a lead battery and AC–DC and DC–DC converters. This UPS 
worked well as a reserve power source when a massive power out-
age resulted from a hailstorm in Mead on September 13 [DOY: 256] 
2010. The CPRS continued to capture RGB and NIR images follow-
ing the hailstorm damage on the experimental field.

Whereas many phenological studies install the camera for off-na-
dir sampling to observe a great range of vegetation phenology, the 
CPRS was installed on top of a custom-made camera station to view 
in the downward direction (nadir sampling) in accord with standard 
radiometric remote sensing measurements. Because the CPRS was 
designed to estimate biophysical variables such as LAI, this study 
employed the nadir sampling to minimize the impact of view-zenith 
angle for quantitatively reflecting area of vegetation and uncovered 
soil surface in the vegetation index. Although the installation height 
was changed from 3.59 m in 2009 to 3.4 m in 2010, there was not 
much difference in the footprint area of the camera viewing field 
at ground level (3.53 × 2.65 m in 2009 and 3.46 × 2.59 m in 2010). 
The RGB and NIR-cams were both set to the “program auto mode”, 
which adjusts the exposure time (shutter speed) and F-stop (aper-
ture) optimally. Both cameras automatically captured hourly RGB 
and NIR images in the interval-shooting mode. A built-in flash de-
vice was used to capture nighttime flash NIR images under the cam-
era setting called “auto flash mode.” Other camera settings were as 
follows: “QXGA (3.1 megapixels; 2048 pixels × 1536 pixels)” for re-
cording image size, “FINE (image compression rate: 25%)” for image 
quality, “cloud” for auto-white balance, and “auto” for ISO sensitivity. 
The observation periods of the CPRS were from May 9 [DOY: 129] 
to November 17 [DOY: 321] in 2009 and from April 22 [DOY: 145] 
to October 17 [DOY: 290] in 2010. The time-series daytime RGB im-
ages of maize and soybean are shown in Figure 1.

2.2.2. Four-band SKYE radiometers
Two four-band light sensors (SKR 1850, ©Skye Instruments Ltd, 

Llandrindod Wells, UK) were used in this study. The spectral bands 
were as following: 536.5–561.5 nm (green), 664.5–675.5 nm (red), 
704.5–715.5 nm (red edge), and 862–874 nm (NIR). The SKYE sensors 
were installed at a fixed height of 6 m above the ground to mea-
sure the spectral irradiance of downward incident light (with cosine 
collector attached) and the upward radiance reflected by the can-
opy every 30 min from 500 to 1900 h. Since the SKYE sensors have a 
25° field of view, the footprint size was approximately 3 m in diame-
ter at ground level. The observation periods using the SKYE sensor 

were from May 11 [DOY: 131] to October 7 [DOY: 280] in 2009 and 
from April 22 [DOY: 112] to September 12 [DOY: 255] in 2010. Re-
flectance was calculated as a ratio of upwelling radiance to down-
welling irradiance.

2.3. MODIS data

This study used an eight-day time series of 250 m and 500 m MO-
DIS surface reflectance data (MOD09Q1 and MOD09A1, Collec-
tion 5, tile: h10v04) acquired by MODIS on board Terra in the 2009 
and 2010 growing seasons. The MODIS eight-day composite prod-
uct was corrected for atmospheric effects, providing the best sur-
face spectral-reflectance data for each eight-day period using the 
constrained view-angle maximum value composite method (Huete 
et al., 2002). The MOD09Q1 includes only the 250 m red (Band 1, 
620–670 nm) and near-infrared (Band 2, 841–876 nm) reflectance 
data. The 500 m green reflectance data (Band 4, 545–565 nm) from 
the MOD09A1 were resampled from 500 to 250 m resolution using 
the nearest-neighbor method. The dates used in the temporal pro-
file of eight-day values were actual collection dates recorded in the 
MOD09A1. The selected MODIS-pixel location (single pixel) was the 
near central of the experimental field and was the same as that used 
in a previous study, which proposed a new crop phenology detec-
tion method for maize and soybean with time-series MODIS data 
(Sakamoto et al., 2010b).

3. VIs based on CPRS digital camera images

The nonlinear relationship between the digital number (DN) of im-
age pixels and the intensity of incident light, the so-called gamma 
characteristic of imaging elements, was calibrated by a formula us-
ing the expression of degree 6 derived from a laboratory experiment 
(Matsuda et al., 2003; Sakamoto et al., 2010a). Then, the camera-de-
rived VIs were calculated from the calibrated digital numbers (cDN) 
of RGB and NIR images through the following procedures. Firstly, 
all pixels of an hourly image were averaged to obtain hourly-aver-
aged cDN for the red, green, and blue layers of the RGB image. Ac-
cording to the laboratory experiment calibrating the gamma charac-
teristic of the imaging element of the camera, relationship between 
cDN and relative light intensity was linear when cDN was lower than 
100 (Sakamoto et al., 2010a). Then, it was empirically found that the 
second-layer cDN of the nighttime NIR images had better sensitivity 
to changes in intensity of NIR light. Therefore, the cDN of second-
layer NIR image was assigned as cDNNIR. Daily median cDN was cal-
culated from daytime (10:00–14:00 h) and nighttime (22:00–02:00 h) 
periods. The exposure value (EV), which is determined from the F-
stop (aperture), exposure time (shutter speed) and ISO sensitivity, 
is one of the important parameters related to varying illumination 
intensity. However, the daytime EV has seldom been used in pre-
vious studies for crop growth observation based on digital camera 
images. The procedures for calculating EV and exposure value-ad-
justed cDN (ev-cDN) are as follows:

EV = 2 * log2(F) − log2(T) − log2 (ISO)                     (1)
                                                                           64

ev-cDN = cDN * 2EV                                  (2)

where cDN is the daily median value for the daytime or nighttime pe-
riod and F, T, and ISO are the aperture (F-stop), exposure time (shut-
ter speed), and ISO sensitivity, respectively, which are recorded in the 
header region of EXIF-formatted JPEG files in RGB and NIR images. 
The ISO value of the daytime image always remained at the lowest 
level of 64. The values of F and T of the nighttime image always re-
mained at 2.7 and 1/60 s, respectively. The dynamic range of ISO was 
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from 64 to 800 at nighttime under flash illumination. For soybean 
monitoring, the nighttime ISO remained at the highest level of 800 
for the entire growing season because the camera-to-object distance 
was too far to make the built-in flash device sufficiently illuminate the 

top of the soybean canopy without the highest level of ISO sensitivity.
Previous studies by Sakamoto et al. (2010a, 2011a, 2011b) sug-

gested an advantage of a new concept incorporating the EV into the 
camera-derived VI for assessing the three-dimensional character of 

Figure 1. Time-series digital color images acquired for maize in 2009 and for soybean field in 2010.
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crop community such as nighttime active remote sensing. The night-
time ev-cDNNIR was called the nighttime relative brightness index 
of NIR (NRBINIR).

3.1. Camera-derived VIs investigated in the previous study

Sakamoto et al. (2011a) found that the Visible Atmospherically Resis-
tant Index (VARI, Gitelson et al., 2002), two-green-red-blue (2g-r-b, 
Woebbecke et al., 1995), derived from daytime RGB images, and the 
Nighttime Relative Brightness Index in NIR (NRBINIR, Sakamoto et al., 
2010a), derived from nighttime flash NIR images, had close relation-
ships with the biophysical parameters of maize for the whole grow-
ing season. The best camera-derived VIs that showed the highest co-
efficients of determination between the biophysical parameters were 
as follows: VARI vs. green LAI (GLAI) and green leaf biomass (GLB), 
2g-r-b vs. total LAI (TLAI), and NRBINIR vs. total dry weight of stems 
and leaves (SB + TLB). It was also confirmed that VARI had a strong 
relationship with LAI estimates of paddy rice until the heading stage 
(Sakamoto et al., 2011b). The NRBINIR was found to be a good proxy 
for above-ground dry biomass of paddy rice and the plant height of 
paddy rice and barley (Sakamoto et al., 2010a).

VARI and 2g-r-b were calculated from daytime cDNred, cDNgreen, 
and cDNblue (Equations (3) and (4)). NRBINIR (also called the night-
time ev-cDN of NIR) was calculated using cDNNIR and exposure value 
(EV) derived from nighttime flash NIR images and these camera 
parameters (F-stop, shutter speed, and ISO sensitivity) (Equations 
(2) and (5)).

The equations for VARI, 2g-r-b, and NRBINIR are

VARI   (Camera) = cDNgreen – cDNred                         (3)
                                                  cDNgreen + cDNred

2g-r-b   (Camera) = 2 × cDNgreen − cDNred − cDNblue       (4)

              NRBINIR = ev – cDNNIR     (night) = cDNNIR   
   (night)*2(2*log2(FNIR)−log2(TNIR)−log2(ISONIR/64))             

 (5)

where cDNgreen, cDNred, and cDNblue are derived from the green, 
red, and blue layers of daytime RGB images, respectively, and cDN-
NIR (night) is derived from the second layer of nighttime NIR images. 
FNIR, TNIR, and ISONIR are derived from the header region of night-
time NIR images captured under flash light.

There are variations of VARI in terms of the selected wavelength 
and optional usage of the blue band. This study used a VARI with-
out using blue band (see Equation (1) in Gitelson et al., 2002). In the 
literature, a vegetation index based on the same equation as Equa-
tion (3) has often used under different names or abbreviations such 
as “VI  =  DIF/SUM” (Tucker, 1979), “NDI” (Perez et al., 2000), “GRVI” 
(Falkowski et al., 2005; Motohka et al., 2010) and “NDVIgr” (Saka-
moto et al., 2010a).

3.2. New camera-derived VIs based on daytime exposure 
value-adjusted cDN

The NDVI based on the NIR and red reflectance (NDVI, Rouse, 1974) 
is commonly used for assessment of the quality or quantity of veg-
etation in both close-range and satellite remote sensing. The simple 
ratio of NIR divided by red reflectance (hereinafter called SR, Jordan, 
1969) has also been widely used for vegetation monitoring. The chlo-
rophyll indicator (green chlorophyll index, CIgreen), which is calculated 
using green and NIR reflectance, originates from a 3-band model as a 
special case for sensing total canopy chlorophyll (Gitelson et al., 2005).

As for observations with variable incident radiation based on dig-
ital cameras, it is too difficult to calibrate a camera in terms of reflec-
tance. Another approach that uses an additional optical instrument 

monitoring skylight illumination loses the advantages of manage-
ability and the low-cost camera observation system. In addition, the 
spectral sensitivity characteristic of the imaging element used in 
the digital camera is not disclosed by manufacturers. In this study, 
we calculated the camera-based NDVI, CIgreen, and SR directly from 
daytime ev-cDN of RGB- and NIR-cams. Thus, the newly proposed 
equations for camera-derived VIs are as follows:

ev-NDVI   (Camera) = ev-cDNNIR – ev-cDNred                    
(6)                                               ev-cDNNIR + ev-cDNred

ev-SR   (Camera) =
 ev-cDNNIR                                

(7)                                                       ev-cDNred

ev-CIgreen   (Camera) =  ev-cDNNIR                              
(8)                                                        ev-cDNgreen               

where ev-cDNgreen, ev-cDNred, and ev-cDNNIR were calculated from 
cDNgreen, cDNred, and cDNNIR coupled with daytime EVRGB and EVNIR 
using equations ((1) and (2)). Median values calculated from day-
time images observed from around 10:00 to 14:00 h were used for 
the daily profile of each VIs.

3.3. VIs based on spectral reflectance of SKYE and MODIS

We compared the camera-derived VIs, VARI, NDVI, SR, and CIgreen with 
VIs calculated with spectral reflectance measured by SKYE and MO-
DIS. The equations of the SKYE- or MODIS-derived VIs are as follows:

VARI   (SKYE or MODIS) =
 ρgreen − ρred                      

(9)                                                              ρgreen + ρred

NDVI   (SKYE or MODIS) =
 ρNIR − ρred                     

(10)                                                               ρNIR + ρred 

SR   (SKYE or MODIS) =
 ρNIR                              

(11)                                                                 ρred

CIgreen   (SKYE or MODIS) =
  ρNIR   

− 1
                      

(12)                                                               ρgreen

where ρgreen, ρred, and ρNIR are spectral reflectance in bands of SKYE 
or MODIS.

The MODIS eight-day composite product had only one observa-
tion of surface spectral reflectance within a defined eight day period. 
Therefore, MODIS-derived VIs were linearly interpolated from eight-
day intervals to daily intervals between temporally adjacent com-
posting periods in reference to the observation date (day of year, 
DOY) recorded in MOD09A for comparing with daily data of cam-
era and SKYE-derived VIs.

4. Results and discussion

4.1. Temporal behavior of spectral reflectance observed by 
SKYE and MODIS

The seasonal patterns of green, red, and NIR reflectance observed 
by SKYE (Figure 2A and B) were in good agreement with those ob-
served by MODIS (Figure 2C and D) for both maize and soybean. 
Whereas the green and red reflectance decreased in response to 
vegetation growth, the NIR reflectance increased in the same peri-
ods (DOY 140–190 in 2009 for maize, DOY 150–210 in 2010 for soy-
beans). Although the seasonal variation of green and red reflec-
tance are similar for the SKYE and MODIS observations for both 
crop species (maize: 2–15%; soybeans: 2–20%), the maximum NIR 
reflectance of SKYE (approximately 37% for maize, 51% for soy-
beans) was 7–13% lower than that of MODIS (approximately 50% for 
maize, 58% for soybeans). There are many potential factors making 



118 Sakamoto et  al .  in Agricultural  and Forest  Meteorology  154–155 (2012) 

it difficult to compare absolute values of measured SKYE and MO-
DIS reflectance, which may include differences in footprint size, view 
angle, observation frequency, and atmospheric influences between 
the sensors. It is worth to mention that the difference in the band-
widths of SKYE (25 nm for green, 11 nm for red and 12 nm for NIR) 
and MODIS (20 nm for green, 50 nm for red, 35 nm for NIR) also af-
fects reflectance values.

4.2. Temporal behavior of the camera values (cDN and 
ev-cDN)

The time-series profiles of daily median cDN in green, red, blue, and 
NIR bands are shown in Figure 3A and B. As found in Sakamoto et 
al. (2010a), when monitoring paddy rice and barley growth, the sea-
sonal variation of cDN was less than 15 for each band for maize and 
soybean growth and much smaller than that of spectral reflectance 
measured by SKYE and MODIS (Figure 2) with much higher short-
term noise components of cDN (Figure 2A). Temporal behavior of 
cDNgreen differs substantially from that of green reflectance of SKYE 
and MODIS. cDNgreen increases from the beginning of the growing 
season while green reflectance showed a decrease that is a funda-
mental spectral feature of green vegetation. This implies that the 
seasonal trends of cDNgreen have no meaning in terms of reflectance 
properties of crops. While cDNred decreases in the beginning of the 
season, it increases around DOY 180, in a time period when maize 
greenness is still increasing. Thus, cDNred also cannot be interpreted 
in terms of reflectance properties of maize growth.

The temporal profiles of daytime ev-cDN were completely dif-
ferent from those of cDN. Although the daytime ev-cDNgreen, red, and 

NIR were more volatile than cDNgreen, red, and NIR on a daily basis (Fig-
ure 3A–D), the seasonal pattern of each ev-cDN band was similar 
to that of the spectral reflectance of SKYE and MODIS. Consider-
ing that the exposure value (EV) is automatically adjusted with F-
stop and shutter speed in accordance with the ever-changing lumi-
nous surroundings to regulate the incoming incident light intensity, 

the daytime ev-cDN can be used as a proxy of upwelling radiance 
adjusted to incident irradiance. Thus, that the long-term variability 
of the ev-cDN time series, which excludes the short-term variation 
caused by daily weather changes, has a close relationship with the 
ground-based spectral reflectance observations of SKYE.

The NRBINIR (nighttime ev-cDNNIR) shows characteristic seasonal 
profiles with fewer short-term fluctuating components for entire 
crop growing seasons (Figure 3E and F). This was different from 
those of the daytime cDNNIR and daytime ev-cDNNIR.

4.3. Scatter plots and temporal comparison of camera-derived 
VIs with SKYE- and MODIS-derived VIs

Table 1 lists determination coefficients, R2, for the linear relationships 
among the VIs calculated with data taken by camera, SKYE, and MO-
DIS. The result reveals that camera-derived ev-VARI, ev-NDVI, ev-SR, 
and ev-CIgreen correlated very closely with corresponding SKYE- and 
MODIS-derived VIs. Relationships between camera-derived ev-VARI, 
ev-SR and ev-CIgreen and corresponding SKYE- and MODIS-derived 
VIs are linear (Figure 4A). However, relationships between SKYE- and 
MODIS-derived NDVI vs. camera-derived ev-NDVI tend to saturate 
above 0.7. This means that camera-derived ev-NDVI is more sensi-
tive to moderate to high vegetation density. This can be explained by 
the magnitude of the ratio of NIR to red reflectances. The ratio of the 
camera (ev-SR) reached 3.5 whereas that of SKYE (SR) reached 28 (Fig-
ure 4E and F). One of the reasons of low NDVI sensitivity to moder-
ate to high vegetation density is that the normalization procedure of 
NDVI, which is the ratio of the difference to the sum (Equation (10)), 
makes the NDVI insensitive to variation in the red and NIR reflectance 
when NIR reflectance is much greater than red-reflectance (the NIR/
red  =  SR >> 1). This occurs as GLAI exceeds 2 m2/m2 (Gitelson, 2004). 
In contrast, the camera ev-NIR signal is much lower than NIR reflec-
tance of either SKYE or MODIS. Thus, the ev-cDNNIR/ev-cDNred ratio 
is near 1 and camera-derived ev-NDVI remains sensitive to change in 
both of the red signal (chlorophyll absorption/crop greenness) and 

Figure 2. Temporal profiles of spectral reflectance of maize and soybean field, observed by SKYE sensor (A, B) and MODIS (C, D).
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Figure 3. Temporal profiles of camera-derived values in maize and soybean fields; daytime calibrated digital number (daytime cDN: A, B), daytime 
exposure value-adjusted cDN (daytime ev-cDN: C, D), and NRBINIR (also called nighttime ev-cDNNIR: E, F).

Table 1. Determination coefficients, R2, of the linear relationships among the VIs derived from the digital camera, SKYE, and MODIS. The comparisons 
in the same vegetation index between the different sensors are highlighted in bold.

Explanatory  Observation
  SKYE    MODIS
  VARI NDVI SR CIgreen VARI NDVI SR CIgreen

Camera VARI 0.88 0.89 0.71 0.76 0.82 0.91 0.75 0.80
 ev-NDVI 0.80 0.94 0.79 0.89 0.90 0.94 0.80 0.83
 SR 0.81 0.82 0.92 0.93 0.86 0.85 0.89 0.90
 ev-CIgreen 0.79 0.82 0.91 0.94 0.85 0.85 0.87 0.88
 2g-r-b 0.78 0.92 0.64 0.74 0.81 0.90 0.67 0.71
 NRBINIR 0.20 0.39 0.21 0.38 0.43 0.40 0.26 0.24
SKYE VARI     0.80 0.87 0.78 0.82
 NDVI     0.88 0.94 0.74 0.78
 SR     0.81 0.78 0.87 0.87
 CIgreen     0.88 0.85 0.88 0.88
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NIR signal (crop density). To achieve the same goal of increasing sensi-
tivity of the NDVI to moderate to high biomass using reflectance data, 
a weighting coefficient, a < 1, was introduced in the Wide Dynamic 
Range Vegetation Index, WDRVI (Gitelson, 2004). Camera signals ev-
cDNred and ev-cDNNIR themselves allow for increase of efficiency of 

NDVI without using the weighting coefficient (a) used in WDRVI.
Temporal behaviors of camera, SKYE and MODIS-derived VIs, 

presented in Figure 5, Figure 6, Figure 7 and Figure 8, are almost 
identical with two exceptions. For maize, camera and MODIS-de-
rived VARI showed pronounced peak at DOY 180–200 (Figure 5A 

Figure 4. Comparisons of camera-derived-VIs (VARI, ev-NDVI, ev-SR, and ev-CIgreen) with the SKYE and MODIS-derived VIs (VARI, NDVI, SR, and 
CIgreen) on maize and soybean fields.
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Figure 5. Temporal comparisons of VARI (Camera) with VARI (SKYE) (A, B) and VARI (MODIS) (C, D).

Figure 6. Temporal comparisons of ev-NDVI (Camera) with NDVI (SKYE) (A, B) and NDVI (MODIS) (C, D).
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Figure 7. Temporal comparisons of ev-SR (Camera) with SR (SKYE) (A, B) and SR (MODIS) (C, D).

Figure 8. Temporal comparisons of ev-CIgreen (Camera) with CIgreen (SKYE) (A, B) and CIgreen (MODIS) (C, D).
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and C) while SKYE-derived VARI did not. According to Viña et al. 
(2004), VARI is expected to exhibit a conspicuous decrease after 
maize reached maximal vegetation fraction and GLAI, which cor-
responds to the appearance of tassels. However, spectral bands of 
SKYE radiometers used in this study have a very narrow red band 
(11 nm), while bands of MODIS (50 nm) and a digital camera (larger 
than 50 nm, Hunt et al., 2010) are much wider. Thus, saturation of 
reflectance in the red band at maximal maize density explains lower 
sensitivity of SKYE-derived VARI compared to either camera or MO-
DIS. Another conspicuous difference is between camera and SKYE-
derived SR for soybean (Figure 7B). With reference to seasonality 
of ev-SR (camera), the SR (SKYE) is higher than ev-SR (camera) in 
the middle of the crop growing seasons. This is related to the effect 
mentioned above that the ratio of ev-cDNNIR to ev-cDNred is lower 
than that of NIR to red reflectance of SKYE, and also to a narrow red 
band of SKYE than that of the camera. This feature is pronounced in 
soybean more than in maize (see Figure 7A and B).

The seasonal patterns of ev-CIgreen matched those of CIgreen (SKYE)
in both maize and soybean (Figure 8A and B). The scatter plots of 
ev-CIgreen showed strong linear relationships with CIgreen from both 
SKYE and MODIS (Figure 4G and H). The regression lines of ev-CI-
green against CIgreen (SKYE) (Figure 4G) were species independent, un-
like those of ev-SR against SR (SKYE) (Figure 4E). However in a pre-
cise sense, there were differences between the seasonal patterns of 
ev-CIgreen and CIgreen (MODIS) during the late vegetative stage (DOY 
210–230 in 2010) and the senescence stage of maize (DOY 230–280 in 
2009). There is a possibility that MODIS-derived CIgreen is more likely to 
be affected by mixed-pixel effects caused by using lower spatial-reso-
lution (500 m) MODIS surface reflectance product for green band than 
red and NIR bands (250 m). For the same reason mentioned above, 
the lower NIR/green reflectance ratio of SKYE (up to 13, Figure 4G and 
Equation (12)) makes CIgreen (SKYE) much more sensitive to moderate 
to high vegetation density than SR (SKYE), resulting in the strong lin-
ear relationships between ev-CIgreen and CIgreen (SKYE). Considering 
that the spectral radiometer-derived CIgreen provided an accurate esti-
mation of the total canopy chlorophyll of maize and soybeans (Gitel-
son et al., 2005), ev-CIgreen seems to be a good indicator of seasonal 
changes in the total canopy chlorophyll content.

4.4. Estimation accuracy of biophysical parameters for maize 
and soybean

According to Sakamoto et al. (2011a), camera-derived VARI was able 
to accurately estimate the (GLAI) and (GLB) of maize whereas the 
2g-r-b was more accurate in estimating TLAI. In addition, NRBINIR 

(nighttime ev-cDNNIR) showed the highest accuracy in the estima-
tion of the total dry weight of the stalks and leaves of maize. This 
study assessed the effectiveness of these VIs for soybean as well as 
for maize. When comparing with the biophysical parameters, VIs de-
rived from camera and SKYE were linearly interpolated to fill missing 
observations, which were caused by data retrieving and temporary re-
location of the camera station due to pesticide spraying and harvest-
ing. Then, a seven-day moving average was applied to smooth the 
effects of short-term variable noise components, which are assumed 
to be caused by the ever-changing outdoor illumination conditions 
and mixed-pixel effects in the temporal profiles of VIs derived from 
camera, SKYE, and MODIS.

Root mean square error (RMSE) of biophysical parameters esti-
mation of maize and soybean by VIs derived from camera, SKYE, and 
MODIS are presented in Table 2. In soybean, ev-VARI had poor sensi-
tivity to green LAI > 1.5 (after DOY 202 in 2010) (Figure 9A). Another 
finding of this study is that ev-CIgreen, ev-SR, and ev-NDVI were much 
more effective for estimating the TLAI of both crops than the 2g-r-b 
(Figure 9B, Table 2). The RMSE of the TLAI estimation by ev-CIgreen is 
comparable to or lower than those of the SKYE and MODIS-retrieved 
CIgreen. The accuracy of green LAI estimation in vegetative and repro-
ductive stages (until DOY 246 R6 stage) in soybean by ev-CIgreen was 
better than that of ev-VARI. This is in contrast to maize where ev-CI-
green performed poorly. In senescence, green LAI in soybean decreases 
drastically and it prevents its accurate estimation. Thus, it is recom-
mended to use camera-derived ev-VARI for estimating the green LAI 
for the whole growing season of maize and ev-CIgreen in vegetative 
and reproductive stages (until around R6 stage) of soybean.

There is a poor correlation (R2 < 0.5) between NRBINIR and any 
other VIs derived from SKYE and MODIS (Table 1). This means that 
the information content of NRBINIR (Figure 3E and F) is different 
from that of other VIs such as VARI, NDVI, SR, and CIgreen. In maize 
(Sakamoto et al. 2011a), NRBINIR showed the highest estimation ac-
curacy of the SB + TLB of soybeans (Table 2, Figure 9C). The fixed 
point observation for soybean growth showed that the nighttime 
ISO sensitivity of both RGB- and NIR-cams stayed at its highest level 
(800) for the entire growing season. This means that the variabil-
ity of nighttime ISO sensitivity did not contribute to seasonal pro-
file of NRBINIR for soybean, whereas the nighttime cDNNIR detected 
a seasonal change in the scattering property of soybean. This pro-
vides high sensitivity of NRBINIR in response to the SB + TLB. Saka-
moto et al. (2011b) investigated the response of ISO sensitivity and 
nighttime cDNNIR while varying the camera-to-object distances us-
ing a forklift. This study found that the night-time cDNNIR also plays 
an important role to enhance the sensitivity of NRBINIR in addition to 

Table 2. Summary of estimation accuracy (root-mean-square error: RMSE) of camera-, SKYE-, and MODIS-derived VIs used to estimate the seasonal 
changes in biophysical parameters of maize and soybeans. The best estimation results are highlighted in bold.

RMSE device Maize    Soybean
 VI GLAI  GLB  TLAI  SB+TLB  GLAI  GLB  TLAI SB+TLB  
  (m2/m2) (kg/ha) (m2/m2) (kg/ha) (m2/m2) (kg/ha)  (m2/m2) (kg/ha)

Camera VARI 0.27 170 0.55 2462 0.40 195 0.40 652
 ev-NDVI 0.51 238 0.23 1754 0.13 85 0.13 349
 ev-SR 0.44 212 0.25 1863 0.12 81 0.11 358
 ev-CIgreen 0.53 268 0.20 1717 0.09 79 0.09 353
 2g-r-b 0.69 392 0.30 1934 0.48 234 0.48 772
 NRBINIR 1.13 624 0.59 457 0.15 24 0.15 109
SKYE VARI 0.44 202 0.52 2109 0.32 173 0.33 621
 NDVI 0.47 217 0.29 1833 0.24 143 0.24 506
 SR 0.43 182 0.36 1921 0.17 96 0.16 400
 CIgreen 0.47 222 0.21 1774 0.07 75 0.07 332
MODIS VARI 0.51 260 0.46 2051 0.26 106 0.27 265
 NDVI 0.48 227 0.34 1901 0.17 89 0.18 314
 SR 0.28 143 0.55 2354 0.16 67 0.16 145
 CIgreen 0.39 208 0.37 2111 0.10 72 0.11 251
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Figure 9. Comparison between the ground-measured biophysical parameters (A: green LAI, B: total LAI, and C: above-ground dry biomass of stalks 
and leaves [i.e. excluding reproductive organs]) and the camera-derived indices (A: VARI, B: ev-CIgreen, and C: NRBINIR).

Table 3. Summary of estimation accuracy of camera-derived VIs used to estimate fAPAR of maize and soybean. The best estimation results are 
highlighted in bold.

VI Maize (DOY: 140–257, n = 118) Soybean (DOY: 150–246, n = 97) Maize + Soybean (n = 215)
 R2 CV (%) RMSE R2 CV (%) RMSE R2 CV (%) RMSE

VARI 0.86 13.3 0.089 0.98 8.1 0.046 0.93 11.7 0.073
ev-NDVI 0.96 7.4 0.050 0.97 9.0 0.051 0.96 8.8 0.055
ev-SR 0.92 10.0 0.067 0.94 12.8 0.073 0.92 12.1 0.075
ev-CIgreen 0.94 8.6 0.057 0.95 11.9 0.068 0.94 10.9 0.068
2g-r-b 0.95 8.3 0.055 0.98 7.6 0.043 0.96 8.4 0.052

Figure 10. Comparison between the ground-measured fAPAR and the camera-derived indices (A: ev-NDVI and B: 2g-r-b).
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ISO sensitivity. This study also revealed that the nighttime flash NIR 
images acquired by fixed point observation are effective for assess-
ing the aboveground morphological parameter of soybean, which 
is difficult to estimate by remote sensing based on solar illumina-
tion. This is consistent with the cases of rice, barley (Sakamoto et al., 
2010a), and maize (Sakamoto et al., 2011a).

4.5. Comparisons of the camera-derived VIs with fAPAR

Crop fAPAR shows a progressive increase during the vegetative stage 
until maximum canopy development, and then remains virtually in-
variant during the reproductive stage, with a decrease during the se-
nescence stage. In the reproductive and senescence stages fAPAR is 
insensitive to a decrease in crop chlorophyll content (Gitelson et al., 
2005; Viña and Gitelson, 2005). Thus, vegetation indices, which are 
proxies of green LAI and chlorophyll content, relate closely to crop 
fAPAR in vegetative stage. Camera-derived 2g-r-b showed the best 
estimation of daily fAPAR in vegetative and early reproductive stages 
in maize (until DOY 257; R6 stage) and soybean (until DOY 246; R6 
stage) (Table 3). It is marginally better than ev-NDVI when fAPAR 
was estimated for both maize and soybean. As shown in Figure 10, 
the quadratic approximations of the relationship fAPAR vs. 2g-r-b 
are less subjected to being saturated than ev-NDVI. 2g-r-b and ev-
NDVI are not species specific in estimating fAPAR for morphologi-
cally different crops (maize and soybean) and their application does 
not required re-parameterization of the algorithms.

5. Conclusion

In this study, we ascertained if digital camera-derived vegetation in-
dices have the potential to be alternative indicators of crop biophys-
ical parameters to ground-based reflectance measurements. We ex-
plored the availability of day time exposure values recorded in the 
header region of EXIF-formatted JPEG files by RGB and NIR-cameras 
and proposed using vegetation indices, ev-NDVI, ev-SR, and ev-CI-
green, which were calculated from the combination of daytime expo-
sure values and cDN. The new findings are as follows:
1. The camera time series cDNgreen and cDNNIR were inconsistent 

with the spectral reflectance observations in terms of tempo-
ral behavior and seasonal dynamics. However, the new cam-
era data, based on daytime exposure value in the green, red 
and NIR bands (ev-cDN), showed strong correlations with cor-
responding reflectance measured by two independent sensors: 
SKYE and MODIS.

2. Camera-derived ev-CIgreen, ev-SR, and ev-NDVI showed strong lin-
ear correlations with corresponding vegetation indices derived 
from SKYE and MODIS. Camera-retrieved ev-NDVI was sensitive 
to wide range of green leaf area in both crops.

3. Performance of the digital camera-retrieved VIs in remote esti-
mation of green LAI, green leaf biomass, total LAI and above-
ground biomass excluding reproductive organs, was evaluated. 
This study found that ev-VARI worked the best for maize and 
ev-CIgreen for soybeans when estimating green LAI.. ev-VARI was 
also the best in estimating green leaf biomass in maize and 
NRBINIR in soybean. Total LAI can be estimated accurately in both 
crops by ev-NDVI, ev-SR and ev-CIgreen. Only NRBINIR was able 
to accurately estimate the total biomass excluding reproductive 
organs in maize and soybean.

4. Camera-derived 2g-r-b showed the best accuracy in estimat-
ing daily fAPAR in vegetative and early reproductive stages 
of both crops. The same quadratic approximate model may 
have applicability to both maize and soybean not requiring 
re-parameterization.

Compact digital cameras are often remodeled in a short cycle 
(about six months to a year). Thus, it is difficult to use the same 
model for several years after a new camera product is released. Thus, 
when establishing the camera observation system with a new cam-
era model, it is necessarily to conduct initial calibration of camera 
using spectral radiometers and verify the sensitivity of camera-re-
trieved vegetation indices to the biophysical parameters of interest. 
The photodiode-based optical methods (Garrity et al., 2010; Ryu et 
al., 2010) could provide a standard value of vegetation indices and 
reflectance to calibrate the camera system. Considering that camera-
based vegetation indices have the possibility to estimate a wide va-
riety of bio-physical parameters, we believe that fixed point camera 
observation would be an option for acquiring high-frequency obser-
vations of vegetation simultaneously in multiple locations.
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