31 research outputs found

    Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment.

    Get PDF
    The currently available techniques for the safety evaluation of candidate drugs are usually cost-intensive and time-consuming and are often insufficient to predict human relevant cardiotoxicity. The purpose of this study was to develop an in vitro repeated exposure toxicity methodology allowing the identification of predictive genomics biomarkers of functional relevance for drug-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs were incubated with 156 nM doxorubicin, which is a well-characterized cardiotoxicant, for 2 or 6 days followed by washout of the test compound and further incubation in compound-free culture medium until day 14 after the onset of exposure. An xCELLigence Real-Time Cell Analyser was used to monitor doxorubicin-induced cytotoxicity while also monitoring functional alterations of cardiomyocytes by counting of the beating frequency of cardiomyocytes. Unlike single exposure, repeated doxorubicin exposure resulted in long-term arrhythmic beating in hiPSC-CMs accompanied by significant cytotoxicity. Global gene expression changes were studied using microarrays and bioinformatics tools. Analysis of the transcriptomic data revealed early expression signatures of genes involved in formation of sarcomeric structures, regulation of ion homeostasis and induction of apoptosis. Eighty-four significantly deregulated genes related to cardiac functions, stress and apoptosis were validated using real-time PCR. The expression of the 84 genes was further studied by real-time PCR in hiPSC-CMs incubated with daunorubicin and mitoxantrone, further anthracycline family members that are also known to induce cardiotoxicity. A panel of 35 genes was deregulated by all three anthracycline family members and can therefore be expected to predict the cardiotoxicity of compounds acting by similar mechanisms as doxorubicin, daunorubicin or mitoxantrone. The identified gene panel can be applied in the safety assessment of novel drug candidates as well as available therapeutics to identify compounds that may cause cardiotoxicity

    Syndapin-2 mediated transcytosis of amyloid-β across the blood–brain barrier

    Get PDF
    open access articleA deficient transport of amyloid-β across the blood–brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer’s disease and cerebral amyloid angiopathy, respectively. At the blood–brain barrier, amyloid-β efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-β transport across the blood–brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-β clearance via low-density lipoprotein receptor-related protein 1 across the blood–brain barrier. We further demonstrate that risk factors for Alzheimer’s disease, amyloid-β expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-β clearance proposing a measure to evaluate Alzheimer’s disease and ageing, as well as a target for counteracting amyloid-β build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-β assemblies in their trafficking across the brain endothelium and in low density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-β across the blood–brain barrier

    Congo Basin peatlands: threats and conservation priorities

    Get PDF
    The recent publication of the first spatially explicit map of peatlands in the Cuvette Centrale, central Congo Basin, reveals it to be the most extensive tropical peatland complex, at ca. 145,500 km2. With an estimated 30.6 Pg of carbon stored in these peatlands, there are now questions about whether these carbon stocks are under threat and, if so, what can be done to protect them. Here, we analyse the potential threats to Congo Basin peat carbon stocks and identify knowledge gaps in relation to these threats, and to how the peatland systems might respond. Climate change emerges as a particularly pressing concern, given its potential to destabilise carbon stocks across the whole area. Socio-economic developments are increasing across central Africa and, whilst much of the peatland area is protected on paper by some form of conservation designation, the potential exists for hydrocarbon exploration, logging, plantations and other forms of disturbance to significantly damage the peatland ecosystems. The low level of human intervention at present suggests that the opportunity still exists to protect the peatlands in a largely intact state, possibly drawing on climate change mitigation funding, which can be used not only to protect the peat carbon pool but also to improve the livelihoods of people living in and around these peatlands

    Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation

    Get PDF
    INTRODUCTION: Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) may be suitable for myocardial repair. While their functional and structural properties have been extensively investigated, their response to ischemia-like conditions has not yet been clearly defined. METHODS: iPS-CMs were differentiated and enriched from murine iPS cells expressing eGFP and puromycin resistance genes under the control of an alpha-MHC promoter. iPS-CMs maturity and function were characterized by microscopy, rt-PCR, calcium transient recordings, electrophysiology, and mitochondrial function assays, and compared to those from neonatal murine cardiomyocytes (N-CMs). iPS-CMs as well as N-CMs were exposed for 3 h to hypoxia (1% O2) and glucose/serum deprivation (GSD), and viability, apoptosis markers, reactive oxygen species (ROS), mitochondrial membrane potential (Deltapsim) and intracellular stress signaling cascades were investigated. Then, the iPS-CMs response to mesenchymal stromal cell-conditioned medium (MSC-CoM) was determined. RESULTS: iPS-CMs displayed key morphological and functional properties that were comparable to those of N-CMs, but several parameters indicated an earlier iPS-CMs maturation stage. During hypoxia/GSD, iPS-CMs exhibited a significantly higher proportion of poly-caspase-active, 7-AAD- and TUNEL-positive cells than N-CMs. The average mitochondrial membrane potential (Deltapsim) was reduced in "ischemic" iPS-CMs but remained unchanged in N-CMs, ROS production was only increased in "ischemic" iPS-CMs, and oxidoreductase activity in iPS-CMs dropped more rapidly than in N-CMs. In iPS-CMs, hypoxia/GSD led to upregulation of Hsp70 transcripts and decreased STAT3 phosphorylation and total PKCepsilon protein expression. Treatment with MSC-CoM preserved oxidoreductase activity and restored pSTAT3 and PKCepsilon levels. CONCLUSION: iPS-CMs appear to be particularly sensitive to hypoxia and nutrient deprivation. Counteracting the ischemic susceptibility of iPS-CMs with MSC-conditioned medium may help enhance their survival and efficacy in cell-based approaches for myocardial repair

    Medium-chain fatty acids modulate myocardial function via a cardiac odorant receptor

    Get PDF
    Several studies have demonstrated the expression of odorant receptors (OR) in various human tissues and their involvement in different physiological and pathophysiological processes. However, the functional role of ORs in the human heart is still unclear. Here, we firstly report the functional characterization of an OR in the human heart. Initial next-generation sequencing analysis revealed the OR expression pattern in the adult and fetal human heart and identified the fatty acid-sensing OR51E1 as the most highly expressed OR in both cardiac development stages. An extensive characterization of the OR51E1 ligand profile by luciferase reporter gene activation assay identified 2-ethylhexanoic acid as a receptor antagonist and various structurally related fatty acids as novel OR51E1 ligands, some of which were detected at receptor-activating concentrations in plasma and epicardial adipose tissue. Functional investigation of the endogenous receptor was carried out by Ca2+ imaging of human stem cell-derived cardiomyocytes. Application of OR51E1 ligands induced negative chronotropic effects that depended on activation of the OR. OR51E1 activation also provoked a negative inotropic action in cardiac trabeculae and slice preparations of human explanted ventricles. These findings indicate that OR51E1 may play a role as metabolic regulator of cardiac function
    corecore