60 research outputs found

    Plasmodium falciparum drug resistance phenotype as assessed by patient antimalarial drug levels and Its association With pfmdr1 polymorphisms

    Get PDF
    Background. Multidrug-resistant Plasmodium falciparum is a major threat to global malaria control. Parasites develop resistance by gradually acquiring genetic polymorphisms that decrease drug susceptibility. The aim of this study was to investigate the extent to which parasites with different genetic characteristics are able to withstand individual drug blood concentrations. Methods. We analyzed 2 clinical trials that assessed the efficacy and effectiveness of artemether-lumefantrine. As a proof of concept, we used measured day 7 lumefantrine concentrations to estimate the concentrations at which reinfections multiplied. P. falciparum multidrug resistance gene 1 (pfmdr1) genotypes of these parasites were then correlated to drug susceptibility. Results. Reinfecting parasites with the pfmdr1 N86/184F/D1246 haplotype were able to withstand lumefantrine blood concentrations 15-fold higher than those with the 86Y/Y184/1246Y haplotype. Conclusions. By estimating drug concentrations, we were able to quantify the contribution of pfmdr1 single-nucleotide polymorphisms to reduced lumefantrine susceptibility. The method can be applied to all long-half-life antimalarial drugs, enables early detection of P. falciparum with reduced drug susceptibility in vivo, and represents a novel way for unveiling molecular markers of antimalarial drug resistance.Swedish Development Cooperation Agency-Department for Research Cooperation (SIDA-SAREC) [SWE 2004-3850, Bil-Tz 16/9875007059, SWE-2009-165]; World Health Organization MIM-TDR [[A60100] MAL IRM 06 03]; Goljes Foundation; Swedish medical research council [K2010-56X-21457-01-3]; Wellcome Trust of Great Britai

    Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment in Tanzanian children with acute uncomplicated malaria

    Get PDF
    BACKGROUND\ud \ud This study aimed to explore Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment with artemisinin-based combination therapy in children with clinical malaria in a high transmission area in Africa.\ud \ud METHODS\ud \ud A total of 50 children aged 1-10 years with acute uncomplicated P. falciparum malaria in Bagamoyo District, Tanzania, were enrolled. Participants were hospitalized and received supervised standard treatment with artemether-lumefantrine according to body weight in six doses over 3 days. Blood samples were collected 11 times, i.e. at time of diagnosis (-2 h) and 0, 2, 4, 8, 16, 24, 36, 48, 60 and 72 h after initiation of treatment. Parasite population dynamics were assessed using nested polymerase chain reaction (PCR)-genotyping of merozoite surface protein (msp) 1 and 2.\ud \ud RESULTS\ud \ud PCR-analyses from nine sequential blood samples collected after initiation of treatment identified 20 and 21 additional genotypes in 15/50 (30%) and 14/50 (28%) children with msp1 and msp2, respectively, non-detectable in the pre-treatment samples (-2 and 0 h combined). Some 15/20 (75%) and 14/21 (67%) of these genotypes were identified within 24 h, whereas 17/20 (85%) and 19/21 (90%) within 48 h for msp1 and msp2, respectively. The genotype profile was diverse, and varied considerably over time both within and between patients, molecular markers and their respective families.\ud \ud CONCLUSION\ud \ud PCR analyses from multiple blood samples collected during the early treatment phase revealed a complex picture of parasite sub-populations. This underlines the importance of interpreting PCR-outcomes with caution and suggests that the present use of PCR-adjustment from paired blood samples in anti-malarial drug trials may overestimate assessment of drug efficacy in high transmission areas in Africa.The study is registered at http://www.clinicaltrials.gov with identifier NCT00336375

    Pooled Deep Sequencing of Plasmodium falciparum Isolates: An Efficient and Scalable Tool to Quantify Prevailing Malaria Drug-Resistance Genotypes

    Get PDF
    Molecular surveillance for drug-resistant malaria parasites requires reliable, timely, and scalable methods. These data may be efficiently produced by genotyping parasite populations using second-generation sequencing (SGS). We designed and validated a SGS protocol to quantify mutant allele frequencies in the Plasmodium falciparum genes dhfr and dhps in mixed isolates. We applied this new protocol to field isolates from children and compared it to standard genotyping using Sanger sequencing. The SGS protocol accurately quantified dhfr and dhps allele frequencies in a mixture of parasite strains. Using SGS of DNA that was extracted and then pooled from individual isolates, we estimated mutant allele frequencies that were closely correlated to those estimated by Sanger sequencing (correlations, >0.98). The SGS protocol obviated most molecular steps in conventional methods and is cost saving for parasite populations >50. This SGS genotyping method efficiently and reproducibly estimates parasite allele frequencies within populations of P. falciparum for molecular epidemiologic studies

    Evaluation of the DN-Mini (miniaturized double net) trap for sampling host-seeking Anopheles mosquitoes in malaria-endemic villages of southern Tanzania

    Get PDF
    Background: Surveillance of malaria vectors is crucial for assessing the transmission risk and impact of control measures. Human landing catches (HLC) directly estimate the biting rates but raise ethical concerns due to the exposure of volunteers to mosquito-borne pathogens. A common alternative is the CDC-light trap, which is effective for catching host-seeking mosquitoes indoors but not outdoors. New, exposure-free methods are needed for sampling mosquitoes indoors and outdoors in ways that reflect their natural risk profiles. The aim of this study was therefore to evaluate the efficacy of the miniaturized double net trap (DN-Mini) for sampling host-seeking mosquitoes in south-eastern Tanzania, where malaria transmission is dominated by Anopheles funestus. Methods: Adult mosquitoes were collected from 222 randomly selected houses across three villages (74 per village) in Ulanga district, south-eastern Tanzania, using the DN-Mini traps, CDC-Light traps, and Prokopack aspirators. First, we compared CDC-light and DN-Mini traps for collecting indoor host-seeking mosquitoes, while Prokopack aspirators were used for indoor-resting mosquitoes. Second, we deployed the DN-Mini and Prokopack aspirators to collect host-seeking and resting mosquitoes indoors and outdoors. Generalized linear mixed models (GLMM) with a negative binomial distribution were used to compare the effectiveness of the traps for catching different mosquito species. Results: The DN-Mini was 1.53 times more efficient in collecting An. funestus indoors (RR = 1.53, 95% CI: 1.190–1.98) compared to the CDC-Light trap. However, for Anopheles arabiensis, the DN-Mini caught only 0.32 times as many mosquitoes indoors as the CDC-Light traps (RR = 0.32, 95% CI: 0.183–0.567). Both An. funestus and An. arabiensis were found to be more abundant indoors than outdoors when collected using the DN-Mini trap. Similarly, the Prokopack aspirator was greater indoors than outdoors for both An. funestus and An. arabiensis. Conclusion: The DN-Mini outperformed the CDC-light trap in sampling the dominant malaria vector, An. funestus species, but was less effective in capturing An. arabiensis, and for both vector species, the biting risk was greater indoors than outdoors when measured using the DN-Mini trap. These findings highlight the importance of selecting appropriate trapping methods based on mosquito species and behaviors

    Temporal trends of molecular markers associated with artemether- lumefantrine tolerance/resistance in Bagamoyo district, Tanzania

    Get PDF
    Background: Development and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy (ACT) constitutes a major threat to recent global malaria control achievements. Surveillance of molecular markers could act as an early warning system of ACT-resistance before clinical treatment failures are apparent. The aim of this study was to analyse temporal trends of established genotypes associated with artemether-lumefantrine tolerance/resistance before and after its deployment as first-line treatment for uncomplicated malaria in Tanzania 2006. Methods: Single nucleotide polymorphisms in the P. falciparum multidrug resistance gene 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine transporter gene (pfcrt) K76T were analysed from dried blood spots collected during six consecutive studies from children with uncomplicated P. falciparum malaria in Fukayosi village, Bagamoyo District, Tanzania, between 2004-2011. Results: There was a statistically significant yearly increase of pfmdr1 N86, 184F, D1246 and pfcrt K76 between 2006-2011 from 14% to 61% (yearly OR = 1.38 [95% CI 1.25-1.52] p \u3c 0.0001), 14% to 35% (OR = 1.17 [95% CI 1.07-1.30] p = 0.001), 54% to 85% (OR = 1.21 [95% CI 1.03-1.42] p = 0.016) and 49% to 85% (OR = 1.33 [95% CI 1.17-1.51] p \u3c 0.0001), respectively. Unlike for the pfmdr1 SNP, a significant increase of pfcrt K76 was observed already between 2004-2006, from 26% to 49% (OR = 1.68 [95% CI 1.17-2.40] p = 0.005). From 2006 to 2011 the pfmdr1 NFD haplotype increased from 10% to 37% (OR = 1.25 [95% CI 1.12-1.39] p \u3c 0.0001), whereas the YYY haplotype decreased from 31% to 6% (OR = 0.73 [95% CI 0.56-0.98] p = 0.018). All 390 successfully analysed samples had one copy of the pfmdr1 gene. Conclusion: The temporal selection of molecular markers associated with artemether-lumefantrine tolerance/resistance may represent an early warning sign of impaired future drug efficacy. This calls for stringent surveillance of artemether-lumefantrine efficacy in Tanzania and emphasizes the importance of molecular surveillance as a complement to standard in vivo trials. © 2013 Malmberg et al.; licensee BioMed Central Ltd

    Effectiveness of artemether-lumefantrine provided by community health workers in under-five children with uncomplicated malaria in rural Tanzania: an open label prospective study

    Get PDF
    \ud Home-management of malaria (HMM) strategy improves early access of anti-malarial medicines to high-risk groups in remote areas of sub-Saharan Africa. However, limited data are available on the effectiveness of using artemisinin-based combination therapy (ACT) within the HMM strategy. The aim of this study was to assess the effectiveness of artemether-lumefantrine (AL), presently the most favoured ACT in Africa, in under-five children with uncomplicated Plasmodium falciparum malaria in Tanzania, when provided by community health workers (CHWs) and administered unsupervised by parents or guardians at home. An open label, single arm prospective study was conducted in two rural villages with high malaria transmission in Kibaha District, Tanzania. Children presenting to CHWs with uncomplicated fever and a positive rapid malaria diagnostic test (RDT) were provisionally enrolled and provided AL for unsupervised treatment at home. Patients with microscopy confirmed P. falciparum parasitaemia were definitely enrolled and reviewed weekly by the CHWs during 42 days. Primary outcome measure was PCR corrected parasitological cure rate by day 42, as estimated by Kaplan-Meier survival analysis. This trial is registered with ClinicalTrials.gov, number NCT00454961. A total of 244 febrile children were enrolled between March-August 2007. Two patients were lost to follow up on day 14, and one patient withdrew consent on day 21. Some 141/241 (58.5%) patients had recurrent infection during follow-up, of whom 14 had recrudescence. The PCR corrected cure rate by day 42 was 93.0% (95% CI 88.3%-95.9%). The median lumefantrine concentration was statistically significantly lower in patients with recrudescence (97 ng/mL [IQR 0-234]; n = 10) compared with reinfections (205 ng/mL [114-390]; n = 92), or no parasite reappearance (217 [121-374] ng/mL; n = 70; p ≤ 0.046). Provision of AL by CHWs for unsupervised malaria treatment at home was highly effective, which provides evidence base for scaling-up implementation of HMM with AL in Tanzania.\u

    Efficacy of Single-Dose Primaquine With Artemisinin Combination Therapy on Plasmodium falciparum Gametocytes and Transmission: An Individual Patient Meta-Analysis

    Get PDF
    Background Since the World Health Organization recommended single low-dose (0.25mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant P. falciparum, several single-site studies have been conducted to assess its efficacy. Methods An individual patient meta-analysis to assess the gametocytocidal and transmission-blocking efficacy of PQ used in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (i) gametocyte carriage in the first two weeks post-treatment; (ii) the probability of infecting at least one mosquito or of a mosquito becoming infected. Results In 2,574 participants from fourteen studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytaemia on day 0 (Odds Ratio (OR)=0.22; 95%CI 0.17-0.28 and OR=0.12; 95%CI 0.08–0.16, respectively). The rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (p=0.010 for day 7). Addition of 0.25mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. Conclusion Primaquine’s transmission-blocking effects are achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP

    Efficacy of Single-Dose Primaquine With Artemisinin Combination Therapy on Plasmodium falciparum Gametocytes and Transmission: An Individual Patient Meta-Analysis.

    Get PDF
    BACKGROUND: Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. METHODS: An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. RESULTS: In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR],?0.22; 95% confidence interval [CI], .17-.28 and OR,?0.12; 95% CI, .08-.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P?=?.010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. CONCLUSIONS: Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP

    Low Complexity of Infection Is Associated With Molecular Persistence of Plasmodium falciparum in Kenya and Tanzania

    Get PDF
    Background Plasmodium falciparum resistance to artemisinin-based combination therapies (ACTs) is a threat to malaria elimination. ACT-resistance in Asia raises concerns for emergence of resistance in Africa. While most data show high efficacy of ACT regimens in Africa, there have been reports describing declining efficacy, as measured by both clinical failure and prolonged parasite clearance times. Methods Three hundred children aged 2–10 years with uncomplicated P. falciparum infection were enrolled in Kenya and Tanzania after receiving treatment with artemether-lumefantrine. Blood samples were taken at 0, 24, 48, and 72 h, and weekly thereafter until 28 days post-treatment. Parasite and host genetics were assessed, as well as clinical, behavioral, and environmental characteristics, and host anti-malarial serologic response. Results While there was a broad range of clearance rates at both sites, 85% and 96% of Kenyan and Tanzanian samples, respectively, were qPCR-positive but microscopy-negative at 72 h post-treatment. A greater complexity of infection (COI) was negatively associated with qPCR-detectable parasitemia at 72 h (OR: 0.70, 95% CI: 0.53–0.94), and a greater baseline parasitemia was marginally associated with qPCR-detectable parasitemia (1,000 parasites/uL change, OR: 1.02, 95% CI: 1.01–1.03). Demographic, serological, and host genotyping characteristics showed no association with qPCR-detectable parasitemia at 72 h. Parasite haplotype-specific clearance slopes were grouped around the mean with no association detected between specific haplotypes and slower clearance rates. Conclusions Identifying risk factors for slow clearing P. falciparum infections, such as COI, are essential for ongoing surveillance of ACT treatment failure in Kenya, Tanzania, and more broadly in sub-Saharan Africa

    Malaria Rapid Testing by Community Health Workers Is Effective and Safe for Targeting Malaria Treatment: Randomised Cross-Over Trial in Tanzania

    Get PDF
    Early diagnosis and prompt, effective treatment of uncomplicated malaria is critical to prevent severe disease, death and malaria transmission. We assessed the impact of rapid malaria diagnostic tests (RDTs) by community health workers (CHWs) on provision of artemisinin-based combination therapy (ACT) and health outcome in fever patients. Twenty-two CHWs from five villages in Kibaha District, a high-malaria transmission area in Coast Region, Tanzania, were trained to manage uncomplicated malaria using RDT aided diagnosis or clinical diagnosis (CD) only. Each CHW was randomly assigned to use either RDT or CD the first week and thereafter alternating weekly. Primary outcome was provision of ACT and main secondary outcomes were referral rates and health status by days 3 and 7. The CHWs enrolled 2930 fever patients during five months of whom 1988 (67.8%) presented within 24 hours of fever onset. ACT was provided to 775 of 1457 (53.2%) patients during RDT weeks and to 1422 of 1473 (96.5%) patients during CD weeks (Odds Ratio (OR) 0.039, 95% CI 0.029-0.053). The CHWs adhered to the RDT results in 1411 of 1457 (96.8%, 95% CI 95.8-97.6) patients. More patients were referred on inclusion day during RDT weeks (10.0%) compared to CD weeks (1.6%). Referral during days 1-7 and perceived non-recovery on days 3 and 7 were also more common after RDT aided diagnosis. However, no fatal or severe malaria occurred among 682 patients in the RDT group who were not treated with ACT, supporting the safety of withholding ACT to RDT negative patients. RDTs in the hands of CHWs may safely improve early and well-targeted ACT treatment in malaria patients at community level in Africa.\ud \ud \ud \u
    corecore