15 research outputs found

    BAFF, APRIL and BAFFR on the pathogenesis of Immunoglobulin-A vasculitis

    Get PDF
    BAFF, APRIL and BAFF-R are key proteins involved in the development of B-lymphocytes and autoimmunity. Additionally, BAFF, APRIL and BAFFR polymorphisms were associated with immune-mediated conditions, being BAFF GCTGT>A a shared insertion-deletion genetic variant for several autoimmune diseases. Accordingly, we assessed whether BAFF, APRIL and BAFFR represent novel genetic risk factors for Immunoglobulin-A vasculitis (IgAV), a predominantly B-lymphocyte inflammatory condition. BAFF rs374039502, which colocalizes with BAFF GCTGT>A, and two tag variants within APRIL (rs11552708 and rs6608) and BAFFR (rs7290134 and rs77874543) were genotyped in 386 Caucasian IgAV patients and 806 matched healthy controls. No genotypes or alleles differences were observed between IgAV patients and controls when BAFF, APRIL and BAFFR variants were analysed independently. Likewise, no statistically significant differences were found in the genotype and allele frequencies of BAFF, APRIL or BAFFR when IgAV patients were stratified according to the age at disease onset or to the presence/absence of gastrointestinal (GI) or renal manifestations. Similar results were disclosed when APRIL and BAFFR haplotypes were compared between IgAV patients and controls and between IgAV patients stratified according to the clinical characteristics mentioned above. Our results suggest that BAFF, APRIL and BAFFR do not contribute to the genetic network underlying IgAV.Acknowledgements: We are indebted to the patients and healthy controls for their essential collaboration to this study. We also thank the National DNA Bank Repository (Salamanca) for supplying part of the control samples. This study was supported by European Union FEDER funds and `Fondo de Investigaciones Sanitarias´ (grant PI18/00042) from ‘Instituto de Salud Carlos III’ (ISCIII, Health Ministry, Spain). DP-P is a recipient of a Río Hortega programme fellowship from the ISCIII, co-funded by the European Social Fund (ESF, `Investing in your future´) (grant number CM20/00006). SR-M is supported by funds of the RETICS Program (RD16/0012/0009) (ISCIII, co-funded by the European Regional Development Fund (ERDF)). VP-C is supported by a pre-doctoral grant from IDIVAL (PREVAL 18/01). BA-M is a recipient of a `López Albo´ Post-Residency Programme funded by Servicio Cántabro de Salud. LL-G is supported by funds from IDIVAL (INNVAL20/06). OG is staff personnel of Xunta de Galicia (Servizo Galego de Saude (SERGAS)) through a research-staff stabilization contract (ISCIII/SERGAS) and his work is funded by ISCIII and the European Union FEDER fund (grant numbers RD16/0012/0014 (RIER) and PI17/00409). He is beneficiary of project funds from the Research Executive Agency (REA) of the European Union in the framework of MSCA-RISE Action of the H2020 Programme, Project 734899—Olive-Net. RL-M is a recipient of a Miguel Servet type I programme fellowship from the ISCIII, cofunded by ESF (`Investing in your future´) (grant number CP16/00033)

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Tumours of Soft Tissue and Bone, and Other Mesenchymal Tumours

    No full text

    Inflammation and Neuronal Susceptibility to Excitotoxic Cell Death

    No full text

    Pyelonephritis und chronische interstitielle Nephritis

    No full text
    corecore