611 research outputs found

    Evidential-EM Algorithm Applied to Progressively Censored Observations

    Get PDF
    Evidential-EM (E2M) algorithm is an effective approach for computing maximum likelihood estimations under finite mixture models, especially when there is uncertain information about data. In this paper we present an extension of the E2M method in a particular case of incom-plete data, where the loss of information is due to both mixture models and censored observations. The prior uncertain information is expressed by belief functions, while the pseudo-likelihood function is derived based on imprecise observations and prior knowledge. Then E2M method is evoked to maximize the generalized likelihood function to obtain the optimal estimation of parameters. Numerical examples show that the proposed method could effectively integrate the uncertain prior infor-mation with the current imprecise knowledge conveyed by the observed data

    Avalanche Breakdown Timing Statistics for Silicon Single Photon Avalanche Diodes

    Get PDF
    CCBY Silicon-based Single Photon Avalanche Diodes (SPADs) are widely used as single photon detectors of visible and near infrared photons. There has however been a lack of models accurately interpreting the physics of impact ionization (the mechanism behind avalanche breakdown) for these devices. In this work, we present a statistical simulation model for silicon SPADs that is capable of predicting breakdown probability, mean time to breakdown and timing jitter. Our model inherently incorporates carriers & #x0027; dead space due to phonon scattering and allows for non-uniform electric fields. Model validation included avalanche gain, excess noise factor, breakdown voltage, breakdown probability, and timing statistics. Simulating an n on-p and a p-on-n SPAD design using our model, we found that the n-on-p design offers significantly improved mean time to breakdown and timing jitter characteristics. For a breakdown probability of 0.5, mean time to breakdown and timing jitter from the n-on-p design were 3 and 4 times smaller compared to those from the p on n design. The data reported in this paper is available from the ORDA digital repository (DOI: 10.15131/shef.data.4823248)

    Magnetic ordering in Sr2RuO4 induced by nonmagnetic impurities

    Get PDF
    We report unusual effects of nonmagnetic impurities on the spin-triplet superconductor Sr2RuO4. The substitution of nonmagnetic Ti4+ for Ru4+ induces localized-moment magnetism characterized by unexpected Ising anisotropy with the easy axis along the interlayer c direction. Furthermore, for x(Ti) > 0.03 magnetic ordering occurs in the metallic state with the remnant magnetization along the c-axis. We argue that the localized moments are induced in the Ru4+ and/or oxygen ions surrounding Ti4+ and that the ordering is due to their interaction mediated by itinerant Ru-4d electrons with strong spin fluctuations.Comment: 5 pages, 4figure

    Quantum Parrondo's Games

    Full text link
    Parrondo's Paradox arises when two losing games are combined to produce a winning one. A history dependent quantum Parrondo game is studied where the rotation operators that represent the toss of a classical biased coin are replaced by general SU(2) operators to transform the game into the quantum domain. In the initial state, a superposition of qubits can be used to couple the games and produce interference leading to quite different payoffs to those in the classical case.Comment: LateX, 10 pages, 2 figures, submitted to Physica A special issue (Gene Stanley Conference, Sicily, 2001), v2 minor correction to equations, v3 corrections to results section and table, acknowledgement adde

    Anisotropy in the Antiferromagnetic Spin Fluctuations of Sr2RuO4

    Full text link
    It has been proposed that Sr_2RuO_4 exhibits spin triplet superconductivity mediated by ferromagnetic fluctuations. So far neutron scattering experiments have failed to detect any clear evidence of ferromagnetic spin fluctuations but, instead, this type of experiments has been successful in confirming the existence of incommensurate spin fluctuations near q=(1/3 1/3 0). For this reason there have been many efforts to associate the contributions of such incommensurate fluctuations to the mechanism of its superconductivity. Our unpolarized inelastic neutron scattering measurements revealed that these incommensurate spin fluctuations possess c-axis anisotropy with an anisotropic factor \chi''_{c}/\chi''_{a,b} of \sim 2.8. This result is consistent with some theoretical ideas that the incommensurate spin fluctuations with a c-axis anisotropy can be a origin of p-wave superconductivity of this material.Comment: 5 pages, 3 figures; accepted for publication in PR

    Control of an industrial robot

    Get PDF

    Vortex structure in chiral p-wave superconductors

    Full text link
    We investigate the vortex structure in chiral p-wave superconductors by the Bogoliubov-de Gennes theory on a tight-binding model. We calculate the spatial structure of the pair potential and electronic state around a vortex, including the anisotropy of the Fermi surface and superconducting gap structure. The differences of the vortex structure between sin⁥px+isin⁥py\sin p_x + {\rm i} \sin p_y-wave and sin⁥px−isin⁥py \sin p_x - {\rm i} \sin p_y-wave superconductors are clarified in the vortex lattice state. We also discuss the winding ∓3\mp 3 case of the sin⁥(px+py)±isin⁥(−px+py)\sin{(p_x+p_y)} \pm {\rm i} \sin{(-p_x+p_y)}-wave superconductivity.Comment: 10 pages, 8 figure

    Photon-Phonon-assisted tunneling through a single-molecular quantum dot

    Full text link
    Based on exactly mapping of a many-body electron-phonon interaction problem onto a one-body problem, we apply the well-established nonequilibrium Green function technique to solve the time-dependent phonon-assisted tunneling at low temperature through a single-molecular quantum dot connected to two leads, which is subject to a microwave irradiation field. It is found that in the presence of the electron-phonon interaction and the microwave irradiation field, the time-average transmission and the nonlinear differential conductance display additional peaks due to pure photon absorption or emission processes and photon-absorption-assisted phonon emission processes. The variation of the time-average current with frequency of the microwave irradiation field is also studied.Comment: 9 pages, 6 figures, submitted to Phys. Rev. B. accepted by Phys. Rev.

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Dynamical 1/N approach to time-dependent currents through quantum dots

    Full text link
    A systematic truncation of the many-body Hilbert space is implemented to study how electrons in a quantum dot attached to conducting leads respond to time-dependent biases. The method, which we call the dynamical 1/N approach, is first tested in the most unfavorable case, the case of spinless fermions (N=1). We recover the expected behavior, including transient ringing of the current in response to an abrupt change of bias. We then apply the approach to the physical case of spinning electrons, N=2, in the Kondo regime for the case of infinite intradot Coulomb repulsion. In agreement with previous calculations based on the non-crossing approximation (NCA), we find current oscillations associated with transitions between Kondo resonances situated at the Fermi levels of each lead. We show that this behavior persists for a more realistic model of semiconducting quantum dots in which the Coulomb repulsion is finite.Comment: 18 pages, 7 eps figures, discussion extended for spinless electrons and typo
    • 

    corecore