352 research outputs found

    Reply to: Mobility overestimation in MoS2_2 transistors due to invasive voltage probes

    Full text link
    In this reply, we include new experimental results and verify that the observed non-linearity in rippled-MoS2_2 (leading to mobility kink) is an intrinsic property of a disordered system, rather than contact effects (invasive probes) or other device issues. Noting that Peng Wu's hypothesis is based on a highly ordered ideal system, transfer curves are expected to be linear, and the carrier density is assumed be constant. Wu's model is therefore oversimplified for disordered systems and neglects carrier-density dependent scattering physics. Thus, it is fundamentally incompatible with our rippled-MoS2_2, and leads to the wrong conclusion

    The Yuan-Tseh Lee Array for Microwave Background Anisotropy

    Full text link
    The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) is the first interferometer dedicated to studying the cosmic microwave background (CMB) radiation at 3mm wavelength. The choice of 3mm was made to minimize the contributions from foreground synchrotron radiation and Galactic dust emission. The initial configuration of seven 0.6m telescopes mounted on a 6-m hexapod platform was dedicated in October 2006 on Mauna Loa, Hawaii. Scientific operations began with the detection of a number of clusters of galaxies via the thermal Sunyaev-Zel'dovich effect. We compare our data with Subaru weak lensing data in order to study the structure of dark matter. We also compare our data with X-ray data in order to derive the Hubble constant.Comment: accepted for publication in ApJ (13 pages, 7 figures); a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/pho_highreso.pd

    Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma

    Get PDF
    The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n= 92) and evaluated on a testing cohort (n= 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB.</p

    Characterizing heart failure with preserved and reduced ejection fraction: An imaging and plasma biomarker approach.

    Get PDF
    IntroductionThe pathophysiology of heart failure with preserved ejection fraction (HFpEF) remains incompletely defined. We aimed to characterize HFpEF compared to heart failure with reduced ejection fraction (HFrEF) and asymptomatic hypertensive or non-hypertensive controls.Materials and methodsProspective, observational study of 234 subjects (HFpEF n = 140; HFrEF n = 46, controls n = 48, age 73±8, males 49%) who underwent echocardiography, cardiovascular magnetic resonance imaging (CMR), plasma biomarker analysis (panel of 22) and 6-minute walk testing (6MWT). The primary end-point was the composite of all-cause mortality and/or HF hospitalization.ResultsCompared to controls both HF groups had lower exercise capacity, lower left ventricular (LV) EF, higher LV filling pressures (E/E', B-type natriuretic peptide [BNP], left atrial [LA] volumes), more right ventricular (RV) systolic dysfunction, more focal and diffuse fibrosis and higher levels of all plasma markers. LV remodeling (mass/volume) was different between HFpEF (concentric, 0.68±0.16) and HFrEF (eccentric, 0.47±0.15); pConclusionsHFpEF is a distinct pathophysiological entity compared to age- and sex-matched HFrEF and controls. HFpEF and HFrEF are associated with similar adverse outcomes. Inflammation is common in both HF phenotypes but cardiomyocyte stretch/stress is greater in HFrEF

    Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies

    Get PDF
    Circulating miRNAs (microRNAs) are emerging as promising biomarkers for several pathological conditions, and the aim of this study was to investigate the feasibility of using serum miRNAs as biomarkers for liver pathologies. Real-time qPCR (quantitative PCR)-based TaqMan MicroRNA arrays were first employed to profile miRNAs in serum pools from patients with HCC (hepatocellular carcinoma) or LC (liver cirrhosis) and from healthy controls. Five miRNAs (i.e. miR-885-5p, miR-574-3p, miR-224, miR-215 and miR-146a) that were up-regulated in the HCC and LC serum pools were selected and further quantified using real-time qPCR in patients with HCC, LC, CHB (chronic hepatitis B) or GC (gastric cancer) and in normal controls. The present study revealed that more than 110 miRNA species in the serum samples and wide distribution ranges of serum miRNAs were observed. The levels of miR-885-5p were significantly higher in sera from patients with HCC, LC and CHB than in healthy controls or GC patients. miR-885-5p yielded an AUC [the area under the ROC (receiver operating characteristic) curve] of 0.904 [95% CI (confidence interval), 0.837–0.951, P<0.0001) with 90.53% sensitivity and 79.17% specificity in discriminating liver pathologies from healthy controls, using a cut off value of 1.06 (normalized). No correlations between increased miR-885-5p and liver function parameters [AFP (α-fetoprotein), ALT (alanine aminotransferase), AST (aspartate aminotransferase) and GGT (γ-glutamyl transpeptidase)] were observed in patients with liver pathologies. In summary, miR-885-5p is significantly elevated in the sera of patients with liver pathologies, and our data suggest that serum miRNAs could serve as novel complementary biomarkers for the detection and assessment of liver pathologies

    Toward a Coordinated Understanding of Hydro-Biogeochemical Root Functions in Tropical Forests for Application in Vegetation Models

    Get PDF
    Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest–climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground–belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground–belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate

    Functional analysis of GbAGL1, a D-lineage gene from cotton (Gossypium barbadense)

    Get PDF
    Cotton fibres originate from the outer ovule integument and D-lineage genes are essential for ovule development and their roles can be described by the ‘ABCDE’ model of flower development. To investigate the role of D-lineage genes during ovule and fibre development, GbAGL1 (GenBank accession number: FJ198049) was isolated from G. barbadense by using the SMART RACE strategy. Sequence and phylogenetic analyses revealed that GbAGL1 was a member of the D-lineage gene family. Southern blot analysis showed that GbAGL1 belonged to a low-copy gene family. Semi-quantitative RT-PCR and RNA in situ hybridization analyses revealed that the GbAGL1 gene in G. barbadense was highly expressed in whole floral bud primordia and the floral organs including ovules and fibres, but the signals were barely observed in vegetative tissues. GbAGL1 expression increased gradually with the ovule developmental stages. Over-expression of GbAGL1 in Arabidopsis caused obvious homeotic alternations in the floral organs, such as early flowering, and an extruded stigma, which were the typical phenotypes of the D-lineage gene family. In addition, a complementation test revealed that GbAGL1 could rescue the phenotypes of the stk mutant. Our study indicated that GbAGL1 was a D-lineage gene that was involved in ovule development and might play key roles in fibres development
    corecore