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Viewpoints

Toward a coordinated
understanding of hydro-
biogeochemical root functions in
tropical forests for application in
vegetation models

Summary

Tropical forest root characteristics and resource acquisition strate-

gies are underrepresented in vegetation and global models,

hampering the prediction of forest–climate feedbacks for these

carbon-rich ecosystems. Lowland tropical forests often have

globally unique combinations of high taxonomic and functional

biodiversity, rainfall seasonality, and strongly weathered infertile

soils, giving rise to distinct patterns in root traits and functions

compared with higher latitude ecosystems. We provide a roadmap

for integrating recent advances in our understanding of tropical

forest belowground function into vegetation models, focusing on

water and nutrient acquisition. We offer comparisons of recent

advances in empirical and model understanding of root character-

istics that represent important functional processes in tropical

forests. We focus on: (1) fine-root strategies for soil resource

exploration, (2) coupling and trade-offs in fine-root water vs

nutrient acquisition, and (3) aboveground–belowground linkages in

plant resource acquisition and use. We suggest avenues for

representing these extremely diverse plant communities in compu-

tationally manageable and ecologically meaningful groups in

models for linked aboveground–belowground hydro-nutrient

functions. Tropical forests are undergoing warming, shifting rainfall

regimes, and exacerbation of soil nutrient scarcity caused by

elevated atmospheric CO2. The accurate model representation of

tropical forest functions is crucial for understanding the interactions

of this biome with the climate.

Introduction

Tropical forests are poorly characterized in vegetation models
relative to other ecosystems, and the representation of root function
lags that of aboveground function (Warren et al., 2015; Bonan &
Doney, 2018). Tropical forests have the highest rates of net primary
production (NPP) on Earth and contain c. 30% of terrestrial
carbon (C) stocks (Field et al., 1998; Jobb�agy & Jackson, 2000;

Hengl et al., 2017), with at least 36% of tropical forest NPP
allocated belowground (Aragao et al., 2009; Malhi et al., 2011;
Huasco et al., 2021). Fine roots are typically considered the
absorptive portion of the root structure, which absorb nutrients and
water (Guo et al., 2008; McCormack et al., 2015; Table 1). These
are typically classified as < 2 mm diameter and include branching
orders 1–3 (e.g. the first-order root tips, e.g. https://youtu.be/q_
ICrIL62qg; Freschet et al., 2021a). Understanding and represent-
ing tropical forests’ water and nutrient cycling is of particular
importance in the context of changing tropical forest rainfall
regimes and warming and increased relative nutrient scarcity
brought on by accelerated photosynthesis of plants grown under
elevated atmospheric carbon dioxide (CO2) concentrations (i.e.
CO2 fertilization; Hungate et al., 2003; Fisher et al., 2012;
Fleischer et al., 2019).

Tropical forests are distinct from higher latitude ecosystems
across several abiotic and biotic dimensions, giving rise to unique
patterns of root traits and functions. The unique aspects of tropical
forests include combinations of high plant diversity (Eiserhardt
et al., 2017), seasonality dominated by rainfall rather than
temperature changes, and the predominance of lowland tropical
forests on strongly weathered soils poor in phosphorus (P) and base
cations, which represent > 50% of tropical forests (Holzman,
2008), and commonly results in P or multi-nutrient limitation to
NPP (Vitousek & Sanford, 1986; Cunha et al., 2022). Tropical
forests also have large variation in ecosystem characteristics,
including exceptions to the above trends such as monodominant
stands of particular species or families (e.g. Dipterocarpaceae;
Janzen, 1974;Hart et al., 1989; Peh et al., 2011), high-fertility soils
(e.g. Quesada et al., 2011; Cusack et al., 2018), a lack of marked
seasonality in rainfall, and/or strong sunlight seasonality because of
changes in cloud cover (Yang et al., 2021). Thus, tropical forests
have high alpha and beta diversity (Condit et al., 2002), both for
organisms and ecosystem characteristics, which create empirical
and modeling challenges for characterizing and condensing species
into meaningful groups.

Large-scale models have often worked well with only rudimen-
tary root system functionality or none at all (Matamala &
Stover, 2013), but this functionality can break down when models
are confronted with global change factors that alter relationships
among soil, plants, and atmosphere (e.g. Zaehle et al., 2014). To
address these challenges, vegetation models typically group plants
according to common characteristics and functions to simplify the
diversity of natural ecosystems (Walker et al., 2014; Medlyn
et al., 2015; Fer et al., 2021; Kyker-Snowman et al., 2022), using
plant functional type (PFT) groupings. These have generally
focused on aboveground traits and temperate ecosystems (Wulls-
chleger et al., 2014;Warren et al., 2015). Several leading vegetation
models are now increasing the representation of root functions and
inclusion of root characteristics as part of PFTs (Table 2). Model

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

New Phytologist (2024) 242: 351–371 351
www.newphytologist.com

Forum

https://youtu.be/q_ICrIL62qg
https://youtu.be/q_ICrIL62qg
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fnph.19561&domain=pdf&date_stamp=2024-02-28


Table 1 Root characteristics and trait functions as understood empirically and represented in models.

Root Trait Units Function in nature Function in models

Fine-root function: soil exploration for water and nutrient acquisition

Fine-root biomass Mg ha�1 Absorptive tissue Absorptive tissue

Fine-root productivity Mg ha�1 yr�1 Absorptive tissue productivity Absorptive tissue productivity

Fine-root turnover (inverse of lifespan) yr�1 Absorptive tissue turnover Absorptive tissue turnover

Specific root length (SRL) cm g�1 Soil volume explored per unit biomass Conversion factor (fine-root biomass to fine-root

length), Calculate absorptive area as

biomass 9 SRL 9 2pr
Root growth timing (e.g. phenology/

seasonality)

Growth or death timing Align root production and mortality with

resource availability

Absent

Root hair length lm Absorptive tissue Absent

Root hair density Hairs cm�1 Absorptive tissue Absent

Depth distribution Distribution parameter (e.g. b function) Distribute absorptive and transportive

tissues through soil profile according to

resources

Locate absorptive tissue in soil, characteristic of

PFTs in some models

Root order distribution (i.e. branching

density)

Ratio of (1 + 2 + 3 order) : (4 order) Absorption per transport Absent (except where vertical distribution of

coarse and fine roots are treated separately)

Mycorrhizae Colonization rate, hyphal length,

material transfer rate

Exchange plant C for water and/or other

nutrients

Exchange C for nitrogen and phosphorus

Fine-root function: water acquisition and drought resistance

Maximum depth m Define vertical root domain Define vertical root domain, characteristic of PFTs

in some models

Root hydraulic conductivity LP; ms�1 MPa�1 Water transport Water transport

P50; pressure at 50% embolism MPa Embolism resistance Embolism resistance

Root radius (or diameter) mm Possibly related to water conductance or

AMF colonization, function poorly

constrained

Soil–root water conductance

Root membrane permeability Mass per pressure per area per time Water uptake Water uptake

Water uptake rate mg-H2O per length per time Water uptake Water uptake

Fine-root function: nutrient acquisition

Root enzyme activities (e.g. phosphatase

and protease)

Degradation rate of organic compounds Release mineral nutrients from organic

matter

Release mineral phosphorus

Organic exudate production C root per mass (or per length) per time Release mineral phosphorus Release mineral phosphorus, present in few

models where it responds to nutrient availability

N fixation (nodule biomass and nitrogen

fixation rate)

Nodule biomass per area, and fixation

rate –mg N2 fixed per nodule biomass

per time

Acquire nitrogen from the atmosphere

and convert to biologically available

forms

Exchange C for nitrogen, modeled as C cost,

maintenance respiration, or nodule turnover

time in response to nutrient availability. Or,

modeled as a function of evapotranspiration or

NPP. Present in few models, sometimes a

characteristic of PFTs

Phosphorus uptake rate lg P per length of root (or per mass) per

time

Phosphorus uptake by root or AMF/ECM

symbiont

Realized phosphorus uptake, present in few

models and varies with nutrient availability

Nitrogen uptake rate lg N per length of root (or per mass) per

time

Nitrogen uptake by root or AMF/ECM

symbiont

Realized nitrogen uptake, present in few models

and varies with nutrient availability

Traits without a clear relationship to root resource acquisition

Tissue N concentration % Unclear if correlated with function

Tissue P concentration % Unclear if correlated with function

Tissue N : P ratio Ratio Stoichiometry ABSENT

Tissue C : N ratio Ratio Stoichiometry Control nitrogen demand, present in most

models, part of PFTs

Tissue C : P ratio Ratio Stoichiometry Control phosphorus demand, present in most

models, part of PFTs

Root tissue density g cm�1 Defense, possible relation to AMF

colonization rate (volume available for

colonization)

ABSENT

Coarse root function: support and transport

Coarse root biomass Mg ha�1 Structural support and water transport Track elements in tissues, present in somemodels

as part of PFTs

Coarse root productivity Mg ha�1 yr�1 Support Track elements in tissues

Coarse root hydraulic resistance MPa s�1 kg�1 H2O Water transport Water transport, present in some models

Root characteristics and traits indicated in this viewpoint as most relevant to tropical forest function are given, grouped bymain function, with common units,
and specific functions as understood empirically (function in nature). Functions in vegetationmodels are then given, followedby categorical description of how
these are included in models (details in Table 2). AMF, arbuscular mycorrhizal fungi; NPP, net primary production; PFT, plant functional type.
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comparisons for tropical forests indicate that including P
availability, which has been excluded for the representation of
temperate ecosystems, can improve the representation of outcomes
like NPP (Fleischer et al., 2019; Yang et al., 2019; Braghiere
et al., 2022; Nakhavali et al., 2022). The time is now ripe to bring
together these areas of model development to improve the
representation of tropical forests: root functional representation
and inclusion of key resource constraints in tropical forests.

An alternative to the PFT approach is ‘trait-flexible’ models, in
which traits are reassigned at every generation to new individuals
recruiting into the population, rather than being fixed up-front at
the beginning of a simulation as in PFT-basedmodels.Hence, such
approaches allow for models to dynamically consider the full trait
spaces in a more flexible way (Scheiter et al., 2013; Sakschewski
et al., 2015). For example, trait-flexible modeling for the Amazon
basin provided greater diversity of belowground trait combinations
in response to water scarcity than with PFT approaches (Rius
et al., 2023), making this approach attractive for application to
these high-diversity ecosystems where empirical knowledge about

trait combinations is limited. However, most vegetation models
representing hydro-biogeochemical functions use the PFT
approach. Both the PFT and the trait-flexiblemodeling approaches
would benefit from more accurate representation of critical
belowground functions in tropical forests, improving outcomes
like NPP and responses to global change.

This Viewpoint provides a roadmap for strengthening our
empirical understanding and model representation of the unique
root functional characteristics of tropical forests (Fig. 1). We focus
on fine roots, including biomass and other traits, with attention to
coarse roots (> 2 mm diameter) when relevant. We present: (1) an
overview of unique root characteristics in tropical forests in relation
to resource acquisition (reviewed in depth in Cusack et al., 2021);
(2) a comparison of our empirical understanding of tropical fine-
root function vs root representation in a sampling of leading
vegetation models, including in the topics of (a) soil exploration,
(b) coordination and trade-offs in nutrient vswater acquisition, and
(c) aboveground–belowground functional linkages for nutrient
and water uptake and use; and (3) an assessment of commonly

Fig. 1 Conceptual representation depicts the root
traits recommended for further tropical forest
research and representation in vegetation models
as part of whole-plant functional types (PFTs) or
trait clusters. The panels include (a) a graphical
depiction of the root system with a subset of
suggested priority root traits for the tropics (see
also Table 1), (b) multidimensional trait space and
trait distributions that could be used to inform
more balanced aboveground–belowground
whole PTFs (here signaled as wPFTs) for the
tropics, and (c) representation of different combi-
nations of belowground trait clusters mixed and
matched with aboveground PFTs to test in
vegetation models and guide empirical research.
Details are as follows: (a) a graphical depiction of
root system traits including nutrient uptake traits
(in yellow, N fixation, nutrient uptake rates, C
exudation), water uptake and drought resistance
traits (in blue, hydraulic conductance, and embo-
lism sensitivity), and general soil exploration traits
(in green, e.g. mycorrhizal type, specific root
length (SRL), root turnover). Also shown are
hypothetical depth distributions for coarse roots
(CR, blue), and fine roots (FR, green, inset). (b) A
multidimensional trait space is linked to hypothe-
tical distributions for the root traits depicted in
panel (a), indicating how ranges of the different
trait distributions could be selected to form multi-
trait belowground functional types (B1, B2, etc.).
(c) Belowground and aboveground groupings
couldbematched to createwPFTs, and then tested
in different combinations in vegetation models to
assess improvement in predictions of net primary
production (NPP) and other emergent properties
of ecosystems depicted in vegetation models.
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measured tropical root characteristics that are not yet enough
understood or are not functionally relevant for model inclusion.
Based on this assessment, we call for the development of more
balanced aboveground–belowground PFTs and trait clusters to
represent key functions of tropical forests, particularly in relation to
P and multi-nutrient acquisition, as well as drought resistance.

How are fine-root strategies and functions different in
tropical forests?

Tropical forests have distinct belowground characteristics relative
to other ecosystems, in part because of the unique resource
constraints common in tropical forests. First, tropical evergreen
forests have the largest stocks of fine-root biomass globally (Jackson
et al., 1996). Fine-root production rates are also higher and
turnover times are faster in tropical forests than in other forests
(Cusack et al., 2021), following trends for tropical forest NPP. For
example, tropical forest fine-root productivity in surface soils
averaged 596 g m�2 yr�1 vs 428 g m�2 yr�1 in temperate forests
and 311 g m�2 yr�1 in boreal forests, and annual root turnover
times averaged 1.4 yr�1 in tropical forests vs 1.2 yr�1 in temperate
forests and 0.8 yr�1 in boreal forests (Finer et al., 2011). The large
and dynamic stocks of root biomass in tropical forests make them

important in the global C cycle, since root turnover provides a
principal input to the very large soil C stocks in tropical forests
(Rasse et al., 2005). The outsized importance of tropical forests in
the global C cycle provides further motivation for accurately
understanding tropical forest belowground function and repre-
sentation in vegetation models.

Second, tropical forest roots are more diverse than in other
ecosystems across several axes. Similar to the high plant species
diversity common in tropical lowland forests, these ecosystems have
the highest diversity in fine-root morphological traits (Ma
et al., 2018, but see Carmona et al., 2021). Fewer plant species
have been characterized for root traits in tropical forests compared
with other biomes (Fig. 2), in part because of the sheer diversity of
coexisting species with entangled root systems per unit area. Still,
evidence using global databases suggests that tropical species
contribute at least 23% of the unique root trait combinations
globally (Guerrero-Ramirez et al., 2021). Related to high species
diversity, fine-root traits are less phylogenetically constrained
within taxonomic levels compared with other ecosystems globally
(Valverde-Barrantes et al., 2021; Asefa et al., 2022; Weemstra
et al., 2023). An example in these studies is the ‘magnoliid’ type of
root (i.e. thick, fleshy roots) that is largely limited toMagnoleaceae
in temperate ecosystems, but is found acrossmultiple families in the
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Fig. 2 Total number of species forwhich fine-root traits data are currently available across climatic biomes is shown (left) relative to the total number of known
species in each biome (right). Despite much higher species numbers present in wet tropical forests, the highest percentage of available data comes from
temperateplant species.Within the tropics,most data are fromwet tropical forests (shown in yellow, ‘wet tropical’).Overall, specific root length (SRL) has been
themost commonlymeasured root trait (note that total root biomass not shown),while traits particularly important in tropical forests like P uptake are virtually
uncharacterized. Left panel: the species number in the updated version of the GRooT database (Guerrero-Ramirez et al., 2021) are shown by root trait and
biomedescription (colors); traits includedare SRL (m g�1),mean root diameter (Diameter,mm), root tissuedensity (RTD,g cm�3), rootnitrogen concentration
(N, mg g�1), maximum rooting depth (Rooting depth, m), root phosphorus concentration (P, mg g�1), root branching density (Branching density, number
cm�1), root nitrogen to phosphorus ratio (N : P), rootmycorrhizal colonization intensity (M. colonization,%), the net uptake rate of nitrogen (N uptake, lmol
g�1 d�1), coarse-to-fine root mass ratio (Coarse : fine), root hair length (Hair length, lm), root production (Production, g m�2 yr�1), and root turnover rate
(Turnover, yr�1). Datawere filtered to includeonly fine roots formost of the traits, except coarse-to-fine rootmass ratio,maximumrootingdepth, and root hair
length. Right panel: estimate total species number by climate biome from theWorldChecklist of Vascular Plants (WCVP;Govaerts et al., 2021; POWO,2023).
Data sources, climate zone descriptions, and processing details are in Supporting Information.

� 2024 The Authors

New Phytologist� 2024 New Phytologist Foundation

New Phytologist (2024) 242: 351–371
www.newphytologist.com

New
Phytologist Viewpoints Forum 355

 14698137, 2024, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.19561 by Lancaster U

niversity The Library, W
iley O

nline Library on [21/03/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



tropics (e.g.Moraceae,Malvaceae, and Sapotaceae). Root traits can
also be diverse over small spatial scales in tropical forests, with high
variation in fine-root traits found within and among individuals of
a species, as well as among species (in Box 1). At the same time, the
large bioregions of the tropics have some separation in root traits
(Addo-Danso et al., 2020). Overall, tropical forests appear to have
greater variation andmore unique combinations of root traits, both
at species and community scales, compared with temperate
ecosystems, presenting a special challenge to vegetation modelers.

Third, fine-root strategies are organized around different
resources in many tropical forests compared with temperate
biomes. Specifically, soilmoisture variation andP scarcity appear to
drive tropical forest root dynamics and traits (reviewed in
Dallstream et al., 2023; Cusack et al., 2021), rather than
temperature fluctuations and N scarcity as in many higher latitude
ecosystems. Associations with mycorrhizal symbionts in tropical
forests are broadly linked to P and water acquisition and include
both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal
fungi (ECM). Rather than the temperate-ecosystem paradigm of
AMF promoting fast decomposition and nutrient cycling vs ECM
promoting slow nutrient cycling (Cornelissen et al., 2001; Phillips
et al., 2013; Read et al., 2017; Averill et al., 2019; but seeWeemstra
et al., 2016), in tropical forests, both types of mycorrhizal
association have been related to fast and slow nutrient cycling
(Chuyong et al., 2000; Keller & Phillips, 2019; Weemstra
et al., 2020). Also, in contrast to obligate N fixation by actinorhizal
N-fixing trees dominant in temperate and boreal biomes, rhizobial
N-fixing trees common in tropical forests can downregulate N
fixation (facultative fixation; Barron et al., 2011; Menge
et al., 2014). Thus, tropical forest root symbionts respond to
different types of nutrient limitation with distinct strategies
compared with root symbionts in higher latitude ecosystems.

Integratingmulti-functional tropical root representation into
vegetation models

We now compare and synthesize current empirical and model
understandings of tropical root functions.We organize this section
around: (1) root characteristics with strong empirical support for a
functional role, and which thus should be prioritized for model
integration, vs (2) root traits that are commonly measured but do
not yet clearly indicate a root function, or which lack clear
relationships to resource availability, and thus are not (yet) suited
for model integration. The first part highlights three important
functional aspects of roots: (a) general soil exploration for resource
acquisition, (b) coordination and trade-offs for root nutrient vs
water acquisition, and (c) aboveground–belowground functional
linkages inwater andnutrient uptake anduse.We consider both the
quantity and spatial deployment of roots as well as their activity
(Zhang et al., 2023). For each of these three areas, we describe: (1)
empirical advances and understanding; (2) current model
representation; and (3) avenues for model improvement and data
needs. We do not advocate that models incorporate all root traits
and functions, which would unnecessarily complicate them and
increase uncertainty. Rather, we attempt to identify the data that
are promising for improving functional representation, and model

components that are confirmed or at odds with field data (e.g.
Medlyn et al., 2015).

Wesummarize empiricallymeasured root characteristics (Table1)
alongside an assessment of root function representation in 15 leading
vegetation models (Table 2). These models include some linked to
global Earth system models (ESMs), demographically resolved
vegetation models (e.g. representing forest age and structure), and
individual-based models. We compare how root characteristics are
emphasized in empirical and modeling research (Table 3), showing
that some functional root characteristics are understudied relative to
their representation in models, while other well-characterized
tropical root functions are under-developed in models.

Root traits strongly linked to tropical forest function – ripe for
models

Dynamic soil exploration: empirical advances Root character-
istics like biomass and depth distribution are clearly linked to soil
exploration for resources (Fig. 1), with the largest availability of
species-level data from the wet tropics for root biomass,
production, turnover, and specific root length (SRL, length/mass;
Fig. 2, Guerrero-Ramirez et al., 2021). Higher SRL increases the
volume of soil explored per unit of root biomass (McCormack
et al., 2015; demonstrated in https://youtu.be/uHZqG5eKShI).
The most prevalent patterns of allocation to root biomass for soil
exploration in tropical forests (recently reviewed by Cusack
et al., 2021) are as follows: (1) relatively greater root biomass and
root production rates in infertile surface soils vs fertile surface soils,
likely for rapid uptake of scarce mineral nutrients released from
litter decomposition; (2) relatively greater root biomass in surface
soils in wetter vs drier conditions, likely because extreme drying in
tropical forests causes surface root death; (3) faster fine-root
turnover in wetter vs drier conditions and in fertile vs infertile soils,
likely indicating a less conservative plant life strategy when
resources are abundant; (4) greater fine-root SRL under resource
scarcity, both for dry vs wet conditions and infertile vs fertile soils,
indicating maximization of soil explored per unit biomass; and (5)
greater root production rates in the subsoil vs surface soils under dry
vs wet conditions, likely of deep water acquisition. These
comparisons were true both across biogeographic gradients and
experimental treatments that varied the availability of rock-derived
nutrients like P and potassium (K; e.g. Wurzburger &
Wright, 2015; Cusack & Turner, 2021; Reichert et al., 2022),
and across seasonal or drought-induced soil moisture variation (e.g.
Kummerow et al., 1990; Janos et al., 2008; Metcalfe et al., 2008).
These soil exploration patterns for root biomass, production,
turnover, and SRL are the best supported by the literature for
tropical forest root characteristics.

Dynamic soil exploration: model representation Among the 15
models reviewed here (Table 2), root representation was generally
implemented as less dynamic in response to moisture or nutrient
availability than suggested by the empirical research synthesized
above. For example, root turnover was a constant value in the
models we assessed. Only two of the models allowed maximum
rooting depths to change with tree size (i.e. size-dependent rooting
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depth), even though 13 of the models had the capacity to resolve
tree size (Table 2). None of the models allowed vertical root depth
distributions to respond to changes in soil moisture or nutrient
availability.

Dynamic soil exploration: avenues for model improvement Ena-
bling individual-, cohort-, or PFT-specific rooting distributions

and depths, and related resource partitioning, is the forefront of
model development, which could build on the vertically variable
root allocation scheme of Drewniak (2019). Under this type of
representation, different plant groups in the community would
have different strategies in accordance with some defined resource
strategy, which could include coordination between above- and
belowground traits (see section below). Incorporating
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Box 1 High fine-root trait variation within and among individuals suggests morphological trait flexibility in tropical forests

New data from two tropical forests indicate large intra-specific and
individual-scale variation in morphological traits for absorptive roots
(orders 1–4). A comparison of the proportion of variation explained by
species, individual trees, individual root segments (replicated per
individual), and residual (unexplained) variance. The Panama data include
10 replicate individuals for each of two species, and Puerto Rico data
include two to three replicate individuals for each of six species to assess
inter- and intra-specific variation, with details given in Supporting
Information Notes S1. Overall, root segments within individuals con-
tributed a large portion of the variance when there was replication at the
individual scale (Panama data). When individuals were not well replicated
but more species were measured, individual and species contributed
similarly to variance for fine-rootmorphology (Puerto Rico data). Data are
provided as Datasets S1 and S2. Bars show the percent of variance
explained by each component, with statistical methods in Notes S1. These
data support recent publications indicating that root traits are less
phylogenetically conserved in tropical forests (see main text) and suggest
that tropical forest community-scale root characteristics are likely dynamic
in response to resource shifts. More work must be done to directly link
these commonly measured fine-root morphological traits to functional
root activities like nutrient and water uptake and transfer.
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belowground resource partitioning would allow for a more holistic
differentiation between resource-acquisitive and resource-
conservative strategies, as well as contrasting strategies for nutrient
andwater acquisition anddrought tolerance. In addition to variable
rooting depth by PFTs, increasing model capacity for root systems
and functions to respond dynamically to resource changes is an
ongoing challenge for vegetation models (Wang et al., 2023). A
particular challenge is posed by model structures that are not
spatially explicit within grid cells and given soil layers (Table 2; the
gap models reviewed are only spatially explicit aboveground), such
that resource partitioning is not possible belowground and
resources are shared by all members of the community. Innovative

model approaches, which allow for incomplete resource sharing
across individuals, cohorts, and/or PFTs while still maintaining
mass balance, would enable resource-conservative strategies as
PFTs to emerge through trait filtering (Scheiter et al., 2013). For
example, a fraction of the total resource pool could be allocated as
PFT-specific (nonshared) and the remainder as shared across the
community. Such model developments could be complemented
with empirical research, such as species responses to nutrient
additions in the field using identification approaches (e.g. DNA
barcoding; Jones et al., 2011). This would help assess root
exploration patterns and flexibility across species, and could inform
the creation of species clustering or PFTs in models.

Table 3 Tabulation is presentedof the root characteristicspresent inTable1 (‘1. Empirical research focus’), and inTable2 (‘2.Model focus’), andpresent inboth
(3. Common), comparing empirical understanding with model use (Caveats).

1. Empirical research focus
(lacking model
representation)

2. Model focus (lacking
empirical focus or
understanding)

3. Common to models and
empirical research

Caveats for commonalities betweenmodels and empirical
research

Root phenology (seasonality
of production/mortality)

Root : Leaf biomass ratio Root biomass Models emphasize coarse root biomass as a stock,
empirical research emphasizes fine-root biomass for
resource acquisition

Root hair abundance and
length

Water stress factor Max rooting depth and root
depth distributions

Models emphasize water uptake, empirical research
combines with root depth distributions for nutrient
uptake also

Root order distributions Fraction of tree hydraulic
resistance in roots

Root tissue CN(P) Stoichiometry is not clearly functionally important in
empirical studies. In models, this is commonly used for
nutrient accounting and to drive nutrient demand, so in
neither case is this a functional trait

Root enzyme production
(e.g. phosphatase)

Root membrane
permeability

Root production and turnover
rates

Root production and turnover rates are understood
similarly in empirical and modeling work, but are poorly
characterized in tropical empirical data

Root tissue density C cost of N fixation and C
cost of mycorrhizal nutrient
acquisition

Fine-root specific root length
(SRL)

Used as a PFT trait in somemodels or as a global constant;
in empirical work SRL is responsive to resource
availability within and among tropical species and is not
clearly distinct among species

N fix nodule turnover rates Water and nutrient uptake rates Understood similarly in empirical and modeling work, but
poorly characterized for the tropics

Maintenance respiration C
cost of nodules

Root diameter Related to uptake and transport in both models and
empirical research

Nutrient uptake rates of
AMF vs ECM associations

Root conductance rates and
embolism vulnerability (P50)

Very poorly characterized in roots overall, especially in the
tropics

Root organic exudate
production

Exudation rates and chemistry are poorly characterized in
tropical empirical data, appear linked to nutrient uptake

N fixation rates and nodule
biomass

Relatively good empirical understanding of N fixation and
its function relative to other root traits; represented in
most models with improvement needed

Mycorrhizal type Type (AMF vs ECM) related to N uptake rates in models,
not supported by tropical data, likely more related to P
uptake in tropics but this not in models

Root characteristics in Tables 1 and2 are combined. Column3gives characteristics common to bothmodels and empirical research,withCaveatswhen the trait
is understoodoruseddifferently in empiricalwork comparedwithmodel applications.Note that information is organized in columns such that columns1, 2, and
3 do not correspond horizontally. AMF, arbuscular mycorrhizal fungi; ECM, ectomycorrhizal fungi.
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Coupledhydro-biogeochemical strategies: empirical advances There
are very few empirical data linking root water and nutrient
acquisition strategies in tropical forests, but there have been
advances in identifying clusters of root traits for nutrient
acquisition. This recent work could be built on to include clusters
of belowground hydraulic traits (Table 1, e.g. rooting depth
and root embolism vulnerability). Much of the nutrient
acquisition trait work in tropical forests has been for P, developing
clusters of traits, or ‘syndromes’, targeted at P acquisition. Plant
P acquisition strategies include different combinations of
root phosphatase production, root branching ratios, SRL, mycor-
rhizal symbioses, root hair length and density, and organic
exudates to promote mineralization by decomposers (Ushio
et al., 2015; Weemstra et al., 2016; Freschet et al., 2021b; exudate
measurement demonstration: https://www.youtube.com/watch?
v=n0CQ0lo7pbs). A framework grouped these P acquisition
strategies into root P acquisition ‘syndromes’ for tropical forests,
identifying sets of root morphological traits and mycorrhizal
types that are often found together, and provide unique strategies
for P acquisition from mineral and organic forms (Dallstream
et al., 2023). For example, one tropical forest study identified clear
trade-offs in P acquisition strategies among tree species, such as
high fine-root phosphatase activity vs increasedmycorrhizal hyphal
length (Zhu et al., 2023), although morphological trade-offs were
less clearly linked to P acquisition. We have yet to formulate
mathematical response surfaces defining which trait combinations
are expressed underwhat nutrient conditions,whichwould bemost
useful for models. Such frameworks could be expanded to include
strategies for acquisition of other nutrients and water to develop
holistic hydro-biogeochemical functional types.

Some work in the tropics has explored plant trade-offs for
the acquisition of different nutrients. It was proposed that N
fixation and P acquisition are coordinated in P-scarce tropical
forests, because phosphatase enzymes areN-rich proteins (Houlton
et al., 2008). Studies in Costa Rica (Nasto et al., 2014;
Soper et al., 2019) and Panama (Nasto et al., 2014; Batterman
et al., 2018) found mixed support for a relationship between
N fixation and root phosphatase activity, indicating that other P
acquisition strategies such as mycorrhizal symbiosis and fine-root
production should also be assessed for coordination with N
acquisition (Allen et al., 2020; Lugli et al., 2020; Braghiere
et al., 2022; Reichert et al., 2022). New data presented here from
Panama and Singapore demonstrate variation in nutrient uptake
rates for different nutrients, with some links to root morphological
traits that could be used to further develop resource acquisition
syndromes (Box 2), method demonstration (https://youtu.
be/4atZ3E0NrX4). Because direct nutrient uptake measures at
the root system level are destructive and difficult to scale up (e.g.
Cornelissen et al., 2001), more work is needed to explore whether
nutrient uptake rates can be related to surrogates, such as laboratory
observations linking P uptake rates to root phosphatase activity
(Lee, 1988), and root phosphatase relationships with mycorrhizal
colonization, root branching ratio (Yaffar et al., 2021), SRL, and
other root morphological traits (Lugli et al., 2020; Cabugao
et al., 2021; Han et al., 2022, Box 2), as well as responsiveness of

these traits to soil P availability (Ushio et al., 2015; Guilbeault-
Mayers et al., 2020; Cabugao et al., 2021; Lugli et al., 2021).
Acquisition of different nutrients could then be explored in relation
to water uptake.

Coupled hydro-biogeochemical strategies: model represen-
tation Among the root traits included in the 15 models assessed
here (Table 2), water stress or water uptake was represented in
13models vs only fivemodels that represented nutrient acquisition
(N or P), with representation of P dynamics particularly lacking.
Similar to the empirical disconnect between nutrient and water
acquisition research (discussed above), none of the models
explicitly represented coupled hydro-biogeochemical cycling, so
we summarize water and nutrient acquisition separately, and
generally call for greater coordination of these two areas of model
development.

Overall, 13 of the 15 models represented plant hydraulic traits
(Table 2). The most common trait representing plant hydraulic
functionwasmaximum rooting depth (in 12 of 15models, Table 2),
whichwas either a constant (fourmodels) or a PFTcharacteristic and
was not responsive to changes in moisture. The next most common
hydraulic parameters were ‘water stress factor’ (related to soil
moisture, in 10 models), followed by water uptake rate (six models,
Table 2). The model with the broadest representation of plant
hydraulic traits was FATES-Hydro (with PARTEHmodule), which
additionally represents root hydraulic resistance, embolism vulner-
ability, fine-root radius, and permeability. Comparing themodels to
plant hydraulic traits emphasized by empiricists, root phenology,
root hair length and density, and mycorrhizal symbiosis were not
used in the models to represent plant hydraulics (Table 3).

Nutrient uptake processes were represented in fewer models
compared with plant hydraulics, with only six of the
models representing some aspect of nutrient uptake (Table 2).
Root exudation of nonstructural carbohydrates was linked to
priming and nutrient availability in three of the models, and two
models had some representation of symbiotic nutrient uptake,
including biological nitrogen fixation (BNF) and mycorrhizal
nutrient uptake (Table 2). Representation of N acquisition
processes was more developed than P acquisition (Table 2). The
most common nutrient parameter functionally related to nutrient
uptake in themodelswas the rate ofNuptake,whichwas responsive
to changes in soil nutrient availability (fivemodels), followed by the
rate of P uptake (four models, Table 2). Some of the models
employed constant nutrient uptake parameters based on diffusion
and kinetics, and others accounted for chemical interactions of soil
nutrients with minerals and soil microorganisms (Thum
et al., 2020; Yu et al., 2020). For example, LM4.1-BNF included
many parameters for modeling N uptake (Table 2), including
passive nutrient uptake (via transpiration stream), active uptake
(via a C cost and Michaelis–Menten dynamics), and symbiotic
nutrient acquisition. Meanwhile, P uptake was represented only in
four of the models using just one parameter (P uptake rate). Some
root characteristics that are empirically related to resource
acquisition were included in the models, but without nutrient
functionality. For example, vertical root biomass distribution
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was in 12 of the 15models (Table 2); however, this parameter was a
PFT characteristic and not responsive to changes in resource
availability. Of the root characteristics commonly related to plant
nutrient acquisition by empiricists (Table 1), SRL, root phenology,
root hair length and density, root order distribution, root

phosphatase, and protease enzyme activities were not represented
at all or were not directly linked to nutrient acquisition in the
models (Table 3). Based on the empirical advances above, more
models could consider implementing coordinated strategies for N
and P acquisition, together with plant hydraulics.

Box 2 Fine-root nutrient uptake rates and relationships to morphology for tropical trees

Directmeasures ofnutrientuptake rates by tropical trees are rareand rarelymeasured in relation tobroader nutrient limitation tonet primaryproduction (NPP)
or to fine-rootmorphological root traits. Here,wepresent newdata for fine-root nutrient uptake rates in awell-characterized lowland Panamanian forest and
show relationship between uptake rates and fine-root morphology, with similar data available for two tree species in Singapore in Supporting Information
Notes S1. Details and additional results are in Notes S1 and data are provided as Datasets S3 and S4. Across 33 mature individuals of a relatively abundant
Panamanian lowland species Protium picramnioides, there were significantly greater nutrient uptake rates for potassium (K) vs ammonium (NH4

+), nitrate
(NO3

�), and phosphate (PO4
3�). Figure means are shownwith quantiles (F3,87 = 6.78; P = 0.022), letters indicate significant differences using Tukey HSD

tests, data shown in gray points. This result supports data from a long-term nutrient fertilization experiment in the same site showing that K addition reduced
fine-root biomass, length, RDT, and increased SRL (Wurzburger & Wright, 2015), suggesting K limitation to root processes and fine-root dynamic
responsiveness to changes in K availability. Data for two other Panamanian species and two species in Singapore also showed variation in uptake rates among
nutrients (Notes S1). The Panamanian species had strong correlations between nutrient uptake rates and root morphology, including positive correlations of
NO3

� and PO4
3� with SRL (r2 = 0.83 and 0.88, respectively), negative correlations of uptake with RTD (r2 = 0.99 and 0.71, respectively), and a negative

correlationofPO4
3�with rootbiomass (r2 = 0.75, seeNotesS1).This result supports the idea inBox1 that tropical forest fine-rootmorphology is responsive to

changes in nutrient availability, and that morphology is related to nutrient uptake. Methodological details and raw data are in Notes S1 and shown at
https://youtu.be/4atZ3E0NrX4. Dynamic nutrient uptake rate measurements within and among sites should be measured with fine-root morphological
characterization, which could help inform dynamic root responses to changing resources in vegetation models. Considerably more data are required.
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Coupled hydro-biogeochemical strategies: avenues for model
improvement Integrating hydraulic and nutrient model compo-
nents is the forefront of vegetation model development. Model
development of root dynamics has proceeded on almost entirely
independent paths for plant hydraulics vs nutrient acquisition, even
within the samemodel (via separatemodules, e.g. FATES, LM, and
LPJ; Table 2), such that coordinated responses to resource changes
and C costs for water vs nutrient acquisition are not represented.
And, within these parallel model developments, little attention has
been given to the unique characteristics of tropical forests (e.g.
moisture seasonality, drought, and P scarcity). Model advances
toward coordinating water and nutrient uptake include: (1)
vertically resolved both water and nutrient transport between
layers (e.g. ELM-CNP; Yang et al., 2019); (2) represented the C
cost of coarse and fine-root allocation across depths (e.g.
Sakschewski et al., 2021); and (3) represented water and nutrient
foraging functions of roots across depths (Christoffersen
et al., 2016; Xu et al., 2016; Langan et al., 2017; Kennedy
et al., 2019; Joshi et al., 2022; Knox et al., 2023). Hydro-
biogeochemical model integration would allow a better representa-
tion of the fast–slow plant lifestyle continuum (Reich, 2014) by
including trade-offs in nutrient acquisition (shallow-rooted) vs
stable water supply (deep roots). Oliveira et al. (2021) argued that
the fast–slow continuum maps onto variation in soil fertility, and
the risky-safe hydraulic safety trade-off occurs across moisture
gradients. Hydro-biogeochemical integration would follow in the
spirit of allowing ecosystem function and community traits to
emerge from competitive ecological interactions (Scheiter
et al., 2013; Fisher et al., 2015). This integration would also
enable models to better represent ‘trait filtering’ of plant groups
across multiple gradients, such as the sorting of tropical tree species
that is observed according to both moisture and P affinities across
the Isthmus of Panama (Condit et al., 2013).We argue that the next
step in this line ofmodel development to represent tropical forests is
to integrate hydraulic and nutrient model components.

Coupled aboveground–belowground resource strategies: empiri-
cal advances While leaves and fine roots are somewhat analogous
as aboveground/belowground resource acquisition plant struc-
tures, there is variation in the degree to which analogous traits like
specific leaf area (SLA) vs SRL, and leaf vs root lifespans correlate
across biomes (Withington et al., 2006; Jiang et al., 2021).

Very few studies have focused on aboveground–belowground
functional linkages in tropical forests, with most attention to plant
hydraulics. For example, maximum rooting depth of different
species (usually measured for coarse roots) has been linked to
deciduousness in tropical forests, particularly in regions with
distinct dry seasons and mixed communities of deciduous, semi-
deciduous, and evergreen species (Sobrado & Cuenca, 1979;
Sampaio, 1995; Smith-Martin et al., 2020). In Amazonian forests,
designations have been identified for: (1) deep-rooted, evergreen
drought avoiders; (2) shallow-rooted, deciduous drought avoiders;
and (3) shallow-rooted, evergreen drought tolerators with
embolism-resistant vascular systems (Brum et al., 2019; Chitra-
Tarak et al., 2021). Interestingly, hydraulic aboveground–below-
ground linkages appear to be strongest under stressful conditions.

In the Amazon, only under dry conditions were there linkages
between stem embolism vulnerability and rooting depth (e.g.
Oliveira et al., 2019; Laughlin et al., 2021), with these linkages
lacking in wet conditions. While these hydraulic groupings are
helpful, there can be large variation in maximum rooting depth
among coexisting species of similar lifeform and deciduousness, as
demonstrated here for a Costa Rican dry forest (Box 3). To explore
this, aboveground hydraulic traits could be linked to belowground
traits beyond maximum rooting depth, which is very difficult to
measure, such as overall root biomass depth distributions, vessel
diameter, root embolism vulnerability, and seasonal changes in
root production (i.e. phenology; Germon et al., 2020). Data on the
embolism resistance of roots are particularly scarce (e.g. Domec
et al., 2006), and could be a focus area for future research to link to
aboveground hydraulic vulnerability.

For nutrient aboveground–belowground coordination, a recent
global review indicated greater coordination of leaf with rootN : P
ratios in tropical forests relative tomost other biomes, likely related
to widespread tropical soil P scarcity and conservation of P in plant
tissues (Wang et al., 2022). A broad-scale paper linking remotely
sense canopy traits in Panama with soil data found that canopy
greenness (a surrogate for NPP) corresponded to variations in soil
fertility and toxicity (Fisher et al., 2020). Also, AMF vs ECM
association has been linked to canopy reflectance properties in
tropical forests inHawai’i (as well as inmany temperate sites), likely
also indicating aboveground–belowground plant nutrition lin-
kages (Sousa et al., 2021). While these root-canopy linkages are
suggestive, we lack more functional measurements of coordinated
root and canopy nutrition strategies in tropical forests.

Coupled aboveground–belowground resource strategies: model
representation Of the 15 vegetation models, several linked
aboveground deciduousness with root traits, and most had an
uneven representation of belowground vs aboveground traits and
functions, with an average of c. 30 aboveground traits compared
with only about eight root traits represented per model (Table 2).
Of the models with explicit linkages, Ecosystem Demography
model 2 (ED2) included a trait-driven plant hydraulic module
that represents drought deciduousness and plant water stress
(Medvigy et al., 2009; Medvigy & Moorcroft, 2012). ED2 also
used three PFTs with different rooting depths: a deeper-rooted
evergreen PFT, a shallower-rooted deciduous PFT (Xu
et al., 2016; Smith-Martin et al., 2020) and a liana PFT with a
different rooting depth of trees (Meunier et al., 2021). The
different rooting depths per PFT are linked to data on deciduous
and evergreen phenologies for tropical forests (Xu et al., 2016;
Smith-Martin et al., 2020). Similarly, LPJmL4.0-VR adapted a
traditional PFT-based model using deciduousness in the Amazon,
and defined a spectrum of PFTs from shallow to deep-rooted,
which are dependent on tree size, including vertically resolved
coarse roots (Sakschewski et al., 2021). These groupings follow
the empirical data described above. Overall, aboveground–
belowground links in plant hydraulics are still in the early stages
of development, but these could form the foundation for more
integrative plant function in PFTs or trait clusters for tropical
forests, with support from the empirical data.
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Box 3 Tropical forest maximum rooting depth linked to life form and deciduousness, but much variation remains

Deep roots are particularly important for water uptake and redistribution to support transpiration demands during dry periods (Markesteijn &
Poorter, 2009), and aboveground phenology has been linked to rooting depths in dry tropical forests (Smith-Martin et al., 2020). Here, a new analysis of
data from a dry tropical forest in Costa Rica shows relationships between aboveground life form and rooting depth for juvenile and mature trees. This
analysis shows that mature evergreen trees had c. 2x the maximum rooting depth of co-occurring mature deciduous lianas and trees, indicating
aboveground–belowground trait coordination. Letters showmeans separationsusing TukeyHSD tests; boxes showmeans andquartiles; data are shown in
gray points. Details are provided in Supporting InformationNotes S1, anddata are provided asDataset S5. These patternswere not present in juvenile trees
(top panels), suggesting that belowground niche partitioning develops over time. At the same time, there was substantial variation in maximum rooting
depth among mature species that were classified as the same functional type using aboveground deciduousness, suggesting that a more refined
understandingofbelowgroundhydraulic strategieswithin thesegroups couldhelp separate species intomore functionally explicit groupings. Suchaholistic
below-abovegroundrepresentationofwater acquisition strategies could contribute to improved tropical forest plant functional types (PFTs)or trait clusters,
which could then be combined with nutrient acquisition types to improve tropical plant representation in vegetation models.
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For nutrient acquisition, aboveground–belowground coupling
in vegetation models is less developed, and most commonly
represented as photosynthate (i.e. C) expenditure for the acquisi-
tion of soil nutrients based on plant N demand, including
representation of physiological limits to nutrient uptake and
efficient optimization of C allocation (reviewed in Davies-Barnard
et al., 2022). For example, in the representation of nutrient uptake
in the Fixation & Uptake of Nutrients (FUN) model, GPP drives
nutrient uptake demand and supplies the C for expenditure (Fisher
et al., 2010; Brzostek et al., 2014; Shi et al., 2016;Allen et al., 2020).
TheDavies-Barnard et al. (2022) review illustrates thatC allocation
for nutrient uptake represents a significant advance over older
representations, such as BNF as a function of evapotranspiration.
Key to the C expenditure approach are the concepts of nutrient
limitation and photosynthetic downregulation, which occur when
there is not enoughC to grow new leaves because of highC costs for
soil exploration for scarce nutrients.

Coupled aboveground–belowground resource strategies: avenues
for model improvement Integrating more of the hydraulic
function of fine and coarse roots into existing aboveground–
belowground hydraulic PFTs is an important next step for model
development (Fig. 1). In particular, aboveground–belowground
linkages for plant hydraulics could be expanded, including the
hydraulic function of coarse roots, which is rare in vegetation
models, present in only four of the models we assessed (Table 2).
Coarse roots in the models were generally represented as support,
biomass storage, and root depth distribution, but they were not
directly related to water uptake or transport. Moreover, while
models sometimes represent the C cost of fine roots, the C cost of
coarse roots is only implicitly embedded within an allocation to
stem production. Here, we advocate that models explicitly
represent the C cost of coarse roots that have a direct link to
function. This would allow modeled C assimilated aboveground
and allocated to coarse roots (investment cost) to be more directly
linked to water uptake, following the approach of Sakschewski
et al. (2021).With the cost of both fine and coarse root production
explicitlymodeled by soil depth, and the returns of such investment
represented in terms of water uptake (see plant hydraulic-enabled
models, Table 2), models would be in a position to represent the
three-way trade-off presented by Oliveira et al. (2021) among: (1)
embolism resistance (P50); (2) water table access (deep roots); and
(3) water loss control (deciduousness and stomata regulation). An
early advance has beenmade in this direction: the aDGVM2model
has shown how this three-way trade-off can emerge from variable
rooting depth and trade-offs with P50 and deciduousness (Langan
et al., 2017). Given the empirical support for this three-way trade-
off, and recent advances in the modeling of variable rooting depths
and plant hydraulics, we argue that this is a well-justified avenue for
data-model integration and development using the small but
growing availability of data. A focused collection of data on root
hydraulics, such as root embolism resistance, would help to clarify
the aboveground–belowground coordination of this three-way
trade-off for tropical forests with periodic moisture scarcity.

For aboveground–belowground nutrient coordination in mod-
els, there remain outstanding empirical questions – and hypotheses

that can be tested in models – of how C allocation and nutrient
acquisition interact. For example, what is an accurate trade-off
between C expenditure above vs belowground under nutrient
scarcity? To what extent can stoichiometric flexibility of different
plant tissues mediate or exacerbate nutrient limitations? How do
these individual plant-level processes manifest in larger model grid
cells of multiple plants, cohorts, traits, or other PTFs? Investiga-
tions into these types of aboveground–belowground nutrient
acquisition questions could then be combined with hydraulic
aboveground–belowground linkages to get more coupled hydro-
biogeochemical PFTs.

Tropical root traits not clearly linked to function – not ripe for
models

It is important to note a set of root traits that are commonly
measured and comprise a large portion of our empirical tropical
data (Fig. 2), but which thus far have not been demonstrated to link
clearly to root function (Table 1). These traits included as follows:
root tissue nutrient content and C : N : P stoichiometry, aspects
of root morphology (e.g. root tissue density), and mycorrhizal
biomass or colonization rates in the absence of functional
characterization. Root nutrient content and morphology have
been used as proxies for resource acquisition and symbiotic
strategies (Addo-Danso et al., 2018; Bergmann et al., 2020);
however, the functional roles of root nutrient content and
morphological traits like RDT for resource acquisition are not
clear or consistent (Freschet et al., 2021b).

Recently, an expanded global database including root C : N : P
and morphology was published as the Global Root Trait (GRooT)
database (Guerrero-Ramirez et al., 2021; Fig. 2), which may be
useful for further exploration of functional linkages to stoichio-
metry. To increase the functional utility of this database, these
commonly measured traits are being compared and related to
smaller data sets for tropical nutrient uptake rates, phosphatase, and
protease activities. We present an example of this type of exercise
using new data, highlighting the difficulty of relating fine-root
stoichiometry to functional groupings like N fixation or mycor-
rhizal association (Box 4), particularly in the absence of direct
measures of N fixation, such as using 15N2 labeling experiments
(e.g. https://www.youtube.com/watch?v=7jxM1KZ0f3Q) or
direct measures of mycorrhizal-plant C exchange (e.g.
https://youtu.be/mNq8eQxDCqM). Given the large availability
of root nutrient content data relative to othermore functional traits
(Fig. 2), it is worth pursuing these comparisons to see whether and
when we can infer root functionality from stoichiometry, noting
that root stoichiometry in models plays an important role for
determining nutrient storage and stocks of biomass (Table 2).

Root morphology has been used as an indicator of nutrient
acquisition strategies, but there have been very few direct
demonstrations of these relationships. Highlighting the difficulty
of using morphological root traits to infer function, fine-root traits
(diameter, SRL, root tissue density, and branching) for 1467
Amazonian tree species had no significant association with
landscape-scale shifts in bulk soil fertility (Vleminckx
et al., 2021). This is in contrast to some aboveground tropical
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forest traits, like canopy greenness and nutrient content, which
often covary with soil fertility and soil texture (Fyllas et al., 2012;
Fortunel et al., 2014; Fisher et al., 2020). Root diameter, which is
functionally most closely related to water conductivity, has been
used as a proxy for AMF colonization rate, even though this
relationship has not been consistently demonstrated for tropical
forests (Kong et al., 2014; Lugli et al., 2020; Yaffar et al., 2021).We
present new data from Panama where some root morphological
characteristics were strongly correlated to paired measurements of
nutrient uptake for two canopy tree species, and nutrient uptake

rates were different among nutrients for one canopy species.
However, these relationships were not apparent in similar new data
for two species from Singapore, possibly because the Panama data
were characterized according to root order (only root tips–1st order
– used, or roots separated for the first three absorptive root orders
formorphology, Box 2 andNotes S1). Thus, further exploration of
if, how, and under what conditionsmorphological traits are related
to nutrient (and water) uptake is warranted, and there appear to be
promising relationships if roots are assessed at a scale relevant to
absorptive activity.

Box 4 Using fine-root stoichiometry as a surrogate for functional traits

Plant tissue stoichiometry could be a relatively easyway to start constraining nutrient acquisition in functional groupings since fine-root C : N : P data are
relatively more available than functional trait measurements like nutrient uptake (Fig. 2).
However, there remains a knowledge gap linking tropical root stoichiometry directly to nutrient or water acquisition. Fine-root P and N concentrations
could reflect fine-root P and N acquisition rates, either directly or via symbiosis. For example, fine-root P is strongly correlated to leaf P concentration
(Holdawayet al., 2011), soil inorganic and total P content (Holdawayet al., 2011; Schreeget al., 2014; Freschetet al., 2021b), and soil extractable P (Yaffar
et al., 2021). Here, we present new data on fine-root N and P content for Panamanian trees with three root symbiont types (arbuscularmycorrhizal (AM),
ectomycorrhizal (EM), andN-fixing (Nfix)) toexplore functional relationships.WhileNfixers tended tohavehigher rootNcontent, therewereno significant
differences in root stiochiometryacross these three functional types. Figure showsmeansandquantiles fornine tree species (n = 3 individuals per functional
type); dataare shown ingraypoints; no letters indicateno significantdifferences amonggroupsusingTukeyHSDtests.Details on speciesusedandmethods
are in Supporting Information Notes S1, and data for each tree species are provided as Dataset S6. These data highlight the uncertainty of using root
stoichiometry to assess symbiotic activity or nutrient uptake rates without additional measurements. Further investigation to confirm whether root
stiochiometry is indicative of tropical plant fine-root functional activity would be useful, since root stoichiometry is one of the most abundant types of
tropical root data (Fig. 2).
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For mycorrhizae, assessments of colonization, presence, or
biomass are the most commonly used methods (Sheldrake
et al., 2018; Olsson & Lekberg, 2022), but these measures do not
necessarily indicate functional activity since fungal biomass can be
present but not active. These measures could be improved if they
were related to direct measurements of C or nutrient transfers
between tree and fungal symbionts, such as 13CO2 pulse labeling of
plants and subsequent transfer of 13C-enriched C to symbionts
(Lekberg et al., 2013; Chaudhary et al., 2022, Kaiser et al., 2015;
e.g. https://youtu.be/mNq8eQxDCqM), which would allow a
better assessment of the functional value of colonization data.

Clarifying the utility of these commonly measured fine-root
traits for inferring functions in tropical forests would be useful,
given the relatively large quantity of fine-root nutrient, morpho-
logical, and colonization data. Absent this, empirical research
should shift toward root traits more clearly linked to specific root
functions, as described above.

Achieving data-model integration for a better understanding
of tropical root function

Wehave identified opportunities for improving our understanding
of fine-root function in tropical forests, and for integrating key root
functions into vegetation models as applied to tropical ecosystems.
Our surveys of empirical andmodeling approaches to utilizing root
data (Tables 1–3) demonstrate several broad trends: (1) there are
some root characteristics for water acquisition (e.g. root biomass
and maximum rooting depth) that are being implemented in
models according to our empirical understanding; (2) there have
been numerous recent advances in characterization of root traits
and functions in tropical forests, but many of these are missing in
vegetation models; (3) models represent some characteristics that
are not easily measured and for which there are few data (e.g.
nutrient uptake kinetics and water transport by coarse roots); (4)
functional characterization of fine roots is often different in models
vs our empirical understanding (Table 3). For example, SRL is used
in some models as a PFT characteristic which is unresponsive to
resource changes, yet recent data indicate that only c. 50% of
variation in SRL might be explained by species differences
(Box 1), and SRL can be very responsive to resource changes in
tropical forests (see discussion above); (5) there are some root
characteristics that are well linked to functions in limited
empirical studies, such as phosphatase activity with P uptake
rates, but which have not yet been sufficiently characterized in
tropical forests to implement response functions in vegetation
models; and (6) some of the most-measured root traits have not
been clearly linked to function, and therefore are not immediately
useful for representing resource acquisition processes in models
(e.g. root nutrient content and diameter). Overall, there is much
work left to be done to bring together empirical and modeling
research on tropical forest belowground functions, with a need for
greater integration going forward.

There are existing frameworks for advancing model-data
integration and for comparing models with different modalities
(Walker et al., 2014; Medlyn et al., 2015; Kyker-Snowman
et al., 2022), but the computational cost of increasing model

complexity must be justified by improved model performance.
More model ensemble experiments for tropical forest biomes
would be useful to test the level of improvement achieved by
representing expanded root function (following Fleischer
et al., 2019; Koven et al., 2020; Caldararu et al., 2023). New
experiments could also test model-derived hypotheses before the
inclusion of a new process in models. For example, the Amazon-
FACE experiment (https://amazonface.unicamp.br/) will test
hypotheses about P dynamics under elevated CO2 that were
developed by using a model inter-comparison (Fleischer
et al., 2019). Some key questions that arose from these modeling
activities are: will CO2 enrichment stimulate root phosphatase
activity sufficiently to alleviate P limitation to growth (Yang
et al., 2019)? And, will including phosphatase production in
models improve predictions of tropical forest productivity and
responses to elevated CO2?

Close interactions between empiricists and modelers over the
course of research projects are essential tomeet the challenges we have
identified in this research agenda.Model-data integration for tropical
forests has improved in the past decade, including efforts such as the
USDepartment ofEnergyNextGenerationEcological Experiments–
Tropics (NGEE-Tropics, https://ngee-tropics.lbl.gov/), theAmazon-
FACE, the TropiRoot network (https://tropiroottrait.github.
io/TropiRootTrait/, described in https://youtu.be/oT2lgeGDnjI),
and the Landscape Evolution Observatory at Biosphere 2 (https://
www.science.org/doi/full/10.1126/science.abj6789), which bring
together field research questions and modeling objectives. None-
theless, support for these endeavors remains limited. We urge that
these collaborationsbewidespread and supportedby funding agencies
in order to improve our understanding and prediction of tropical
forest function and feedbacks to a changing world.
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