414 research outputs found

    Committee Machinesā€”A Universal Method to Deal with Non-Idealities in RRAM-Based Neural Networks

    Get PDF
    Artificial neural networks (ANNs) are notoriously power- and time-consuming when implemented on conventional von Neumann computing systems. Recent years have seen an emergence of research in hardware that strives to break the bottleneck of von Neumann architecture and optimise the data flow; namely to bring memory and computing closer together. One of the most often suggested solutions is the physical implementation of ANNs in which their synaptic weights are realised with analogue resistive devices, such as resistive random-access memory (RRAM). However, various device- and system-level non-idealities usually prevent these physical implementations from achieving high inference accuracy. We suggest applying a well-known concept in computer science -- committee machine (CM) -- in the context of RRAM-based neural networks. Using simulations and experimental data from three different types of RRAM devices, we show that CMs employing ensemble averaging can successfully increase inference accuracy in physically implemented neural networks that suffer from faulty devices, programming non-linearities, random telegraph noise, cycle-to-cycle variability and line resistance. Importantly, we show that the accuracy can be improved even without increasing the number of devices

    Committee machines -- a universal method to deal with non-idealities in memristor-based neural networks

    Full text link
    Artificial neural networks are notoriously power- and time-consuming when implemented on conventional von Neumann computing systems. Consequently, recent years have seen an emergence of research in machine learning hardware that strives to bring memory and computing closer together. A popular approach is to realise artificial neural networks in hardware by implementing their synaptic weights using memristive devices. However, various device- and system-level non-idealities usually prevent these physical implementations from achieving high inference accuracy. We suggest applying a well-known concept in computer science -- committee machines -- in the context of memristor-based neural networks. Using simulations and experimental data from three different types of memristive devices, we show that committee machines employing ensemble averaging can successfully increase inference accuracy in physically implemented neural networks that suffer from faulty devices, device-to-device variability, random telegraph noise and line resistance. Importantly, we demonstrate that the accuracy can be improved even without increasing the total number of memristors.Comment: 22 pages, 18 figures, 4 table

    Committee Machinesā€”A Universal Method to Deal with Non-Idealities in Memristor-Based Neural Networks

    Get PDF
    Arti ficial neural networks are notoriously power- and time-consuming when implemented on conventional von Neumann computing systems. Consequently, recent years have seen an emergence of research in machine learning hardware that strives to bring memory and computing closer together. A popular approach is to realise artifi cial neural networks in hardware by implementing their synaptic weights using memristive devices. However, various device- and system-level non-idealities usually prevent these physical implementations from achieving high inference accuracy. We suggest applying a well-known concept in computer science|committee machines|in the context of memristor-based neural networks. Using simulations and experimental data from three different types of memristive devices, we show that committee machines employing ensemble averaging can successfully increase inference accuracy in physically implemented neural networks that suffer from faulty devices, device-to-device variability, random telegraph noise and line resistance. Importantly, we demonstrate that the accuracy can be improved even without increasing the total number of memristors

    Failure in Internally Pressurized Bent Tubes

    Get PDF
    The analysis and modeling of tube-hydroformed components is more complicated than that employed for sheet-metal panels, due to the lengthier process sequence and variable strain path - from flat-rolled sheet to tube; from straight tube to bent tube; and from bent tube to hydroformed component. These additional process steps make it difficult to determine whether post mortem analyses of tube failure during hydroforming can, and should, be conducted with the same tools and databases as used for simple stampings. To provide a partial answer, the properties of commercially fabricated welded straight tubes were evaluated using a free-expansion internal pressure test and compared with those of free-expansion internal pressure tests on bent tubes. The results demonstrated that the behavior of the bent tube was consistent with the mechanical properties of the as-received tube, provided due notice was accorded to the complex strain history of the bent tube. However, due to the strain-path changes occurring at the failure location, conventional approaches for monitoring strain history would yield (apparently) anomalous results

    Weak up-regulation of serum response factor in gastric ulcers in patients with co-morbidities is associated with increased risk of recurrent bleeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum response factor (SRF) is crucial for gastric ulcer healing process. The study determined if gastric ulcer tissues up-regulate SRF and if such up-regulation correlated with co-morbidities and the risk of recurrent bleeding.</p> <p>Methods</p> <p>Ulcer and non-ulcer tissues were obtained from 142 patients with active gastric ulcers for SRF expression assessed by immunohistochemistry. Based on the degree of SRF expression between these two tissue types, SRF up-regulation was classified as strong, intermediate, and weak patterns. The patients were followed-up to determine if SRF up-regulation correlated to recurrent bleeding.</p> <p>Results</p> <p>Gastric ulcer tissues had higher SRF expression than non-ulcer tissues (<it>p </it>< 0.05). Patients with strong SRF up-regulation had lower rates of stigmata of recent hemorrhage (SRH) on the ulcer base than the others (<it>p </it>< 0.05). Multivariate logistic regression confirmed that co-morbidities and weak SRF up-regulation were two independent factors of recurrent gastric ulcer bleeding (<it>p </it>< 0.05). Combining both factors, there was an 8.29-fold (95% CI, 1.31~52.62; <it>p </it>= 0.03) higher risk of recurrent gastric ulcer bleeding.</p> <p>Conclusions</p> <p>SRF expression is higher in gastric ulcer tissues than in non-ulcer tissues. Weak SRF up-regulation, combined with the presence of co-morbidities, increase the risk of the recurrent gastric ulcer bleeding.</p

    TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data

    Get PDF
    Summary: TREAT (Targeted RE-sequencing Annotation Tool) is a tool for facile navigation and mining of the variants from both targeted resequencing and whole exome sequencing. It provides a rich integration of publicly available as well as in-house developed annotations and visualizations for variants, variant-hosting genes and host-gene pathways

    Household catastrophic healthcare expenditure and impoverishment due to rotavirus gastroenteritis requiring hospitalization in Malaysia.

    Get PDF
    BACKGROUND: While healthcare costs for rotavirus gastroenteritis requiring hospitalization may be burdensome on households in Malaysia, exploration on the distribution and catastrophic impact of these expenses on households are lacking. OBJECTIVES: We assessed the economic burden, levels and distribution of catastrophic healthcare expenditure, the poverty impact on households and inequities related to healthcare payments for acute gastroenteritis requiring hospitalization in Malaysia. METHODS: A two-year prospective, hospital-based study was conducted from 2008 to 2010 in an urban (Kuala Lumpur) and rural (Kuala Terengganu) setting in Malaysia. All children under the age of 5 years admitted for acute gastroenteritis were included. Patients were screened for rotavirus and information on healthcare expenditure was obtained. RESULTS: Of the 658 stool samples collected at both centers, 248 (38%) were positive for rotavirus. Direct and indirect costs incurred were significantly higher in Kuala Lumpur compared with Kuala Terengganu (US222Vs.US222 Vs. US45; p<0.001). The mean direct and indirect costs for rotavirus gastroenteritis consisted 20% of monthly household income in Kuala Lumpur, as compared with only 5% in Kuala Terengganu. Direct medical costs paid out-of-pocket caused 141 (33%) households in Kuala Lumpur to experience catastrophic expenditure and 11 (3%) households to incur poverty. However in Kuala Terengganu, only one household (0.5%) experienced catastrophic healthcare expenditure and none were impoverished. The lowest income quintile in Kuala Lumpur was more likely to experience catastrophic payments compared to the highest quintile (87% vs 8%). The concentration index for out-of-pocket healthcare payments was closer to zero at Kuala Lumpur (0.03) than at Kuala Terengganu (0.24). CONCLUSIONS: While urban households were wealthier, healthcare expenditure due to gastroenteritis had more catastrophic and poverty impact on the urban poor. Universal rotavirus vaccination would reduce both disease burden and health inequities in Malaysia

    The Two Different Isoforms of the RSC Chromatin Remodeling Complex Play Distinct Roles in DNA Damage Responses

    Get PDF
    The RSC chromatin remodeling complex has been implicated in contributing to DNA double-strand break (DSB) repair in a number of studies. Both survival and levels of H2A phosphorylation in response to damage are reduced in the absence of RSC. Importantly, there is evidence for two isoforms of this complex, defined by the presence of either Rsc1 or Rsc2. Here, we investigated whether the two isoforms of RSC provide distinct contributions to DNA damage responses. First, we established that the two isoforms of RSC differ in the presence of Rsc1 or Rsc2 but otherwise have the same subunit composition. We found that both rsc1 and rsc2 mutant strains have intact DNA damage-induced checkpoint activity and transcriptional induction. In addition, both strains show reduced non-homologous end joining activity and have a similar spectrum of DSB repair junctions, suggesting perhaps that the two complexes provide the same functions. However, the hypersensitivity of a rsc1 strain cannot be complemented with an extra copy of RSC2, and likewise, the hypersensitivity of the rsc2 strain remains unchanged when an additional copy of RSC1 is present, indicating that the two proteins are unable to functionally compensate for one another in DNA damage responses. Rsc1, but not Rsc2, is required for nucleosome sliding flanking a DNA DSB. Interestingly, while swapping the domains from Rsc1 into the Rsc2 protein does not compromise hypersensitivity to DNA damage suggesting they are functionally interchangeable, the BAH domain from Rsc1 confers upon Rsc2 the ability to remodel chromatin at a DNA break. These data demonstrate that, despite the similarity between Rsc1 and Rsc2, the two different isoforms of RSC provide distinct functions in DNA damage responses, and that at least part of the functional specificity is dictated by the BAH domains

    The Nā€“Terminal Tail of hERG Contains an Amphipathic Ī±ā€“Helix That Regulates Channel Deactivation

    Get PDF
    The cytoplasmic Nā€“terminal domain of the human etherā€“aā€“goā€“go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the Nā€“terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the Nā€“terminal 135 residues of hERG contains a previously described Perā€“Arntā€“Sim (PAS) domain (residues 26ā€“135) as well as an amphipathic Ī±ā€“helix (residues 13ā€“23) and an initial unstructured segment (residues 2ā€“9). Deletion of residues 2ā€“25, only the unstructured segment (residues 2ā€“9) or replacement of the Ī±ā€“helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the Ī±ā€“helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the Nā€“terminal Ī±ā€“helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel
    • ā€¦
    corecore