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Committee machines—a universal method to deal
with non-idealities in memristor-based neural
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Artificial neural networks are notoriously power- and time-consuming when implemented on

conventional von Neumann computing systems. Consequently, recent years have seen an

emergence of research in machine learning hardware that strives to bring memory and

computing closer together. A popular approach is to realise artificial neural networks in

hardware by implementing their synaptic weights using memristive devices. However, var-

ious device- and system-level non-idealities usually prevent these physical implementations

from achieving high inference accuracy. We suggest applying a well-known concept in

computer science—committee machines—in the context of memristor-based neural net-

works. Using simulations and experimental data from three different types of memristive

devices, we show that committee machines employing ensemble averaging can successfully

increase inference accuracy in physically implemented neural networks that suffer from faulty

devices, device-to-device variability, random telegraph noise and line resistance. Importantly,

we demonstrate that the accuracy can be improved even without increasing the total number

of memristors.
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Artificial neural networks (ANNs), with all of their variants,
are now the main tools in machine learning tasks, such as
classification. The vast amounts of data being constantly

produced have enabled successful training and operation of
ANNs. However, to achieve high inference accuracy, it is usually
necessary for neural networks to have a large number of para-
meters. This results in both training1 and inference2 stages being
time and power consuming. This is largely caused by the need to
transfer data from memory to computing units—physical
separation of memory and computing is the essence of any von
Neumann system.

One of the most promising solutions to these problems is the
paradigm of non-von Neumann computing and, specifically,
analogue implementations of synapses (weights) in physical
ANNs. Because there are many more synapses than there are
neurons in ANNs, the matrix-vector multiplications, in which the
synaptic weight values are used, are the costliest operations in
these networks, both in terms of power and time. Computing
directly in memory would minimise data transfers from off-chip
memory, thus the most popular approach is using analogue
memory devices as proxies for synaptic weights of ANNs (both
fully connected and their variants3,4). A common technique is to
arrange such devices in a structure, called crossbar array, in which
every device (or a pair of devices) is used to represent a single
synaptic weight or, more generally, an entry in a matrix5.
Memristive devices, such as phase-change memories (PCMs)6,7

or resistive random-access memories (RRAMs)8,9, have been
considered as candidates for such tasks. Although here we focus
on ex situ training, such systems have been successfully utilised
for in situ training too10,11.

In memristive implementations of ANNs, the main concern is
that various non-idealities associated with these devices can
prevent these systems from achieving high accuracy12,13. Exam-
ples of non-idealities affecting inference accuracy include, but are
not limited to, devices not being able to electroform, devices stuck
in one of the resistance states after electroforming, device-to-
device (D2D) variability and random telegraph noise (RTN).
When training analogue systems in situ, limited endurance and
nonlinear resistance modulation too have to be taken into
account. To mitigate the effects of these device non-idealities, it is
often necessary to modify device structure9, to use more advanced
programming schemes14 or to use additional circuitry15 or high-
precision processing units16 in conjunction with memristive ele-
ments. On the system level, there is an issue of line resistance
which affects the distribution of currents and thus decreases the
accuracy. These line resistance effects can be partially compen-
sated for algorithmically17 or partially mitigated by using multiple
smaller crossbar arrays18. Examples of past efforts at dealing with
these and other non-idealities of memristive devices and systems
are listed in Table 1; most of these non-idealities are still the main
focus of the research in the neuromorphic community.

We propose a simple way to mitigate the effects of all types of
non-idealities during inference. We suggest combining several
non-ideal memristor-based neural networks into committees to
achieve better accuracy. The committee machine (CM) method
we propose significantly increases the inference accuracy and
does not increase the computation time because memristive
ANNs in such committees work in parallel.

In this work, we firstly explain the simulation setup—what
networks were trained, how they were simulated and how they
were combined into CMs. After that, follows the experimental
part. We investigate three different types of memristor technology
—tantalum/hafnium oxide-based (Ta/HfO2), tantalum oxide-
based (Ta2O5), and amorphous vacancy modulated conductive
oxide-based (aVMCO) devices. By exploring their non-idealities
relevant to inference—faulty devices, D2D variability, RTN, and

line resistance—we use the experimental data to simulate mem-
ristive ANNs working individually and in committees.

Results
Simulation setup. Fully connected ANNs were trained in soft-
ware to recognise handwritten digits (using MNIST data base19).
Architectures with one hidden layer were explored. Unless stated
otherwise, the simulations used networks with 25 hidden neu-
rons. However, networks with 50, 100, and 200 hidden neurons
were additionally employed to evaluate the effectiveness of the
proposed method while controlling for the total number of
memristors required. Following training, weights of ANNs were
mapped onto pairs of conductances using proportional mapping
scheme (see ref. 20) to simulate memristor-based ANNs. Finally,
these memristive networks were disturbed using experimental
data to reflect the effect of device- and system-level non-idealities.

After simulating physical non-idealities, the networks were
combined into CMs that employed ensemble averaging (EA)21.
The principle of EA is shown in Fig. 1a—several networks are
combined in parallel and then their outputs are averaged. After
that, the prediction is made using the averaged vector—the
prediction is the label corresponding to the largest entry in the
vector.

CM methods are frequently used even with conventional
ANNs. Methods, such as EA, often produce better accuracy than
that of the best individual network in a committee22. Although
there are other types of CMs besides EA, they often rely on
training additional gating networks or boosting networks during
the training stage. Using a gating network in this scenario would
produce additional problems—to avoid it acting as a performance
bottleneck, it too would have to be implemented on crossbar
arrays. Various non-idealities would decrease the effectiveness of
this gating network, which is responsible for making the decisions
about the whole committee of ANNs. Likewise, we speculate that
boosting of networks would not be feasible in ex situ training
because it requires information about where individual ANNs
perform poorly—this cannot be known precisely until they are
implemented physically on crossbar arrays and the non-idealities
manifest themselves. To authors’ best knowledge, the application
of boosting in the context of memristive neural networks seems to
have been explored only once before23; as expected, it requires
training each memristive implementation differently because
non-idealities manifest themselves differently in different crossbar
arrays.

There exist modifications of EA algorithm that could
potentially perform better. One example of this is generalized
ensemble method (GEM) which, instead of using equal weight-
ings for each network during averaging (as in EA), uses a different
one for each network21. These weightings are analytically
determined by considering correlation of errors between different
networks. But because ref. 21 only considered networks with mean
square error loss function (while our networks used cross-entropy
loss function), this work does not explore GEM. Instead, we
investigated whether it is possible to achieve a better performance
by optimising the weightings numerically. This method, like GEM
and others previously mentioned, might be impractical because,
firstly, these weightings could be determined only after the ANNs
are physically implemented on crossbars, and, secondly, the
devices could change throughout their lifetimes thus affecting the
optimal weightings.

Even with the assumption that the devices would have perfect
retention, we found that optimisation of weightings achieves
effectively the same performance. Because of these reasons, we
focus only on EA in the main text, but present our results of
optimising weightings in Supplementary Fig. 5. We stress that we
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Table 1 Examples of past efforts at dealing with non-idealities of memristive devices and their systems.

First author (year) Non-ideality Device type Proposed solution

C. Sung (2018)31 Current/voltage nonlinearity TaOx RRAM Hot-forming step is adopted
C. Li (2018)15 Current/voltage nonlinearity Ta/HfO2 RRAM 1T1R architecture is adopted
Y. Fang (2018)32 Device-to-device variability HfOx RRAM Ultra-thin ALD-TiN buffer layer is introduced
B. Govoreanu (2013)33 Device-to-device variability Al2O3/TiO2 (VMCO) RRAM Non-filamentary RRAM is adopted
A. J. Kenyon (2019)34 Device-to-device variability SiOx RRAM The roughness of bottom electrodes is increased
L. Xia (2017)14 Faulty devices – A modified mapping algorithm and redundancy schemes

are used
S. Ambrogio (2018)7 Limited dynamic range PCM Two pairs of conductance of varying significance for every

synaptic weight are used
M. Hu (2016)17 Line resistance – Advanced mapping algorithms are used to compensate for line

resistance effects
W. Wu (2018)35 Programming nonlinearity HfOx RRAM Electro-thermal modulation layer is deposited on the

switching layer
J. Woo (2016)9 Programming nonlinearity HfO2 RRAM Bilayer structure is adopted
S. Ambrogio (2018)7 Programming nonlinearity PCM PCM devices are used together with CMOS transistors
Z. Chai (2018)36 Random telegraph noise TiO2/a-Si (aVMCO) RRAM Non-filamentary RRAM is adopted
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Fig. 1 Using multiple neural networks to improve inference accuracy. a The principle of ensemble averaging. b Using identical digital networks when
implementing committees of memristive neural networks only helps to deal with the damage to the networks caused by the non-idealities. c Using different
digital networks when implementing committees of memristive neural networks both helps to deal with the damage to the networks caused by the non-
idealities and allows to combine the knowledge about the dataset acquired by individual digital networks.
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are open to the idea that other CM methods besides EA could be
utilised successfully for ex situ training in the context of
memristive ANNs. However, in this work we focus on
demonstrating that CMs can be used to improve the accuracy
of memristor-based ANNs in general.

With EA, we find that even when the memristive ANNs, which
go into a committee, all use the same digital weights that are
mapped onto crossbar arrays (see Fig. 1b), committee of
memristor-based networks can still achieve higher accuracy than
just a single non-ideal network. Although all networks have the
same digital weights before mapping, their physical implementa-
tions (which we call “disturbances” in Fig. 1b, c because they can
usually be represented by the modification of individual weights)
will be different. For example, in one crossbar array, a certain set
of devices will be faulty, while in the other crossbar array, it will
be a different set. This will result in different physical
implementations having slightly different learned representations
of the dataset, or, to paraphrase, different networks will be
“damaged” differently by the non-idealities. This means that these
committees will be able to combine different representations, and
thus achieve higher accuracy. However, by definition, such
approach would almost certainly not yield a committee accuracy
that is higher than the accuracy of a single digitally implemented
network.

A better approach is to use different digital networks for
different physical implementations that go into a committee (see
Fig. 1c). This approach much more resembles the conventional
application of EA in computer science. In the context of
memristive crossbar arrays, it would not only help to mitigate
the effects of the non-idealities (as in the case of Fig. 1b), but
would also allow to combine the representations of digital
networks that were different even before the mapping stage. Most
importantly, this method allows for a committee to achieve
higher accuracy, which is sometimes even higher than that of
individual networks with digitally implemented weights. We thus
used this method in this analysis. An example comparison of
these two approaches is presented in Supplementary Fig. 8.

In this work, any given committee used only one network
architecture but each network was initialised differently before
training, thus trained networks had different sets of weights.
Although it was not explored in this work, combining different
network architectures in a committee of memristor-based
networks might be advantageous. Furthermore, in this work we
focus on fully connected ANNs but CMs could be applied to
other variants of neural networks as well. Due to the simplicity of
EA, it could, for example, be employed in convolutional neural
networks (CNNs)24, which are often used for image classification.
This might be of interest as CNNs have been successfully
implemented using crossbar arrays recently25. However, crossbar
implementations are naturally more suited to fully connected
networks, therefore we limit ourselves to this architecture but are
open to exploring the effectiveness of EA with memristive CNNs
in the future.

Ta/HfO2 RRAM. With array-level data available, Ta/HfO2

experiments provide the most complete picture of device- and
system-level non-idealities. In this subsection, we present not
only the analysis of faulty devices and D2D variability, but also
careful consideration of the line resistance effects. Ta/HfO2

memristors do not exhibit apparent RTN and overall have
excellent retention properties26, and thus are perfect candidates
for inference application.

Faulty devices and device-to-device variability: The most
energy-efficient procedure to modulate the conductance of
memristors is by the application of voltage pulses. In an ideal

scenario, one would apply identical pulses and observe constant
increases in conductance with each pulse. This is rarely the case in
practise, but, fortunately, this type of behaviour is more relevant
for in situ training where it is necessary to ensure linear
adjustment of ANN’s weights27. In ex situ training, conductance
verification schemes can be used to program the devices precisely.
Because the devices would have to be programmed only once, one
can spend additional resources to do so accurately by applying
SET (potentiation) and RESET (depression) pulses until a
desirable conductance state is achieved.

Even with this approach, there remain two obstacles—faulty
devices and D2D variability. It is observed in most memristor
technologies that at least a small fraction of the devices tends to
get stuck in a particular conductance state. Additionally, even if
not stuck, different devices might behave differently; for example,
they might have different conductance ranges. Figure 2a shows
conductance changes in Ta/HfO2 RRAM devices (in a 128 × 64
crossbar array) when they are applied with voltage pulses. We can
see from the median values that overall the devices’ conductance
tends to increase as more SET pulses are applied. However, the
wider bottom regions of the violin plots indicate that some
devices are stuck around high resistance state (HRS) and cannot
set entirely no matter how many voltage pulses are applied. There
also exist devices that are stuck in low resistance state (LRS), or
simply do not span the full conductance range.

Figure 2a combines data from multiple SET cycles for each of
the memristors, thus it is important to understand how do these
devices behave individually. Figure 2b–f show conductance of
five (out of 8192) devices over 11 SET and RESET cycles. In the
five diagrams, the radial component represents the conductance (in
mS) and the angular component represents the number of applied
pulses. Figure 2b shows an example of preferable (and typical)
device behaviour—conductance changes in a continuous fashion
and spans a wide range of conductance values, from ~0.1mS to
~1.0mS. Although RESET cycles tend to feature abrupt decreases
in conductance, one can always repeat a cycle and exploit the more
predictable behaviour of SET cycles.

When encoding continuous numbers into crossbar devices’
conductances, it is often preferable to choose a large enough
conductance range. Using data from Fig. 2a, one could, for
example, choose the range between the first and the last median
points (from ~0.1 mS to ~1.0 mS). Device, whose behaviour is
presented in Fig. 2b, could be easily set to any conductance within
that range, as we have seen before. On the other hand, device,
whose behaviour is presented in Fig. 2c, although operating in a
predictable fashion, has smaller conductance range. We can see
that in all cycles, its conductance does not exceed 0.8 mS. This is
an example of D2D variability that can make it difficult to choose
optimal operating range and set the conductance of all devices
precisely.

Device, whose behaviour is presented in Fig. 2d, shows high
cycle-to-cycle variability. Although that could prove to be a
problem in some applications, this specific device might
perfectly serve its purpose in ex situ training of ANNs. We
can observe that this device spans the same conductance range
as device from Fig. 2b, even if in an unpredictable manner.
Because all states in the full range are, in theory, achievable, one
can cycle the device multiple times until it is set to the required
conductance level.

Lastly, we have devices whose negative effect is most difficult to
mitigate—faulty devices. Figure 2e shows behaviour of a device
stuck at high conductance values, while Fig. 2f shows behaviour
of a device stuck at low conductance values. No matter how many
pulses the devices are applied with or how many times they are
cycled, they exhibit almost no conductance variation and thus, in
most cases, cannot be used to encode information.
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Knowing that some devices perform like the ones whose
behaviour is shown in Fig. 2c, e, f, it is important to minimise
their negative effect. If the conductance that a device has to be set
to is outside that device’s range, it is sensible to set it to the closest
achievable conductance. Although there is little that can be done
about fully stuck memristors, it is possible to optimise the
behaviour of devices like the one in Fig. 2c that simply have
smaller conductance range. For example, if such a device has to
be set to 0.9 mS, one would set it to the highest achievable
conductance (~0.8 mS). In the following simulations involving
faulty devices and D2D variability, operating range between the
first and the last median points was used, the devices were chosen
randomly from the 128 × 64 crossbar and set to the most
desirable states, as described in this paragraph.

Line resistance: The effect of line resistance can be extremely
detrimental in many crossbar-based implementations of ANNs.
That is especially the case if the crossbars used are large and the
resistance of the interconnects is high (compared to memristors’
resistance). Because in a neural network many of the inputs are
non-zero at any given time, a lot of current accumulates in the bit
lines, which results in significant voltage drops across the
interconnects, and thus the current distribution across the
crossbar is affected in a major way.

The Ta/HfO2 crossbar has shape 128 × 64 and so this shape
was chosen for all the simulations involving line resistance. Even
relatively small ANNs of architecture 784(+1):25(+1):10 would
need 2 × (785 × 25+ 26 × 10)= 39,770 memristors to be

implemented. Even if not all the inputs were used at any given
time, it would not be possible to fit all the memristors onto a
single crossbar of shape 128 × 64. To overcome this, we decided
to simulate multiple crossbars, each of which would implement a
subset of the synaptic weights, but, for a given synaptic layer,
would all compute in parallel. Because ⌈785/128⌉= 7, seven
crossbars were used to implement the first synaptic layer; the first
crossbar utilized bottom 113 word lines, while the other six
crossbars used bottom 112 word lines because 113+ 6 × 112=
785. The second synaptic layer was implemented using eighth
crossbar utilizing its bottom 26 word lines.

Figure 3a shows an example of how the first synaptic layer of
784(+1):25(+1):10 neural network could be implemented.
Specifically, it shows how the first subset of weights would be
implemented using one of the crossbars. Because we use
proportional mapping scheme, positive and negative weights
would be implemented in different bit lines. In Fig. 3a,
memristors designated to implement positive weights are
coloured in blue, memristors designated to implement negative
weights are coloured in orange and unelectroformed memristors
are coloured in black. Because simulations were constrained by
experimental data, some of the devices were left unused and
assumed to be unelectroformed. In practise, the crossbars could
be manufactured to fit the geometry of the ANNs.

In each synaptic layer, the corresponding output currents from
each of the crossbars would be added together. Additionally,
output currents at the bit lines implementing negative weights
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Fig. 2 Experimental data of Ta/HfO2 RRAM crossbar array. Data of a crossbar of shape 128 × 64 were used. aModulation of devices' conductance over 11
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crossbar array over 11 SET and RESET cycles. The radial component represents the conductance, while the angular component represents the number of
applied pulses. The first SET cycle starts at the top of each of the diagrams. The conductance (in blue) over 100 SET pulses is displayed in a clockwise
fashion across the right half of each of the diagrams. Following that, conductance (in orange) over 100 RESET pulses (starting at the bottom) is displayed
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would be subtracted from the output currents at the neighbouring
bit lines (to their left) implementing positive weights. For
example, in the example configuration of Fig. 3a, output current
at the 2nd bit line would be subtracted from the output current at
the 1st bit line, etc.

Unfortunately, even when using multiple smaller crossbars,
the interconnects can significantly disturb current distribution
in the crossbar. Average output current decreases due to line
resistance in all seven crossbars of Ta/HfO2 devices (whose
resistance ranges from ~1 kΩ to ~11 kΩ, and their
interconnect resistance is 0.35 Ω and 0.32 Ω in the word and
bit lines, respectively), are shown in the heatmap in Fig. 3b. We
can see that the current decreases can range from ~12% at the
outputs nearest to the applied voltages to ~16% at the outputs
in the rightmost bit lines that are used. In Supplementary
Note 1, we provide a possible strategy of mitigating line
resistance effects in supervised learning. This scheme was not
employed in the simulations described in the main text because
we wanted to find out how well the CM method would deal
with noticeable line resistance effects.

Inference accuracy: Figure 4 shows the accuracy of individual
networks, as well as of their committees; memristive ANNs were
simulated by taking into account three non-idealities of Ta/HfO2

crossbar explored earlier—faulty devices, D2D variability and line
resistance. As indicated by the yellow box plot in Fig. 4, individual
networks implemented digitally achieve ~95.9% median
accuracy. Networks disturbed to reflect the effect of non-
idealities achieve ~91.0% median accuracy, as indicated by the
vermilion box plot. Although that is a substantial drop in

accuracy, we see that as more networks are added to the
committee, the more the accuracy increases. When five networks
are used in a committee, median accuracy increases up to
~95.7%, as indicated by the rightmost green box plot.
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Fig. 4 Accuracy of committee machines when using Ta/HfO2 devices.
Accuracy achieved by individual networks and their committees when
faulty devices, D2D variability data, and line resistance of Ta/HfO2 crossbar
are taken into account. The maximum whisker length is set to 1.5 × IQR.
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Ta2O5 RRAM. In order to explore the effectiveness of minimising
adverse effects of RTN, we use another memristor technology
based on Ta2O5. To investigate RTN, measurements from a single
device were considered. To simulate line resistance effects,
interconnect resistance from Ta/HfO2 was used and the same
crossbar shape was assumed.

Random telegraph noise: Memristors often suffer from RTN
resulting in a different accuracy at any given instant in time. Ta2O5

device was characterised by measuring the current of eight
resistance states multiple times. Figure 5 shows the cumulative
probability plots for those resistance states, together with lognormal
fits modelling the nature of RTN. One of the things that the figure
reveals is that higher resistance states suffer from higher degree of
RTN. Fits for every resistance state, together with occurrence rates
(see Supplementary Table 2), were used to disturb the weights of
ANNs in order to reproduce the effect of RTN.

Inference accuracy: The results combining RTN and line
resistance effects for Ta2O5 device are shown in Fig. 6. From the
difference in median accuracy between yellow and blue box plots,
we can notice that there is a significant drop in accuracy simply
due to mapping of weights onto conductances. That is not
surprising given that only eight states were available for mapping.
One can also observe that further drop in median accuracy due to
non-idealities is not as severe—it drops to ~94.1%. The RTN
disturbance magnitude is limited to <100% in most cases, which
possibly contributes to its smaller effect on accuracy. Addition-
ally, Ta2O5 device has much higher resistance (ranging from
25 kΩ to 200 kΩ), thus line resistance is also less of a concern.
When non-ideal networks are combined into committees of 5, the
median accuracy jumps to ~96.5%—even higher than the
software baseline of individual networks. This reveals additional
trend seen in all the simulations performed—the higher the
accuracy of the individual non-ideal memristive networks, the
higher the accuracy of the committees that they are part of.

aVMCO RRAM. Further, we consider a third memristor tech-
nology—one based on aVCMO materials. We test the effects of
RTN by considering measurements from a single device. Line
resistance effects were simulated by using interconnect resistance
and shape of Ta/HfO2 crossbar array.

Random telegraph noise: Figure 7 shows the cumulative
probability plots for eight resistance states of an aVMCO device

suffering from RTN. Like in Ta2O5, we observe that higher
resistance states experience RTN of higher magnitude. However,
compared to Ta2O5, the RTN magnitude is much more
predictable. Fits for each of the eight resistance states, together
with occurrence rates (see Supplementary Table 3), were used to
simulate the effect of RTN in aVMCO-based neural networks.

Inference accuracy: The results combining RTN and line
resistance are shown in Fig. 8. As with Ta2O5, we see a large drop
due to mapping onto conductances—consequence of very few
states available for mapping. More interestingly, the accuracy of
individual memristor-based networks with and without non-
idealities is almost identical. That is because the occurrence rate
of RTN in aVMCO device is small and there is a much smaller
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Fig. 6 Accuracy of committee machines when using Ta2O5 devices.
Accuracy achieved by individual networks and their committees when RTN
data of a Ta2O5 device are taken into account. Additionally, interconnect
resistance of 0.35 Ω and 0.32 Ω in the word and bit lines, respectively,
(from Ta/HfO2 array) was used to include line resistance effects. The
maximum whisker length is set to 1.5 × IQR.
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Fig. 5 Random telegraph noise in a Ta2O5 device. Cumulative probability
plots of RTN-induced relative current deviations for all eight resistance
states of a Ta2O5 RRAM device. Lognormal fits are shown for each
resistance state.

100 101

Absolute relative error of current (%)

2

5

10

20

30

40

50

60

70

80

90

95

98

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

Higher
resistance

states

Data points

Lognormal fits
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resistance states of aVMCO RRAM device. Lognormal fits are shown for
each resistance state.
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probability of RTN having large magnitude. Additionally,
resistance of aVMCO device is even higher than that of Ta2O5

device—it ranges from 1 MΩ to 7.5 MΩ. Therefore, line
resistance has even a smaller effect in a hypothetical array of
aVMCO devices. Due to median accuracy of individual non-ideal
memristor-based networks being higher (~94.6%), the median
accuracy of committees is higher too—in committees of size 5 it
increases to ~96.7%.

Discussion
The results from the previous section suggest that the method of
using committee machines to improve the accuracy of memristive
neural networks is technology- and non-ideality-agnostic. CMs
can mitigate the effects of faulty devices, D2D variability, RTN,
and line resistance in combination with each other. Although CM
method is slightly less effective with high-line resistance (see
discussion in Supplementary Note 1), in all cases, we observe that
the accuracy of individual non-ideal networks largely determines
the accuracy of committees. That is consequential because it
means that although committees always increase the accuracy,
there is still an incentive to optimise the devices and systems that
implement these networks—the higher the accuracy of individual
networks, the higher the accuracy of the committees.

It is also important to consider whether using larger networks,
instead of committees of smaller networks, would yield the same
results if the same number of synapses (or memristors) was used
in the large network as in the committee of smaller networks. In
our previous work we found that the accuracy of networks before
disturbance (which we call “starting accuracy”) has a huge effect
on the robustness to non-idealities—the larger the starting
accuracy, the more robust the networks become20. One way to
achieve higher starting accuracy is to have larger networks, e.g. if
we have a network with one hidden layer, we might increase the
number of neurons in that hidden layer, which would likely result
in higher accuracy after training and thus higher robustness.

Figure 9 shows a comparison of CMs of memristor-based
networks disturbed using faulty devices and D2D variability data
from Ta/HfO2 crossbar, when controlled for the total number of

memristors that is required to implement them (line resistance
was not taken into account due to long time required to simulate
it in large networks). We can observe that committees of two
networks, each with 25 hidden neurons, (leftmost data point of
the orange curve) achieve ~0.9% higher median accuracy than
individual networks with 50 hidden neurons (second data point
from the left in the vermilion curve), despite both requiring
almost identical total number of memristors. Committees of two
networks, each with 100 hidden neurons, (third data point from
the left in the orange curve) achieve ~1.1% higher median
accuracy than individual networks with 200 hidden neurons
(rightmost data point in the vermilion curve), even though both
require almost the same total number of memristors. Even larger
improvement is gained when committees of four networks, each
with 50 hidden neurons, (second data point from the left in the
blue curve) are used instead—then the accuracy is improved by
~1.5%, with almost the exact total number of memristors used.

For different non-idealities and even different training schemes
of the ANNs, the equivalents of Fig. 9 might be different, but
there are a few common characteristics in all of them. In all cases,
for a given total number of memristors used, there is an optimal
number of networks that should be used in a committee. Addi-
tionally, we observe that the more severe a non-ideality is, the
more apparent the effectiveness of committees becomes. Finally,
sometimes the committees (for a fixed total number of memris-
tors) might achieve lower accuracy than individual networks but
only if the networks that they replace are very small and the non-
ideality is not very detrimental. If the networks that are being
replaced with committees of smaller networks, are sufficiently
large, the committees will achieve higher accuracy. An example of
that is shown in Supplementary Fig. 7 where aVMCO device is
minimally affected by the non-idealities and so the advantage of
committees becomes apparent only when replacing larger
networks.

The reason why committees work in the context of non-ideal
implementations and why they work best when they are used to
replace large networks might, to some extent, lie in their training.
When it comes to training fully connected networks, their
accuracy tends to saturate as more parameters are added. Sup-
plementary Fig. 4 shows that networks with 50 hidden neurons
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Fig. 8 Accuracy of committee machines when using aVMCO devices.
Accuracy achieved by individual networks and their committees when RTN
data of an aVMCO device are taken into account. Additionally, interconnect
resistance of 0.35 Ω and 0.32 Ω in the word and bit lines, respectively,
(from Ta/HfO2 array) was used to include line resistance effects. The
maximum whisker length is set to 1.5 × IQR.
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can be trained to achieve significantly higher accuracy than net-
works with 25 hidden neurons. However, networks with 200
hidden neurons achieve only slightly higher accuracy than net-
works with 100 hidden neurons. This also means that networks
with 200 hidden neurons will be only slightly more robust to non-
idealities than networks with 100 hidden neurons. When such
networks are affected by non-idealities, their accuracy drops to
similar values but the smaller network can work in a committee
with other networks, totalling almost the same number of
memristors as the large network, but achieving higher accuracy
overall. This is the most likely reason why the committees of
smaller networks are effective at dealing with non-idealities,
especially when replacing large networks.

In addition to the accuracy improvements, committees can
provide flexibility in memristive implementations of neural net-
works. Digital implementations of ANNs have very predictable
behaviour due to the precision of digital logic. Analogue imple-
mentations, on the other hand, can vary greatly even if they use
the same weights before the mapping onto conductances—that is
a result of the stochastic nature of memristors that implement
these ANNs. The parallel and modular nature of committee
machines makes memristive systems much more flexible. For
example, if the verification accuracy of one of the ANNs in a
memristor-based CM deteriorates below acceptable levels, its
outputs could be disabled to ensure higher accuracy of the rest of
the committee.

Importantly, this introduced parallelism comes at almost no extra
cost. For a fixed total number of memristors, a committee of smaller
networks, compared to a large individual network, would only
require a few additional output and bias neurons, and an averaging
functionality, which could potentially be implemented in hardware.
For example, an ANN with 50 hidden neurons would require 846
neurons in total, while a committee of two ANNs, each with 25
hidden neurons (and thus requiring almost the same total number
of memristors), would require 857 neurons in total.

In summary, our simulations employing experimental data from
three different types of memristive devices show that committee
machines employing ensemble averaging can be used to mitigate
the effects of device- and system-level non-idealities in memristor-
based neural networks. EA allows to achieve higher inference
accuracy in physically implemented neural networks that suffer
from faulty devices, device-to-device variability, random telegraph
noise, and even line resistance. This method is a universal way to
deal with the most common non-idealities and is straightforward to
implement during the fabrication stage. Increased modularity of
these memristive neural network systems will increase not only
their inference accuracy, but also their robustness and flexibility,
even without the need to sacrifice area. Although some level of non-
idealities in memristors is unavoidable, CM method allows us to
deal with these on the system level and is agnostic to a particular
technology or, to some degree, type of the non-ideality.

Methods
Experiments. Ta/HfO2 RRAM 1T1R array consists of NMOS transistors fabricated
in a commercial fab (feature size of 2 μm) and Pt/HfO2/Ta devices. The bottom
electrode was deposited by evaporation of 20-nm Pt layer on top of a 2-nm tan-
talum (Ta) adhesive layer; the electrode was patterned by photolitography and a
lift-off process. A 5-nm HfO2 switching layer was deposited by atomic layer
deposition using water and tetrakis(dimethylamido)hafnium as precursors at
250 °C. Sputter-deposited Ta of 50 nm thickness followed by 10-nm Pd was used in
a lift-off process to serve as the top electrode. The filamentary based Ta2O5 device
consists of a TiN/4 nm stoichiometric Ta2O5/20-nm nonstoichiometric TaOx/
10-nm TaN/TiN stack with a cross-sectional area of 75 × 75 nm, while the non-
filamentary-based aVMCO has a cross-sectional area of 135 × 135 nm and is
composed of a TiN/8 nm amorphous-Si/8 nm anatase TiO2/TiN stack. Ta2O5 and
aVMCO devices were fabricated by imec. The detailed fabrication process para-
meters can be found in references11,28,29 for Ta/HfO2, Ta2O5 and aVMCO RRAMs,
respectively.

The conductance of Ta/HfO2 devices was modulated by applying SET pulses
(500 μs @ 2.5 V and gate voltage increasing from 0.6 to 1.6 V). After each of the 11
cycles, RESET pulses were applied (5 μs @ 0.9 V increasing to 2.2 V and gate
voltage of 5 V). The voltage was being increased linearly throughout the 100 pulses.
All electrical tests for Ta2O5 and aVMCO devices were done with a Keysight
B1500A. The RTN data are extracted by switching the device into eight uniformly
distributed resistance levels between 25 kΩ and 200 kΩ, and eight nearly uniformly
distributed resistance levels between 1 MΩ and 7.5 MΩ with incremental RESET
DC sweeps30 for Ta2O5 and aVMCO, respectively. RTN measurement is then
carried out at each resistance level at a 0.1 V and 3 V read-out for Ta2O5 and
aVMCO respectively, with a sampling time of 2 ms/point and 10,000 sampling
point per resistance level for an RTN measurement period of 20 s.

Simulations. In this work, feed-forward ANNs with fully connected layers and
continuous weights were trained to recognise handwritten digits using the MNIST
data base. All 60,000 MNIST training images were used during the training stage;
training set consisted of 50,000 images and verification set consisted of 10,000
images. All 10,000 test images were used to evaluate the inference accuracy of
ANNs. Networks used 784 input neurons representing pixel intensities of MNIST
images of 28 × 28 pixel size, as well as one bias neuron. Ten output neurons were
used; they represented the ANNs’ predictions of 10 handwritten digits. Hidden
layers used sigmoid activation function, while the output layer used softmax
activation function. Weights were optimised by minimising cross-entropy error
function using stochastic gradient descent. Learning rate of 0.01 and patience of 25
epochs were used. Twenty-five networks were trained for each architecture
explored by initialising them differently. When numerically optimising ANNs’
weightings, optimisation was performed by employing verification set, while the
performance was evaluated using the test set. The code was implemented in
Python.

Weights were mapped onto pairs of memristors’ conductances using
proportional mapping scheme—synaptic weights were made proportional to one of
the conductances in the pair, while the other was left unelectroformed. The zero
weight was interpreted as given—in practise, it would be implemented by not
electroforming the device, thus resulting in its negligible conductance. Although
aVMCO devices do not have electroforming stage, for consistency we assumed that
additional insulating circuit elements could be used to implement the zero weight.
Negative weights would be implemented by placing certain memristors in
dedicated bit lines of the crossbars whose outputs would be subtracted from the
outputs at the corresponding bit lines implementing positive weights. Maximum
weights after mapping were optimised separately for each set of network
architecture and conductance levels; in each case this was done by excluding a
certain proportion, pL, of weights with largest absolute values. What pL values were
used for each simulation is summarised in Supplementary Table 1. More details on
the mapping procedure can be found in our past work20.

All non-idealities, except for line resistance, were simulated by disturbing the
individual conductances of memristor-based ANNs. To investigate line resistance,
nodal analysis was employed. By setting up simultaneous linear equations using
Ohm’s law and Kirchhoff’s current law, those were solved in sparse matrix
representation using Python’s library scipy.

After simulating memristor non-idealities, committees of different ANNs were
composed. Committees used EA, i.e. the outputs of individual networks in a
committee were averaged to produce a single output vector. In EA, the output
vectors of individual networks can simply be added together (if the weightings of
different networks are the same, as we assume in the main text); the label
corresponding to the entry with the highest value would be the prediction of the
committee. This addition can be performed either in software, or, if the activation
function of the last neuronal layer can be implemented physically, it can be
performed by adding corresponding currents produced by the circuitry of this
activation function.

In the simulations, neural networks that go into a committee were chosen
randomly. This was done to reflect the most convenient strategy when
manufacturing such systems—because one does not need to selectively choose the
networks, manufactured crossbars can be easily programmed without the need to
replace them if they perform poorly when working individually (unless their effect
is so detrimental that they have to be ignored, which can be made possible with this
technique). Besides, devices might change over time, thus these simulations, which
show what happens when one does not selectively choose the networks, are
valuable to investigate conditions where it is not possible to replace the networks.

In the simulations, 25 base networks were used (each having different set of
weights) for each of the architectures. Then all of their weights were mapped onto
pairs of conductances using HRS/LRS values extracted from experiments. Finally,
to reflect the effect of each of the non-idealities, all networks were disturbed
multiple times. In each disturbance iteration, multiple combinations of networks
were chosen and their performance as a committee of certain size was evaluated. In
total, for most simulations, 10,000 data points were recorded for a committee of
every size—these data captured the variations of base networks, their combinations
and different disturbance iterations. Only simulations involving line resistance or
numerical optimisation of weights had fewer data points for some committee sizes
(due to long simulation times).
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Data availability
The experimental data that support the findings of this study are available from the
corresponding author upon reasonable request. Data generated during the simulations
are provided as a Source Data file. Source data are provided with this paper.
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