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Abstract11

Artificial neural networks are notoriously power- and time-consuming when implemented on con-12

ventional von Neumann computing systems. Consequently, recent years have seen an emergence13

of research in machine learning hardware that strives to bring memory and computing closer to-14

gether. A popular approach is to realise artificial neural networks in hardware by implementing15

their synaptic weights using memristive devices. However, various device- and system-level non-16

idealities usually prevent these physical implementations from achieving high inference accuracy.17

We suggest applying a well-known concept in computer science—committee machines—in the con-18

text of memristor-based neural networks. Using simulations and experimental data from three19

different types of memristive devices, we show that committee machines employing ensemble aver-20

aging can successfully increase inference accuracy in physically implemented neural networks that21

suffer from faulty devices, device-to-device variability, random telegraph noise and line resistance.22

Importantly, we demonstrate that the accuracy can be improved even without increasing the total23

number of memristors.24
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I. INTRODUCTION25

Artificial neural networks (ANNs), with all of their variants, are now the main tools in26

machine learning tasks, such as classification. The vast amounts of data being constantly27

produced have enabled successful training and operation of ANNs. However, to achieve28

high inference accuracy, it is usually necessary for neural networks to have a large number of29

parameters. This results in both training [1] and inference [2] stages being time- and power-30

consuming. This is largely caused by the need to transfer data from memory to computing31

units—physical separation of memory and computing is the essence of any von Neumann32

system.33

One of the most promising solutions to these problems is the paradigm of non-von Neu-34

mann computing and, specifically, analogue implementations of synapses (weights) in phys-35

ical ANNs. Because there are many more synapses than there are neurons in ANNs, the36

matrix-vector multiplications, in which the synaptic weight values are used, are the costli-37

est operations in these networks, both in terms of power and time. Computing directly in38

memory would minimise data transfers from off-chip memory, thus the most popular ap-39

proach is using analogue memory devices as proxies for synaptic weights of ANNs (both40

fully connected and their variants [3, 4]). A common technique is to arrange such devices41

in a structure, called crossbar array, in which every device (or a pair of devices) is used to42

represent a single synaptic weight or, more generally, an entry in a matrix [5]. Memristive43

devices, such as phase-change memories (PCMs) [6, 7] or resistive random-access memories44

(RRAMs) [8, 9], have been considered as candidates for such tasks. Although here we fo-45

cus on ex-situ training, such systems have been successfully utilised for in-situ training too46

[10, 11].47

In memristive implementations of ANNs, the main concern is that various non-idealities48

associated with these devices can prevent these systems from achieving high accuracy [12,49

13]. Examples of non-idealities affecting inference accuracy include, but are not limited50

to, devices not being able to electroform, devices stuck in one of the resistance states after51

electroforming, device-to-device (D2D) variability and random telegraph noise (RTN). When52

training analogue systems in-situ, limited endurance and non-linear resistance modulation53

too have to be taken into account. To mitigate the effects of these device non-idealities, it is54

often necessary to modify device structure [9], to use more advanced programming schemes55
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[14] or to use additional circuitry [15] or high-precision processing units [16] in conjunction56

with memristive elements. On the system level, there is an issue of line resistance which57

affects the distribution of currents and thus decreases the accuracy. These line resistance58

effects can be partially compensated for algorithmically [17] or partially mitigated by using59

multiple smaller crossbar arrays [18]. Examples of past efforts at dealing with these and60

other non-idealities of memristive devices and systems are listed in Table I; most of these61

non-idealities are still the main focus of the research in the neuromorphic community.62

We propose a simple way to mitigate the effects of all types of non-idealities during63

inference. We suggest combining several non-ideal memristor-based neural networks into64

committees to achieve better accuracy. The committee machine (CM) method we propose65

significantly increases the inference accuracy and does not increase the computation time66

because memristive ANNs in such committees work in parallel.67

In this work, we firstly explain the simulation setup—what networks were trained,68

how they were simulated and how they were combined into CMs. After that, follows69

the experimental part. We investigate three different types of memristor technology—70

tantalum/hafnium oxide-based (Ta/HfO2), tantalum oxide-based (Ta2O5), and amorphous71

vacancy modulated conductive oxide-based (aVMCO) devices. By exploring their non-72

idealities relevant to inference—faulty devices, D2D variability, RTN, and line resistance—73

we use the experimental data to simulate memristive ANNs working individually and in74

committees.75

II. RESULTS76

A. Simulation setup77

Fully connected ANNs were trained in software to recognise handwritten digits (using78

MNIST data base [19]). Architectures with one hidden layer were explored. Unless stated79

otherwise, the simulations used networks with 25 hidden neurons. However, networks with80

50, 100 and 200 hidden neurons were additionally employed to evaluate the effectiveness of81

the proposed method while controlling for the total number of memristors required. Follow-82

ing training, weights of ANNs were mapped onto pairs of conductances using proportional83

mapping scheme (see [20]) to simulate memristor-based ANNs. Finally, these memristive84
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networks were disturbed using experimental data to reflect the effect of device- and system-85

level non-idealities.86

After simulating physical non-idealities, the networks were combined into CMs that em-87

ployed ensemble averaging (EA) [21]. The principle of EA is shown in Figure 1A—several88

networks are combined in parallel and then their outputs are averaged. After that, the89

prediction is made using the averaged vector—the prediction is the label corresponding to90

the largest entry in the vector.91

CM methods are frequently used even with conventional ANNs. Methods, such as EA,92

often produce better accuracy than that of the best individual network in a committee [22].93

Although there are other types of CMs besides EA, they often rely on training additional94

gating networks or boosting networks during the training stage. Using a gating network in95

this scenario would produce additional problems—to avoid it acting as a performance bottle-96

neck, it too would have to be implemented on crossbar arrays. Various non-idealities would97

decrease the effectiveness of this gating network which is responsible for making the deci-98

sions about the whole committee of ANNs. Likewise, we speculate that boosting of networks99

would not be feasible in ex-situ training because it requires information about where indi-100

vidual ANNs perform poorly—this cannot be known precisely until they are implemented101

physically on crossbar arrays and the non-idealities manifest themselves. To authors’ best102

knowledge, the application of boosting in the context of memristive neural networks seems103

to have been explored only once before [23]; as expected, it requires training each memristive104

implementation differently because non-idealities manifest themselves differently in different105

crossbar arrays.106

There exist modifications of EA algorithm that could potentially perform better. One107

example of this is generalized ensemble method (GEM) which, instead of using equal weight-108

ings for each network during averaging (as in EA), uses a different one for each network [21].109

These weightings are analytically determined by considering correlation of errors between110

different networks. But because [21] only considered networks with mean square error loss111

function (while our networks used cross-entropy loss function), this work does not explore112

GEM. Instead, we investigated whether it is possible to achieve a better performance by113

optimising the weightings numerically. This method, like GEM and others previously men-114

tioned, might be impractical because, firstly, these weightings could be determined only after115

the ANNs are physically implemented on crossbars, and, secondly, the devices could change116
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throughout their lifetimes thus affecting the optimal weightings.117

Even with the assumption that the devices would have perfect retention, we found that118

optimisation of weightings achieves effectively the same performance. Because of these rea-119

sons, we focus only on EA in the main text, but present our results of optimising weightings120

in Supplementary Figure S5. We stress that we are open to the idea that other CM methods121

besides EA could be utilised successfully for ex-situ training in the context of memristive122

ANNs. However, in this work we focus on demonstrating that CMs can be used to improve123

the accuracy of memristor-based ANNs in general.124

With EA, we find that even when the memristive ANNs, which go into a committee, all125

use the same digital weights that are mapped onto crossbar arrays (see Figure 1B), committee126

of memristor-based networks can still achieve higher accuracy than just a single non-ideal127

network. Although all networks have the same digital weights before mapping, their physical128

implementations (which we call ”disturbances” in Figures 1B, C because they can usually129

be represented by the modification of individual weights) will be different. For example, in130

one crossbar array, a certain set of devices will be faulty, while in the other crossbar array, it131

will be a different set. This will result in different physical implementations having slightly132

different learned representations of the data set, or, to paraphrase, different networks will133

be ”damaged” differently by the non-idealities. This means that these committees will be134

able to combine different representations, and thus achieve higher accuracy. However, by135

definition, such approach would almost certainly not yield a committee accuracy that is136

higher than the accuracy of a single digitally implemented network.137

A better approach is to use different digital networks for different physical implementa-138

tions that go into a committee (see Figure 1C). This approach much more resembles the139

conventional application of EA in computer science. In the context of memristive crossbar140

arrays, it would not only help to mitigate the effects of the non-idealities (as in the case141

of Figure 1B), but would also allow to combine the representations of digital networks that142

were different even before the mapping stage. Most importantly, this method allows for a143

committee to achieve higher accuracy which is sometimes even higher than that of individual144

networks with digitally implemented weights. We thus used this method in this analysis.145

An example comparison of these two approaches is presented in Supplementary Figure S8.146

In this work, any given committee used only one network architecture but each network147

was initialised differently before training, thus trained networks had different sets of weights.148
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Although it was not explored in this work, combining different network architectures in a149

committee of memristor-based networks might be advantageous. Furthermore, in this work150

we focus on fully connected ANNs but CMs could be applied to other variants of neural151

networks as well. Due to the simplicity of EA, it could, for example, be employed in con-152

volutional neural networks (CNNs) [24], which are often used for image classification. This153

might be of interest as CNNs have been successfully implemented using crossbar arrays re-154

cently [25]. However, crossbar implementations are naturally more suited to fully connected155

networks, therefore we limit ourselves to this architecture but are open to exploring the156

effectiveness of EA with memristive CNNs in the future.157

B. Ta/HfO2 RRAM158

With array-level data available, Ta/HfO2 experiments provide the most complete pic-159

ture of device- and system-level non-idealities. In this subsection, we present not only the160

analysis of faulty devices and D2D variability, but also careful consideration of the line resis-161

tance effects. Ta/HfO2 memristors do not exhibit apparent RTN and overall have excellent162

retention properties [26], and thus are perfect candidates for inference application.163

1. Faulty devices and device-to-device variability164

The most energy-efficient procedure to modulate the conductance of memristors is by165

the application of voltage pulses. In an ideal scenario, one would apply identical pulses166

and observe constant increases in conductance with each pulse. This is rarely the case167

in practise, but, fortunately, this type of behaviour is more relevant for in-situ training168

where it is necessary to ensure linear adjustment of ANN’s weights [27]. In ex-situ training,169

conductance verification schemes can be used to program the devices precisely. Because the170

devices would have to be programmed only once, one can spend additional resources to do so171

accurately by applying SET (potentiation) and RESET (depression) pulses until a desirable172

conductance state is achieved.173

Even with this approach, there remain two obstacles—faulty devices and D2D variability.174

It is observed in most memristor technologies that at least a small fraction of the devices175

tends to get stuck in a particular conductance state. Additionally, even if not stuck, different176
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devices might behave differently; for example, they might have different conductance ranges.177

Figure 2A shows conductance changes in Ta/HfO2 RRAM devices (in a 128 × 64 crossbar178

array) when they are applied with voltage pulses. We can see from the median values179

that overall the devices’ conductance tends to increase as more SET pulses are applied.180

However, the wider bottom regions of the violin plots indicate that some devices are stuck181

around high resistance state (HRS) and cannot set entirely no matter how many voltage182

pulses are applied. There also exist devices that are stuck in low resistance state (LRS), or183

simply do not span the full conductance range.184

Figure 2A combines data from multiple SET cycles for each of the memristors, thus it185

is important to understand how do these devices behave individually. Figures 2B-F show186

conductance of 5 (out of 8,192) devices over 11 SET and RESET cycles. In the five dia-187

grams, the radial component represents the conductance (in mS) and the angular component188

represents the number of applied pulses. Figure 2B shows an example of preferable (and189

typical) device behaviour—conductance changes in a continuous fashion and spans a wide190

range of conductance values, from ∼0.1 ms to ∼1.0 ms. Although RESET cycles tend to191

feature abrupt decreases in conductance, one can always repeat a cycle and exploit the more192

predictable behaviour of SET cycles.193

When encoding continuous numbers into crossbar devices’ conductances, it is often prefer-194

able to choose a large enough conductance range. Using data from Figure 2A, one could,195

for example, choose the range between the first and the last median points (from ∼0.1 mS196

to ∼1.0 mS). Device, whose behaviour is presented in Figure 2B, could be easily set to any197

conductance within that range, as we have seen before. On the other hand, device, whose198

behaviour is presented in Figure 2C, although operating in a predictable fashion, has smaller199

conductance range. We can see that in all cycles, its conductance does not exceed 0.8 mS.200

This is an example of D2D variability that can make it difficult to choose optimal operating201

range and set the conductance of all devices precisely.202

Device, whose behaviour is presented in Figure 2D, shows high cycle-to-cycle variability.203

Although that could prove to be a problem in some applications, this specific device might204

perfectly serve its purpose in ex-situ training of ANNs. We can observe that this device205

spans the same conductance range as device from Figure 2B, even if in an unpredictable206

manner. Because all states in the full range are, in theory, achievable, one can cycle the207

device multiple times until it is set to the required conductance level.208
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Lastly, we have devices whose negative effect is most difficult to mitigate—faulty devices.209

Figure 2E shows behaviour of a device stuck at high conductance values, while Figure 2F210

shows behaviour of a device stuck at low conductance values. No matter how many pulses211

the devices are applied with or how many times they are cycled, they exhibit almost no212

conductance variation and thus, in most cases, cannot be used to encode information.213

Knowing that some devices perform like the ones whose behaviour is shown in Fig-214

ures 2C,E,F, it is important to minimise their negative effect. If the conductance that a215

device has to be set to is outside that device’s range, it is sensible to set it to the closest216

achievable conductance. Although there is little that can be done about fully stuck memris-217

tors, it is possible to optimise the behaviour of devices like the one in Figure 2C that simply218

have smaller conductance range. For example, if such a device has to be set to 0.9 mS, one219

would set it to the highest achievable conductance (∼0.8 mS). In the following simulations220

involving faulty devices and D2D variability, operating range between the first and the last221

median points was used, the devices were chosen randomly from the 128× 64 crossbar and222

set to the most desirable states, as described in this paragraph.223

2. Line resistance224

The effect of line resistance can be extremely detrimental in many crossbar-based im-225

plementations of ANNs. That is especially the case if the crossbars used are large and the226

resistance of the interconnects is high (compared to memristors’ resistance). Because in a227

neural network many of the inputs are non-zero at any given time, a lot of current accumu-228

lates in the bit lines which results in significant voltage drops across the interconnects, and229

thus the current distribution across the crossbar is affected in a major way.230

The Ta/HfO2 crossbar has shape 128×64 and so this shape was chosen for all the simula-231

tions involving line resistance. Even relatively small ANNs of architecture 784(+1):25(+1):10232

would need 2× (785× 25 + 26× 10) = 39, 770 memristors to be implemented. Even if not233

all the inputs were used at any given time, it would not be possible to fit all the memristors234

onto a single crossbar of shape 128× 64. To overcome this, we decided to simulate multiple235

crossbars, each of which would implement a subset of the synaptic weights, but, for a given236

synaptic layer, would all compute in parallel. Because d785/128e = 7, seven crossbars were237

used to implement the first synaptic layer; the first crossbar utilized bottom 113 word lines,238
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while the other six crossbars used bottom 112 word lines because 113 + 6× 112 = 785. The239

second synaptic layer was implemented using eighth crossbar utilizing its bottom 26 word240

lines.241

Figure 3A shows an example of how the first synaptic layer of 784(+1):25(+1):10 neural242

network could be implemented. Specifically, it shows how the first subset of weights would243

be implemented using one of the crossbars. Because we use proportional mapping scheme,244

positive and negative weights would be implemented in different bit lines. In Figure 3A,245

memristors designated to implement positive weights are coloured in blue, memristors desig-246

nated to implement negative weights are coloured in orange and unelectroformed memristors247

are coloured in black. Because simulations were constrained by experimental data, some of248

the devices were left unused and assumed to be unelectroformed. In practise, the crossbars249

could be manufactured to fit the geometry of the ANNs.250

In each synaptic layer, the corresponding output currents from each of the crossbars would251

be added together. Additionally, output currents at the bit lines implementing negative252

weights would be subtracted from the output currents at the neighbouring bit lines (to their253

left) implementing positive weights. For example, in the example configuration of Figure 3A,254

output current at the 2nd bit line would be subtracted from the output current at the 1st bit255

line, etc.256

Unfortunately, even when using multiple smaller crossbars, the interconnects can signif-257

icantly disturb current distribution in the crossbar. Average output current decreases due258

to line resistance in all seven crossbars of Ta/HfO2 devices (whose resistance ranges from259

∼1 kΩ to ∼11 kΩ, and their interconnect resistance is 0.35 Ω and 0.32 Ω in the word and bit260

lines, respectively), are shown in the heatmap in Figure 3B. We can see that the current261

decreases can range from ∼12% at the outputs nearest to the applied voltages to ∼16% at262

the outputs in the rightmost bit lines that are used. In the supplementary information, we263

provide a possible strategy of mitigating line resistance effects in supervised learning. This264

scheme was not employed in the simulations described in the main text because we wanted265

to find out how well the CM method would deal with noticeable line resistance effects.266
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3. Inference accuracy267

Figure 4 shows the accuracy of individual networks, as well as of their committees; mem-268

ristive ANNs were simulated by taking into account three non-idealities of Ta/HfO2 crossbar269

explored earlier—faulty devices, D2D variability and line resistance. As indicated by the270

yellow box plot in Figure 4, individual networks implemented digitally achieve ∼95.9% me-271

dian accuracy. Networks disturbed to reflect the effect of non-idealities achieve ∼91.0%272

median accuracy, as indicated by the vermilion box plot. Although that is a substantial273

drop in accuracy, we see that as more networks are added to the committee, the more the274

accuracy increases. When 5 networks are used in a committee, median accuracy increases275

up to ∼95.7%, as indicated by the rightmost green box plot.276

C. Ta2O5 RRAM277

In order to explore the effectiveness of minimising adverse effects of RTN, we use another278

memristor technology based on Ta2O5. To investigate RTN, measurements from a single279

device were considered. To simulate line resistance effects, interconnect resistance from280

Ta/HfO2 was used and the same crossbar shape was assumed.281

1. Random telegraph noise282

Memristors often suffer from RTN resulting in a different accuracy at any given instant283

in time. Ta2O5 device was characterised by measuring the current of 8 resistance states284

multiple times. Figure 5 shows the cumulative probability plots for those resistance states,285

together with lognormal fits modelling the nature of RTN. One of the things that the figure286

reveals is that higher resistance states suffer from higher degree of RTN. Fits for every287

resistance state, together with occurrence rates (see Supplementary Table SII), were used288

to disturb the weights of ANNs in order to reproduce the effect of RTN.289

2. Inference accuracy290

The results combining RTN and line resistance effects for Ta2O5 device are shown in291

Figure 6. From the difference in median accuracy between yellow and blue box plots, we can292
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notice that there is a significant drop in accuracy simply due to mapping of weights onto293

conductances. That is not surprising given that only 8 states were available for mapping.294

One can also observe that further drop in median accuracy due to non-idealities is not295

as severe—it drops to ∼94.1%. The RTN disturbance magnitude is limited to <100% in296

most cases, which possibly contributes to its smaller effect on accuracy. Additionally, Ta2O5297

device has much higher resistance (ranging from 25 kΩ to 200 kΩ), thus line resistance is also298

less of a concern. When non-ideal networks are combined into committees of 5, the median299

accuracy jumps to ∼96.5%—even higher than the software baseline of individual networks.300

This reveals additional trend seen in all the simulations performed—the higher the accuracy301

of the individual non-ideal memristive networks, the higher the accuracy of the committees302

that they are part of.303

D. aVMCO RRAM304

Further, we consider a third memristor technology—one based on aVCMO materials. We305

test the effects of RTN by considering measurements from a single device. Line resistance306

effects were simulated by using interconnect resistance and shape of Ta/HfO2 crossbar array.307

1. Random telegraph noise308

Figure 7 shows the cumulative probability plots for 8 resistance states of an aVMCO309

device suffering from RTN. Like in Ta2O5, we observe that higher resistance states experience310

RTN of higher magnitude. However, compared to Ta2O5, the RTN magnitude is much more311

predictable. Fits for each of the 8 resistance states, together with occurrence rates (see312

Supplementary Table SIII), were used to simulate the effect of RTN in aVMCO-based neural313

networks.314

2. Inference accuracy315

The results combining RTN and line resistance are shown in Figure 8. As with Ta2O5, we316

see a large drop due to mapping onto conductances—consequence of very few states available317

for mapping. More interestingly, the accuracy of individual memristor-based networks with318
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and without non-idealities is almost identical. That is because the occurrence rate of RTN319

in aVMCO device is small and there is a much smaller probability of RTN having large320

magnitude. Additionally, resistance of aVMCO device is even higher than that of Ta2O5321

device—it ranges from 1 MΩ to 7.5 MΩ. Therefore, line resistance has even a smaller effect322

in a hypothetical array of aVMCO devices. Due to median accuracy of individual non-ideal323

memristor-based networks being higher (∼94.6%), the median accuracy of committees is324

higher too—in committees of size 5 it increases to ∼96.7%.325

III. DISCUSSION326

The results from the previous section suggest that the method of using committee ma-327

chines to improve the accuracy of memristive neural networks is technology- and non-ideality-328

agnostic. CMs can mitigate the effects of faulty devices, D2D variability, RTN and line329

resistance in combination with each other. Although CM method is slightly less effective330

with large line resistance (see discussion in the supplementary information), in all cases, we331

observe that the accuracy of individual non-ideal networks largely determines the accuracy332

of committees. That is consequential because it means that although committees always333

increase the accuracy, there is still an incentive to optimise the devices and systems that334

implement these networks—the higher the accuracy of individual networks, the higher the335

accuracy of the committees.336

It is also important to consider whether using larger networks, instead of committees of337

smaller networks, would yield the same results if the same number of synapses (or mem-338

ristors) was used in the large network as in the committee of smaller networks. In our339

previous work we found that the accuracy of networks before disturbance (which we call340

“starting accuracy”) has a huge effect on the robustness to non-idealities—the larger the341

starting accuracy, the more robust the networks become [20]. One way to achieve higher342

starting accuracy is to have larger networks, e.g. if we have a network with one hidden layer,343

we might increase the number of neurons in that hidden layer, which would likely result in344

higher accuracy after training and thus higher robustness.345

Figure 9 shows a comparison of CMs of memristor-based networks disturbed using faulty346

devices and D2D variability data from Ta/HfO2 crossbar, when controlled for the total347

number of memristors that is required to implement them (line resistance was not taken348
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into account due to long time required to simulate it in large networks). We can observe349

that committees of two networks, each with 25 hidden neurons, (leftmost data point of350

the orange curve) achieve ∼0.9% higher median accuracy than individual networks with351

50 hidden neurons (second data point from the left in the vermilion curve), despite both352

requiring almost identical total number of memristors. Committees of two networks, each353

with 100 hidden neurons, (third data point from the left in the orange curve) achieve ∼1.1%354

higher median accuracy than individual networks with 200 hidden neurons (rightmost data355

point in the vermilion curve), even though both require almost the same total number of356

memristors. Even larger improvement is gained when committees of four networks, each with357

50 hidden neurons, (second data point from the left in the blue curve) are used instead—358

then the accuracy is improved by ∼1.5%, with almost the exact total number of memristors359

used.360

For different non-idealities and even different training schemes of the ANNs, the equiv-361

alents of Figure 9 might be different, but there are a few common characteristics in all of362

them. In all cases, for a given total number of memristors used, there is an optimal number363

of networks that should be used in a committee. Additionally, we observe that the more364

severe a non-ideality is, the more apparent the effectiveness of committees becomes. Finally,365

sometimes the committees (for a fixed total number of memristors) might achieve lower366

accuracy than individual networks but only if the networks that they replace are very small367

and the non-ideality is not very detrimental. If the networks that are being replaced with368

committees of smaller networks, are sufficiently large, the committees will achieve higher369

accuracy. An example of that is shown in Supplementary Figure S7 where aVMCO device370

is minimally affected by the non-idealities and so the advantage of committees becomes371

apparent only when replacing larger networks.372

The reason why committees work in the context of non-ideal implementations and why373

they work best when they are used to replace large networks might, to some extent, lie in374

their training. When it comes to training fully connected networks, their accuracy tends to375

saturate as more parameters are added. Supplementary Figure S4 shows that networks with376

50 hidden neurons can be trained to achieve significantly higher accuracy than networks with377

25 hidden neurons. However, networks with 200 hidden neurons achieve only slightly higher378

accuracy than networks with 100 hidden neurons. This also means that networks with 200379

hidden neurons will be only slightly more robust to non-idealities than networks with 100380
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hidden neurons. When such networks are affected by non-idealities, their accuracy drops381

to similar values but the smaller network can work in a committee with other networks,382

totalling almost the same number of memristors as the large network, but achieving higher383

accuracy overall. This is the most likely reason why the committees of smaller networks are384

effective at dealing with non-idealities, especially when replacing large networks.385

In addition to the accuracy improvements, committees can provide flexibility in mem-386

ristive implementations of neural networks. Digital implementations of ANNs have very387

predictable behaviour due to the precision of digital logic. Analogue implementations, on388

the other hand, can vary greatly even if they use the same weights before the mapping389

onto conductances—that is a result of the stochastic nature of memristors that implement390

these ANNs. The parallel and modular nature of committee machines makes memristive391

systems much more flexible. For example, if the verification accuracy of one of the ANNs in392

a memristor-based CM deteriorates below acceptable levels, its outputs could be disabled393

to ensure higher accuracy of the rest of the committee.394

Importantly, this introduced parallelism comes at almost no extra cost. For a fixed total395

number of memristors, a committee of smaller networks, compared to a large individual396

network, would only require a few additional output and bias neurons, and an averaging397

functionality, which could potentially be implemented in hardware. For example, an ANN398

with 50 hidden neurons would require 846 neurons in total, while a committee of two ANNs,399

each with 25 hidden neurons (and thus requiring almost the same total number of memris-400

tors), would require 857 neurons in total.401

In summary, our simulations employing experimental data from three different types of402

memristive devices show that committee machines employing ensemble averaging can be used403

to mitigate the effects of device- and system-level non-idealities in memristor-based neural404

networks. EA allows to achieve higher inference accuracy in physically implemented neural405

networks that suffer from faulty devices, device-to-device variability, random telegraph noise,406

and even line resistance. This method is a universal way to deal with the most common407

non-idealities and is straightforward to implement during the fabrication stage. Increased408

modularity of these memristive neural network systems will increase not only their inference409

accuracy, but also their robustness and flexibility, even without the need to sacrifice area.410

Although some level of non-idealities in memristors is unavoidable, CM method allows us411

to deal with these on the system level and is agnostic to a particular technology or, to some412

14



degree, type of the non-ideality.413

METHODS414

Experiments415

Ta/HfO2 RRAM 1T1R array consists of NMOS transistors fabricated in a commercial416

fab (feature size of 2 µm) and Pt/HfO2/Ta devices. The bottom electrode was deposited by417

evaporation of 20 nm Pt layer on top of a 2 nm tantalum (Ta) adhesive layer; the electrode418

was patterned by photolitography and a lift-off process. A 5 nm HfO2 switching layer was419

deposited by atomic layer deposition using water and tetrakis(dimethylamido)hafnium as420

precursors at 250 ◦C. Sputter-deposited Ta of 50 nm thickness followed by 10 nm Pd was421

used in a lift-off process to serve as the top electrode. The filamentary based Ta2O5 device422

consists of a TiN/4nm stoichiometric Ta2O5/20 nm nonstoichiometric TaOx/10 nm TaN/TiN423

stack with a cross-sectional area of 75 nm×75 nm, while the non-filamentary-based aVMCO424

has a cross-sectional area of 135 nm × 135 nm and is composed of a TiN/8 nm amorphous-425

Si/8 nm anatase TiO2/TiN stack. Ta2O5 and aVMCO devices were fabricated by imec. The426

detailed fabrication process parameters can be found in references [11, 28, 29] for Ta/HfO2,427

Ta2O5 and aVMCO RRAMs respectively.428

The conductance of Ta/HfO2 devices was modulated by applying SET pulses (500µs @429

2.5 V and gate voltage increasing from 0.6 V to 1.6 V). After each of the 11 cycles, RESET430

pulses were applied (5 µs @ 0.9 V increasing to 2.2 V and gate voltage of 5 V). The voltage431

was being increased linearly throughout the 100 pulses. All electrical tests for Ta2O5 and432

aVMCO devices were done with a Keysight B1500A. The RTN data is extracted by switching433

the device into 8 uniformly distributed resistance levels between 25 kΩ and 200 kΩ, and 8434

nearly uniformly distributed resistance levels between 1 MΩ and 7.5 MΩ with incremental435

RESET DC sweeps [30] for Ta2O5 and aVMCO respectively. RTN measurement is then436

carried out at each resistance level at a 0.1 V and 3 V read-out for Ta2O5 and aVMCO437

respectively, with a sampling time of 2 ms/point and 10,000 sampling point per resistance438

level for an RTN measurement period of 20 s.439
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Simulations440

In this work, feed-forward ANNs with fully connected layers and continuous weights were441

trained to recognise handwritten digits using the MNIST data base. All 60,000 MNIST442

training images were used during the training stage; training set consisted of 50,000 images443

and verification set consisted of 10,000 images. All 10,000 test images were used to evaluate444

the inference accuracy of ANNs. Networks used 784 input neurons representing pixel inten-445

sities of MNIST images of 28× 28 pixel size, as well as one bias neuron. 10 output neurons446

were used; they represented the ANNs’ predictions of 10 handwritten digits. Hidden layers447

used sigmoid activation function, while the output layer used softmax activation function.448

Weights were optimised by minimising cross-entropy error function using stochastic gradi-449

ent descent. Learning rate of 0.01 and patience of 25 epochs were used. 25 networks were450

trained for each architecture explored by initialising them differently. When numerically op-451

timising ANNs’ weightings, optimisation was performed by employing verification set, while452

the performance was evaluated using the test set. The code was implemented in Python.453

Weights were mapped onto pairs of memristors’ conductances using proportional map-454

ping scheme—synaptic weights were made proportional to one of the conductances in the455

pair, while the other was left unelectroformed. The zero weight was interpreted as given—456

in practise, it would be implemented by not electroforming the device, thus resulting in its457

negligible conductance. Although aVMCO devices do not have electroforming stage, for con-458

sistency we assumed that additional insulating circuit elements could be used to implement459

the zero weight. Negative weights would be implemented by placing certain memristors in460

dedicated bit lines of the crossbars whose outputs would be subtracted from the outputs at461

the corresponding bit lines implementing positive weights. Maximum weights after mapping462

were optimised separately for each set of network architecture and conductance levels; in463

each case this was done by excluding a certain proportion, pL, of weights with largest abso-464

lute values. What pL values were used for each simulation is summarised in Supplementary465

Table SI. More details on the mapping procedure can be found in our past work [20].466

All non-idealities, except for line resistance, were simulated by disturbing the individual467

conductances of memristor-based ANNs. To investigate line resistance, nodal analysis was468

employed. By setting up simultaneous linear equations using Ohm’s law and Kirchhoff’s469

current law, those were solved in sparse matrix representation using Python’s library scipy.470
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After simulating memristor non-idealities, committees of different ANNs were composed.471

Committees used EA, i.e. the outputs of individual networks in a committee were averaged472

to produce a single output vector. In EA, the output vectors of individual networks can473

simply be added together (if the weightings of different networks are the same, as we assume474

in the main text); the label corresponding to the entry with the highest value would be475

the prediction of the committee. This addition can be performed either in software, or, if476

the activation function of the last neuronal layer can be implemented physically, it can be477

performed by adding corresponding currents produced by the circuitry of this activation478

function.479

In the simulations, neural networks that go into a committee were chosen randomly.480

This was done to reflect the most convenient strategy when manufacturing such systems—481

because one does not need to selectively choose the networks, manufactured crossbars can be482

easily programmed without the need to replace them if they perform poorly when working483

individually (unless their effect is so detrimental that they have to be ignored which can484

be made possible with this technique). Besides, devices might change over time, thus these485

simulations, which show what happens when one does not selectively choose the networks,486

are valuable to investigate conditions where it is not possible to replace the networks.487

In the simulations, 25 base networks were used (each having different set of weights) for488

each of the architectures. Then all of their weights were mapped onto pairs of conductances489

using HRS/LRS values extracted from experiments. Finally, to reflect the effect of each of490

the non-idealities, all networks were disturbed multiple times. In each disturbance iteration,491

multiple combinations of networks were chosen and their performance as a committee of492

certain size was evaluated. In total, for most simulations, 10,000 data points were recorded493

for a committee of every size—these data captured the variations of base networks, their494

combinations and different disturbance iterations. Only simulations involving line resistance495

or numerical optimisation of weights had fewer data points for some committee sizes (due496

to long simulation times).497
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Figure 1. Using multiple neural networks to improve inference accuracy. A) The principle of EA.

B) Using identical digital networks when implementing committees of memristive neural networks

only helps to deal with the damage to the networks caused by the non-idealities. C) Using different

digital networks when implementing committees of memristive neural networks both helps to deal

with the damage to the networks caused by the non-idealities and allows to combine the knowledge

about the data set acquired by individual digital networks.
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Figure 2. Experimental data of Ta/HfO2 RRAM crossbar array of shape 128×64. A) Modulation

of devices’ conductance over 11 SET cycles, each consisting of a 100 potentiating pulses. Violin

plots of gradual conductance changes are shown for all Ta/HfO2 devices, with dots representing

median conductance after a certain number of pulses. 100 points were used for Gaussian kernel

density estimation. All violin plots have their maximum widths normalised. B-F) Examples of

devices with their conductance (in mS) B) spanning the full range, C) spanning part of the full

range, D) exhibiting cycle-to-cycle variability, E) stuck at high values, F) stuck at low values.

These diagrams show conductance of five devices from Ta/HfO2 crossbar array over 11 SET and

RESET cycles. The radial component represents the conductance, while the angular component

represents the number of applied pulses. The first SET cycle starts at the top of each of the

diagrams. The conductance (in blue) over 100 SET pulses is displayed in a clockwise fashion

across the right half of each of the diagrams. Following that, conductance (in orange) over 100

RESET pulses (starting at the bottom) is displayed across the left half of each of the diagrams,

after which the next cycle is displayed. Cartesian version of these plots is shown in Supplementary

Figure S9.
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Figure 3. Theoretical implementation of a synaptic layer of shape 785 × 25 using crossbars of

shape 128 × 64. A) Mapping the first subset of weights onto one of the seven crossbars used

to implement the whole synaptic layer. Positive weights and negative weights are mapped onto

memristors in different bit lines. B) Heatmap of average changes in output currents due to line

resistance (in all seven Ta/HfO2 crossbars). For this particular simulation, it was assumed that

Ta/HfO2 devices can be programmed perfectly.
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Figure 4. Accuracy achieved by individual networks and their committees when faulty devices,

D2D variability data and line resistance of Ta/HfO2 crossbar are taken into account. The maximum

whisker length is set to 1.5× IQR.
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resistance states of a Ta2O5 RRAM device. Lognormal fits are shown for each resistance state.
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Figure 6. Accuracy achieved by individual networks and their committees when RTN data of a

Ta2O5 device are taken into account. Additionally, interconnect resistance of 0.35 Ω and 0.32 Ω

in the word and bit lines, respectively, (from Ta/HfO2 array) was used to include line resistance

effects. The maximum whisker length is set to 1.5× IQR.
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Figure 7. Cumulative probability plots of RTN-induced relative current deviations for all 8

resistance states of aVMCO RRAM device. Lognormal fits are shown for each resistance state.
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Figure 8. Accuracy achieved by individual networks and their committees when RTN data of an

aVMCO device are taken into account. Additionally, interconnect resistance of 0.35 Ω and 0.32 Ω

in the word and bit lines, respectively, (from Ta/HfO2 array) was used to include line resistance

effects. The maximum whisker length is set to 1.5× IQR.
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Figure 9. Median accuracy achieved by individual one-hidden-layer memristor-based networks

and their committees, when controlled for total number of memristors required. The networks
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TABLES645

First author

(year)
Non-ideality Device type Proposed solution

C. Sung

(2018) [31]
Current/voltage non-linearity TaOx RRAM Hot-forming step is adopted

C. Li

(2018) [15]
Current/voltage non-linearity Ta/HfO2 RRAM 1T1R architecture is adopted

Y. Fang

(2018) [32]
Device-to-device variability HfOx RRAM

Ultra-thin ALD-TiN

buffer layer is introduced

B. Govoreanu

(2013) [33]
Device-to-device variability Al2O3/TiO2 (VMCO) RRAM Non-filamentary RRAM is adopted

A. J. Kenyon

(2019) [34]
Device-to-device variability SiOx RRAM

The roughness of bottom

electrodes is increased

L. Xia

(2017) [14]
Faulty devices -

A modified mapping algorithm

and redundancy schemes are used

S. Ambrogio

(2018) [7]
Limited dynamic range PCM

Two pairs of conductance of varying significance

for every synaptic weight are used

M. Hu

(2016) [17]
Line resistance -

Advanced mapping algorithms are used to

compensate for line resistance effects

W. Wu

(2018) [35]
Programming non-linearity HfOx RRAM

Electro-thermal modulation layer is

deposited on the switching layer

J. Woo

(2016) [9]
Programming non-linearity HfO2 RRAM Bilayer structure is adopted

S. Ambrogio

(2018) [7]
Programming non-linearity PCM

PCM devices are used together

with CMOS transistors

Z. Chai

(2018) [36]
Random telegraph noise TiO2/a-Si (aVMCO) RRAM Non-filamentary RRAM is adopted

Table I. Examples of past efforts at dealing with non-idealities of memristive devices and their

systems.
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Abstract11

Artificial neural networks are notoriously power- and time-consuming when implemented on con-12

ventional von Neumann computing systems. Recent
:::::::::::::
Consequently,

:::::::
recent years have seen an emer-13

gence of research in
::::::::
machine

::::::::
learning hardware that strives to break the bottleneck of von Neumann14

architecture and optimise the data flow, namely, to bring memory and computing closer together.15

One of the most often suggested solutions is the physical implementation of
::
A

::::::::
popular

::::::::::
approach16

:
is
:::

to
:::::::
realise

:
artificial neural networks in which

:::::::::
hardware

:::
by

::::::::::::::
implementing their synaptic weights17

are realised with memristive devices, such as resistive random-access memory
:::::
using

::::::::::::
memristive18

:::::::
devices. However, various device- and system-level non-idealities usually prevent these physical19

implementations from achieving high inference accuracy. We suggest applying a well-known con-20

cept in computer science—committee machine—in
::::::::::::
machines—in

:
the context of memristor-based21

neural networks. Using simulations and experimental data from three different types of mem-22

ristive devices, we show that committee machines employing ensemble averaging can successfully23

increase inference accuracy in physically implemented neural networks that suffer from faulty de-24

vices, device-to-device variability, random telegraph noise and line resistance. Importantly, we25

show
::::::::::::
demonstrate

:
that the accuracy can be improved even without increasing the total number of26

memristors.27
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I. INTRODUCTION28

Artificial neural networks (ANNs), with all of their variants, are now the main tools in29

machine learning tasks, such as classification. The vast amounts of data being constantly30

produced have enabled successful training and operation of ANNs. However, to achieve31

high inference accuracy, it is usually necessary for neural networks to have a large number of32

parameters. This results in both training [1] and inference [2] stages being time- and power-33

consuming. This is largely caused by the need to transfer data from memory to computing34

units—physical separation of memory and computing is the essence of any von Neumann35

system.36

One of the most promising solutions to these problems is the paradigm of non-von Neu-37

mann computing and, specifically, analogue implementations of synapses (weights) in phys-38

ical ANNs. Because there are many more synapses than there are neurons in ANNs, the39

matrix-vector multiplications, in which the synaptic weight values are used, are the costli-40

est operations in these networks, both in terms of power and time. Computing directly in41

memory would minimise costly data transfers from off-chip memory, thus the most popular42

approach is using analogue memory devices as proxies for synaptic weights of ANNs (both43

fully connected and their variants [3, 4]). A common technique is to arrange such devices44

in a structure, called crossbar array, in which every device (or a pair of devices) is used to45

represent a single synaptic weight or, more generally, an entry in a matrix [5]. Memristive46

devices, such as phase-change memories (PCMs) [6, 7] or resistive random-access memories47

(RRAMs) [8, 9], have been considered as candidates for such tasks. Although here we fo-48

cus on ex-situ training, such systems have been successfully utilised for in-situ training too49

[10, 11].50

In memristive implementations of ANNs, the main concern is that various non-idealities51

associated with these devices can prevent these systems from achieving high accuracy [12,52

13]. Examples of non-idealities affecting inference accuracy include, but are not limited53

to, devices not being able to electroform, devices stuck in one of the resistance states after54

electroforming, device-to-device (D2D) variability and random telegraph noise (RTN). When55

training analogue systems in-situ, limited endurance and non-linear resistance modulation56

too have to be taken into account. To mitigate the effects of these device non-idealities, it is57

often necessary to modify device structure [9], to use more advanced programming schemes58
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[14] or to use additional circuitry [15] or high-precision processing units [16] in conjunction59

with memristive elements. On the system level, there is an issue of line resistance which60

affects the distribution of currents and thus decreases the accuracy. These line resistance61

effects can be partially compensated for algorithmically [17] or partially mitigated by using62

multiple smaller crossbar arrays [18]. Examples of past efforts at dealing with these and63

other non-idealities of memristive devices and systems are listed in Table I; most of these64

non-idealities are still the main focus of the research in the neuromorphic community.65

We propose a simple way to mitigate the effects of all types of non-idealities during66

inference. We suggest combining several non-ideal memristor-based neural networks into67

committees to achieve better accuracy. The committee machine (CM) method we propose68

significantly increases the inference accuracy and does not increase the computation time69

because memristive ANNs in such committees work in parallel.70

In this work, we firstly explain the simulation setup—what networks were trained,71

how they were simulated and how they were combined into CMs. After that, follows72

the experimental part. We investigate three different types of memristor technology—73

tantalum/hafnium oxide-based (Ta/HfO2), tantalum oxide-based (Ta2O5), and amorphous74

vacancy modulated conductive oxide-based (aVMCO) devices. By exploring their non-75

idealities relevant to inference—faulty devices, D2D variability, RTN, and line resistance—76

we use the experimental data to simulate memristive ANNs working individually and in77

committees.78

II. RESULTS79

A. Simulation setup80

Fully connected ANNs were trained in software to recognise handwritten digits (using81

MNIST data base [19]). Architectures with one hidden layer were explored. Unless stated82

otherwise, the simulations used networks with 25 hidden neurons. However, networks with83

50, 100 and 200 hidden neurons were additionally employed to evaluate the effectiveness of84

the proposed method while controlling for the total number of memristors required. Follow-85

ing training, weights of ANNs were mapped onto pairs of conductances using proportional86

mapping scheme (see [20]) to simulate memristor-based ANNs. Finally, these memristive87
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networks were disturbed using experimental data to reflect the effect of device- and system-88

level non-idealities.89

After simulating physical non-idealities, the networks were combined into CMs that em-90

ployed ensemble averaging (EA) [21]. The principle of EA is shown in Figure 1A—several91

networks are combined in parallel and then their outputs are averaged. After that, the92

prediction is made using the averaged vector—the prediction is the label corresponding to93

the largest entry in the vector.94

CM methods are frequently used even with conventional ANNs. Methods, such as EA,95

often produce better accuracy than that of the best individual network in a committee [22].96

Although there are other types of CMs besides EA, they often rely on training additional97

gating networks or boosting networks during the training stage. Using a gating network in98

this scenario would produce additional problems—to avoid it acting as a performance bottle-99

neck, it too would have to be implemented on crossbar arrays. Various non-idealities would100

decrease the effectiveness of this gating network which is responsible for making the deci-101

sions about the whole committee of ANNs. Likewise, we speculate that boosting of networks102

would not be feasible in ex-situ training because it requires information about where indi-103

vidual ANNs perform poorly—this cannot be known precisely until they are implemented104

physically on crossbar arrays and the non-idealities manifest themselves. To authors’ best105

knowledge, the application of boosting in the context of memristive neural networks seems106

to have been explored only once before [23]; as expected, it requires training each memristive107

implementation differently because non-idealities manifest themselves differently in different108

crossbar arrays.109

There exist modifications of EA algorithm that could potentially perform better. One110

example of this is generalized ensemble method (GEM) which, instead of using equal weight-111

ings for each network during averaging (as in EA), uses a different one for each network [21].112

These weightings are analytically determined by considering correlation of errors between113

different networks. But because [21] only considered networks with mean square error loss114

function (while our networks used cross-entropy loss function), this work does not explore115

GEM. Instead, we investigated whether it is possible to achieve a better performance by116

optimising the weightings numerically. This method, like GEM and others previously men-117

tioned, might be impractical because, firstly, these weightings could be determined only after118

the ANNs are physically implemented on crossbars, and, secondly, the devices could change119
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throughout their lifetimes thus affecting the optimal weightings.120

Even with the assumption that the devices would have perfect retention, we found that121

optimisation of weightings achieves effectively the same performance. Because of these rea-122

sons, we focus only on EA in the main text, but present our results of optimising weightings123

in Supplementary Figure S3
:::
S5. We stress that we are open to the idea that other CM meth-124

ods besides EA could be utilised successfully for ex-situ training in the context of memristive125

ANNs. However, in this work we focus on demonstrating that CMs can be used to improve126

the accuracy of memristor-based ANNs in general.127

With EA, we find that even when the memristive ANNs, which go into a committee, all128

use the same digitally implemented
:::::::
digital weights that are mapped onto crossbar arrays129

(see Figure 1B), committee of memristor-based networks can still achieve higher accuracy130

than just a single non-ideal network. Although all networks have the same digital weights131

before mapping, their physical implementations (which we call ”disturbances” in Figures 1B,132

C because they can usually be represented by the modification of individual weights) will133

be different. For example, in one crossbar array, a certain set of devices will be faulty, while134

in the other crossbar array, it will be a different set. This will result in different physical135

implementations having slightly different learned representations of the data set, or, to136

paraphrase, different networks will be ”damaged” differently by the non-idealities. This137

means that these committees will be able to combine different representations, and thus138

achieve higher accuracy. However, by definition, such approach would almost certainly not139

yield a committee accuracy that is higher than the accuracy of a single digitally implemented140

network.141

A better approach is to use different digital networks for different physical implementa-142

tions that go into a committee (see Figure 1C). This approach much more resembles the143

conventional application of EA in computer science. In the context of memristive crossbar144

arrays, it would not only help to mitigate the effects of the non-idealities (as in the case145

of Figure 1B), but would also allow to combine the representations of digital networks that146

were different even before the mapping stage. Most importantly, this method allows for a147

committee to achieve higher accuracy which is sometimes even higher than that of individual148

networks with digitally implemented weights. We thus used this method in this analysis.149

:::
An

:::::::::
example

:::::::::::::
comparison

::
of

::::::
these

:::::
two

::::::::::::
approaches

::
is

::::::::::
presented

:::
in

::::::::::::::::
Supplementary

::::::::
Figure

::::
S8.

:
150

In this work, any given committee used only one network architecture but each network151

5



was initialised differently before training, thus trained networks had different sets of weights.152

Although it was not explored in this work, combining different network architectures in a153

committee of memristor-based networks might be advantageous. Furthermore, in this work154

we focus on fully connected ANNs but CMs could be applied to other variants of neural155

networks as well. Due to the simplicity of EA, it could, for example, be employed in con-156

volutional neural networks (CNNs) [24], which are often used for image classification. This157

might be of interest as CNNs have been successfully implemented using crossbar arrays re-158

cently [25]. However, crossbar implementations are naturally more suited to fully connected159

networks, therefore we limit ourselves to this architecture but are open to exploring the160

effectiveness of EA with memristive CNNs in the future.161

B. Ta/HfO2 RRAM162

With array-level data available, Ta/HfO2 experiments provide the most complete pic-163

ture of device- and system-level non-idealities. In this subsection, we present not only the164

analysis of faulty devices and D2D variability, but also careful consideration of the line resis-165

tance effects. Ta/HfO2 memristors do not exhibit apparent RTN and overall have excellent166

retention properties [26], and thus are perfect candidates for inference application.167

1. Faulty devices and device-to-device variability168

The most energy-efficient procedure to modulate the conductance of memristors is by169

the application of voltage pulses. In an ideal scenario, one would apply identical pulses170

and observe constant increases in conductance with each pulse. This is rarely the case171

in practise, but, fortunately, this type of behaviour is more relevant for in-situ training172

where it is necessary to ensure linear adjustment of ANN’s weights [27]. In ex-situ training,173

conductance verification schemes can be used to program the devices precisely. Because the174

devices would have to be programmed only once, one can spend additional resources to do so175

accurately by applying SET (potentiation) and RESET (depression) pulses until a desirable176

conductance state is achieved.177

Even with this approach, there remain two obstacles—faulty devices and D2D variability.178

It is observed in most memristor technologies that at least a small fraction of the devices179
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tends to get stuck in a particular conductance state. Additionally, even if not stuck, different180

devices might behave differently; for example, they might have different conductance ranges.181

Figure 2A shows conductance changes in Ta/HfO2 RRAM devices (in a 128 × 64 crossbar182

array) when they are applied with voltage pulses. We can see from the median values183

that overall the devices’ conductance tends to increase as more SET pulses are applied.184

However, the wider bottom regions of the violin plots indicate that some devices are stuck185

around high resistance state (HRS) and cannot set entirely no matter how many voltage186

pulses are applied. There also exist devices that are stuck in low resistance state (LRS), or187

simply do not span the full conductance range.188

Figure 2A combines data from multiple SET cycles for each of the memristors, thus it189

is important to understand how do these devices behave individually. Figures 2B-F show190

conductance of 5 (out of 8,192) devices over 11 SET and RESET cycles. In the five dia-191

grams, the radial component represents the conductance (in mS) and the angular component192

represents the number of applied pulses. Figure 2B shows an example of preferable (and193

typical) device behaviour—conductance changes in a continuous fashion and spans a wide194

range of conductance values, from ∼0.1 ms to ∼1.0 ms. Although RESET cycles tend to195

feature abrupt decreases in conductance, one can always repeat a cycle and exploit the more196

predictable behaviour of SET cycles.197

When encoding continuous numbers into crossbar devices’ conductances, it is often prefer-198

able to choose a large enough conductance range. Using data from Figure 2A, one could,199

for example, choose the range between the first and the last median points (from ∼0.1 mS200

to ∼1.0 mS). Device, whose behaviour is presented in Figure 2B, could be easily set to any201

conductance within that range, as we have seen before. On the other hand, device, whose202

behaviour is presented in Figure 2C, although operating in a predictable fashion, has smaller203

conductance range. We can see that in all cycles, its conductance does not exceed 0.8 mS.204

This is an example of D2D variability that can make it difficult to choose optimal operating205

range and set the conductance of all devices precisely.206

Device, whose behaviour is presented in Figure 2D, shows high cycle-to-cycle variability.207

Although that could prove to be a problem in some applications, this specific device might208

perfectly serve its purpose in ex-situ training of ANNs. We can observe that this device209

spans the same conductance range as device from Figure 2B, even if in an unpredictable210

manner. Because all states in the full range are, in theory, achievable, one can cycle the211
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device multiple times until it is set to the required conductance level.212

Lastly, we have devices whose negative effect is most difficult to mitigate—faulty devices.213

Figure 2E shows behaviour of a device stuck at high conductance values, while Figure 2F214

shows behaviour of a device stuck at low conductance values. No matter how many pulses215

the devices are applied with or how many times they are cycled, they exhibit almost no216

conductance variation and thus, in most cases, cannot be used to encode information.217

Knowing that some devices perform like the ones whose behaviour is shown in Fig-218

ures 2C,E,F, it is important to minimise their negative effect. If the conductance that a219

device has to be set to is outside that device’s range, it is sensible to set it to the closest220

achievable conductance. Although there is little that can be done about fully stuck memris-221

tors, it is possible to optimise the behaviour of devices like the one in Figure 2C that simply222

have smaller conductance range. For example, if such a device has to be set to 0.9 mS, one223

would set it to the highest achievable conductance (∼0.8 mS). In the following simulations224

involving faulty devices and D2D variability, operating range between the first and the last225

median points was used, the devices were chosen randomly from the 128× 64 crossbar and226

set to the most desirable states, as described in this paragraph.227

2. Line resistance228

The effect of line resistance can be extremely detrimental in many crossbar-based im-229

plementations of ANNs. That is especially the case if the crossbars used
:::
are

::::::
large

:
and230

the resistance of the interconnects are large
::
is

:::::
high

:
(compared to memristors’ resistance).231

Because in a neural network many of the inputs are non-zero at any given time, a lot of232

current accumulates in the bit lines which results in significant voltage drops across the233

interconnects, and thus the current distribution across the crossbar is affected in a major234

way.235

Although there are many possible options for how to map synaptic weights onto crossbar236

arrays, the choice can determine the role of line resistance. It is often the case that synaptic237

layers of ANNs are large in size. However, that does not mean that the weights in those238

layers have to be mapped onto crossbars of equivalent shape; not only is that sometimes239

impossible, but it can also amplify the effect of line resistance. For example, if a synaptic240

layer with 785 input neurons (as is the case with the first layer of our ANNs) was mapped241
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onto a crossbar with 785 word lines, massive amounts of current would accumulate in the242

bit lines.243

The Ta/HfO2 crossbar has shape 128×64 and so this shape was chosen for all the simula-244

tions involving line resistance. Even relatively small ANNs of architecture 784(+1):25(+1):10245

would need 2× (785× 25 + 26× 10) = 39, 770 memristors to be implemented. Even if not246

all the inputs were used at any given time, it would not be possible to fit all the memristors247

onto a single crossbar of shape 128× 64. To overcome this, we decided to simulate multiple248

crossbars, each of which would implement a subset of the synaptic weights, but, for a given249

synaptic layer, would all compute in parallel. Because d785/128e = 7, seven crossbars were250

used to implement the first synaptic layer; the first six crossbars utilised all 128
:::::::::
crossbar251

::::::::
utilized

::::::::
bottom

::::
113 word lines, while the last one used only the bottom 17

:::::
other

::::
six

::::::::::
crossbars252

:::::
used

::::::::
bottom

:::::
112

:
word lines because 785− 6× 128 = 17

::::::::::::::::::::
113 + 6× 112 = 785. The second253

synaptic layer was implemented using eighth crossbar utilising
::::::::
utilizing

:
its bottom 26 word254

lines.255

Figure 3A shows an example of how the first synaptic layer of 784(+1):25(+1):10 neural256

network could be implemented. Specifically, it shows how the first subset of weights would257

be implemented using one of the crossbars. Because we use proportional mapping scheme,258

positive and negative weights would be implemented in different bit lines. In Figure 3A,259

memristors designated to implement positive weights are coloured in blue, memristors des-260

ignated to implement negative weights are coloured in orange and unelectroformed memris-261

tors are coloured in black. Because simulations were constrained by experimental data, the262

rightmost bit lines are
:::::
some

:::
of

::::
the

:::::::::
devices

:::::
were

::::
left

:
unused and assumed to contain only263

unelectroformeddevices
::
be

:::::::::::::::::
unelectroformed. In practise, the crossbars could be manufactured264

to fit the geometry of the ANNs.265

In each synaptic layer, the corresponding output currents from each of the crossbars266

would be added together. Additionally, output currents at the bit lines implementing neg-267

ative weights would be subtracted from the output currents at the corresponding bit lines268

:::::::::::::
neighbouring

::::
bit

:::::
lines

::::
(to

::::::
their

:::::
left) implementing positive weights. For example, in the ex-269

ample configuration of Figure 3A, output current at the 26th
:::
2nd bit line would be subtracted270

from the output current at the 1st bit line, etc.271

Unfortunately, even when using multiple smaller crossbars, the interconnects can signif-272

icantly disturb current distribution in the crossbar. Average output current decreases due273
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to line resistance in all seven crossbars of Ta/HfO2 devices (whose resistance ranges from274

∼1 kΩ to ∼11 kΩ, and their interconnect resistance is 0.3 Ω
::::::::
0.35 Ω

:::
and

::::::::
0.32 Ω

::
in

:::::
the

::::::
word275

::::
and

:::
bit

::::::
lines,

:::::::::::::
respectively), are shown in the top heatmap of

:::::::::
heatmap

:::
in

:
Figure 3B. We can276

see that the current decreases can range from ∼15
::
12% at the outputs nearest to the applied277

voltages to ∼18
::
16% at the outputs in the rightmost bit lines that are used. Such large278

current decreases often result from large input voltages that are applied at the top part of279

the crossbar, far away from the outputs. Such inputs generate large amounts of current that280

flow through large portions of the bit lines and, with voltage drops across interconnects,281

disturb the overall current distribution in a major way.282

In some applications, such as supervised learning, it might be possible to strategically283

map certain inputs to certain word lines, so that the effect of line resistance is minimised.284

We propose intensity-aware reordering of ANN’s inputs in which we record the average285

input intensities over training and verification sets, and then map inputs with highest286

average intensities to the word lines closest to the outputs of a crossbar. This makes287

it so that most of the current is generated near the outputs, while the currents in the288

top parts of the bit lines are disturbed minimally. Bottom heatmap in Figure 3B shows289

average current decreases when using such a scheme with an unseen test set—we observe290

significantly smaller decreases. Additionally, to make the influence of positive and negative291

weights (which are affected very differently in the naive mapping of Figure 3A) more equal292

and to increase the variability between different ANNs in a committee, we suggest random293

reordering of inputs and outputs. Both intensity-aware and random reordering were used294

in all the following simulations involving line resistance . The implementation of these295

methods individually and in combination with each other is explained in more detail in the296

supplementary information
::
In

::::
the

:::::::::::::::
supplementary

::::::::::::::
information,

:::
we

::::::::
provide

::
a

:::::::::
possible

:::::::::
strategy297

::
of

:::::::::::
mitigating

:::::
line

:::::::::::
resistance

:::::::
effects

:::
in

:::::::::::
supervised

::::::::::
learning.

::::::
This

::::::::
scheme

:::::
was

::::
not

:::::::::::
employed298

::
in

::::
the

:::::::::::::
simulations

::::::::::
described

:::
in

::::
the

::::::
main

:::::
text

:::::::::
because

:::
we

:::::::::
wanted

:::
to

::::
find

:::::
out

:::::
how

::::
well

:::::
the299

::::
CM

::::::::
method

:::::::
would

:::::
deal

::::::
with

:::::::::::
noticeable

::::
line

:::::::::::
resistance

:::::::
effects.300

3. Inference accuracy301

Figure 4 shows the accuracy of individual networks, as well as of their committees; mem-302

ristive ANNs were simulated by taking into account three non-idealities of Ta/HfO2 crossbar303
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explored earlier—faulty devices, D2D variability and line resistance. As indicated by the304

yellow box plot in Figure 4, individual networks implemented digitally achieve ∼95.9% me-305

dian accuracy. Networks disturbed to reflect the effect of non-idealities achieve ∼90.8
:::::
91.0%306

median accuracy, as indicated by the vermilion box plot. Although that is a substantial307

drop in accuracy, we see that as more networks are added to the committee, the more the308

accuracy increases. When 5 networks are used in a committee, median accuracy increases309

up to ∼95.8
::::
95.7%, as indicated by the rightmost green box plot.310

C. Ta2O5 RRAM311

In order to explore
:::
the

:
effectiveness of minimising adverse effects of RTN, we use another312

memristor technology based on Ta2O5. To investigate RTN, measurements from a single313

device were considered. To simulate line resistance effects, interconnect resistance from314

Ta/HfO2 was used and the same crossbar shape was assumed.315

1. Random telegraph noise316

Memristors often suffer from RTN resulting in a different accuracy at any given instant317

in time. Ta2O5 device was characterised by measuring the current of 8 resistance states318

multiple times. Figure 5 shows the cumulative probability plots for those resistance states,319

together with lognormal fits modelling the nature of RTN. One of the things that the figure320

reveals is that higher resistance states suffer from higher degree of RTN. Fits for every321

resistance state, together with occurrence rates (see Supplementary Table SII), were used322

to disturb the weights of ANNs in order to reproduce the effect of RTN.323

2. Inference accuracy324

The results combining RTN and line resistance effects for Ta2O5 device are shown in325

Figure 6. From the difference in median accuracy between yellow and blue box plots, we can326

notice that there is a significant drop in accuracy simply due to mapping of weights onto327

conductances. That is not surprising given that only 8 states were available for mapping.328

One can also observe that further drop in median accuracy due to non-idealities is not as329

11



severe—it drops to ∼94.2
:::::
94.1%. The RTN disturbance magnitude is limited to <100% in330

most cases, which possibly contributes to its smaller effect on accuracy. Additionally, Ta2O5331

device has much higher resistance (ranging from 25 kΩ to 200 kΩ), thus line resistance is also332

less of a concern. When non-ideal networks are combined into committees of 5, the median333

accuracy jumps to ∼96.5%—even higher than the software baseline of individual networks.334

This reveals additional trend seen in all the simulations performed—the higher the accuracy335

of the individual non-ideal memristive networks, the higher the accuracy of the committees336

that they are part of.337

D. aVMCO RRAM338

Further, we consider a third memristor technology—one based on aVCMO materials. We339

test the effects of RTN by considering measurements from a single device. Line resistance340

effects were simulated by using interconnect resistance and shape of Ta/HfO2 crossbar array.341

1. Random telegraph noise342

Figure 7 shows the cumulative probability plots for 8 resistance states of an aVMCO343

device suffering from RTN. Like in Ta2O5, we observe that higher resistance states experience344

RTN of higher magnitude. However, compared to Ta2O5, the RTN magnitude is much more345

predictable. Fits for each of the 8 resistance states, together with occurrence rates (see346

Supplementary Table SIII), were used to simulate
:::
the

:
effect of RTN in aVMCO-based neural347

networks.348

2. Inference accuracy349

The results combining RTN and line resistance are shown in Figure 8. As with Ta2O5, we350

see a large drop due to mapping onto conductances—consequence of very few states available351

for mapping. More interestingly, the accuracy of individual memristor-based networks with352

and without non-idealities is almost identical. That is because the occurrence rate of RTN353

in aVMCO device is small and there is a much smaller probability of RTN having large354

magnitude. Additionally, resistance of aVMCO device is even higher than that of Ta2O5355
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device—it ranges from 1 MΩ to 7.5 MΩ. Therefore, line resistance has even a smaller effect356

in a hypothetical array of aVMCO devices. Due to median accuracy of individual non-ideal357

memristor-based networks being higher (∼94.7
:::::
94.6%), the median accuracy of committees358

is higher too—in committees of size 5 it increases to ∼96.6
::::
96.7%.359

III. DISCUSSION360

The results from the previous section suggest that the method of using committee ma-361

chines to improve the accuracy of memristive neural networks is technology-agnostic
::::::::::::
technology-362

::::
and

::::::::::::::::::::::
non-ideality-agnostic. CMs can mitigate the effects of faulty devices, D2D variability,363

RTN and line resistance in combination with each other. Although line resistance is more364

difficult to deal with using committees due to the similar way in which all crossbars of365

different networks get affected, using random reordering can increase the effectiveness of366

ensembles of non-ideal memristive networks. In
::::
CM

::::::::
method

:::
is

::::::::
slightly

:::::
less

:::::::::
effective

::::::
with367

:::::
large

:::::
line

:::::::::::
resistance

:::::
(see

:::::::::::
discussion

::::
in

::::
the

::::::::::::::::
supplementary

:::::::::::::::
information),

:::
in

:
all cases, we368

observe that the accuracy of individual non-ideal networks largely determines the accuracy369

of committees. That is consequential because it means that although committees always370

increase the accuracy, there is still an incentive to optimise the devices and systems that371

implement these networks—the higher the accuracy of individual networks, the higher the372

accuracy of the committees.373

::
It

::
is

:::::
also

::::::::::::
important

:::
to

:::::::::
consider

:::::::::
whether

:::::::
using

:::::::
larger

:::::::::::
networks,

::::::::
instead

:::
of

:::::::::::::
committees374

::
of

::::::::
smaller

:::::::::::
networks,

::::::::
would

::::::
yield

::::
the

:::::::
same

::::::::
results

::
if
:::::

the
::::::
same

:::::::::
number

:::
of

::::::::::
synapses

:::::
(or375

::::::::::::
memristors)

:::::
was

::::::
used

:::
in

::::
the

::::::
large

:::::::::
network

:::
as

:::
in

:::::
the

:::::::::::
committee

:::
of

:::::::::
smaller

:::::::::::
networks.

::::
In376

:::
our

::::::::::
previous

:::::
work

::::
we

::::::
found

:::::
that

::::
the

::::::::::
accuracy

::
of

::::::::::
networks

:::::::
before

:::::::::::::
disturbance

:::::::
(which

:::
we

:::::
call377

:::::::::
“starting

::::::::::::
accuracy”)

:::::
has

::
a

:::::
huge

:::::::
effect

:::
on

:::::
the

:::::::::::
robustness

:::
to

:::::::::::::::::::::
non-idealities—the

::::::
larger

:::::
the378

::::::::
starting

::::::::::
accuracy,

:::::
the

::::::
more

:::::::
robust

::::
the

::::::::::
networks

:::::::::
become

:::::
[20].

::::::
One

:::::
way

:::
to

::::::::
achieve

::::::::
higher379

::::::::
starting

::::::::::
accuracy

::
is

:::
to

:::::
have

::::::
larger

:::::::::::
networks,

::::
e.g.

::
if
::::
we

:::::
have

::
a

::::::::
network

::::::
with

::::
one

:::::::
hidden

:::::::
layer,380

:::
we

::::::
might

:::::::::
increase

::::
the

:::::::::
number

:::
of

::::::::
neurons

:::
in

:::::
that

::::::::
hidden

::::::
layer,

:::::::
which

:::::::
would

::::::
likely

:::::::
result

:::
in381

::::::
higher

::::::::::
accuracy

::::::
after

:::::::::
training

::::
and

:::::
thus

:::::::
higher

:::::::::::::
robustness.

:
382

Figure 9 shows a comparison of CMs of memristor-based networks disturbed using faulty383

devices and D2D variability data from Ta/HfO2 crossbar, when controlled for the total384

number of memristors that is required to implement them (line resistance was not taken385
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into account due to long time required to simulate it in large networks). We can observe386

that committees of two networks, each with 25 hidden neurons, (leftmost data point of387

the orange curve) achieve ∼0.9% higher median accuracy than individual networks with388

50 hidden neurons (second data point from the left in the vermilion curve), despite both389

requiring almost identical total number of memristors. Committees of two networks, each390

with 100 hidden neurons, (third data point from the left in the orange curve) achieve ∼1.1%391

higher median accuracy than individual networks with 200 hidden neurons (rightmost data392

point in the vermilion curve), even though both require almost the same total number of393

memristors. Even larger improvement is gained when committees of four networks, each with394

50 hidden neurons, (second data point from the left in the blue curve) are used instead—395

then the accuracy is improved by ∼1.5%, with almost the exact total number of memristors396

used.397

For different non-idealities and even different training schemes of the ANNs, the equiv-398

alents of Figure 9 might be different, but there are a few common characteristics in all of399

them. In all cases, for a given total number of memristors used, there is an optimal number400

of networks that should be used in a committee. Additionally, we observe that the more401

severe a non-ideality is, the more apparent the effectiveness of committees becomes. Finally,402

sometimes the committees (for a fixed total number of memristors) might achieve lower403

accuracy than individual networks but only if the networks that they replace are very small404

and the non-ideality is not very detrimental. If the networks that are being replaced with405

committees of smaller networks, are sufficiently large, the committees will achieve higher406

accuracy. An example of that is shown in Supplementary Figure S5
::
S7

:
where aVMCO de-407

vice is minimally affected by the non-idealities and so the advantage of committees becomes408

apparent only when replacing larger networks.409

The reason why committees work in the context of non-ideal implementations and why410

they work best when they are used to replace large networks might, to some extent, lie in411

their training. When it comes to training fully connected networks, their accuracy tends to412

saturate as more weights
:::::::::::
parameters

:
are added. Supplementary Figure S2

::
S4

:
shows that413

networks with 50 hidden neurons can be trained to achieve significantly higher accuracy414

than networks with 25 hidden neurons. However, networks with 200 hidden neurons achieve415

only slightly higher accuracy than networks with 100 hidden neurons. This also means that416

networks with 200 hidden neurons will be only slightly more robust to non-idealities than417
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networks with 100 hidden neurons. When such networks are affected by non-idealities, their418

accuracy drops to similar values but the smaller network can work in a committee with419

one more network
:::::
other

::::::::::
networks, totalling almost the same number of memristors as the420

large network, but achieving higher accuracy overall. This is the most likely reason why the421

committees of smaller networks are effective at dealing with non-idealities, especially when422

replacing large networks.423

In addition to the accuracy improvements, committees can provide flexibility in mem-424

ristive implementations of neural networks. Digital implementations of ANNs have very425

predictable behaviour due to the precision of digital logic. Analogue implementations, on426

the other hand, can vary greatly even if they use the same weights before the mapping427

onto conductances—that is a result of the stochastic nature of memristors that implement428

these ANNs. The parallel and modular nature of committee machines makes memristive429

systems much more flexible. For example, if the verification accuracy of one of the ANNs in430

a memristor-based CM deteriorates below acceptable levels, its outputs could be disabled431

to ensure higher accuracy of the rest of the committee.432

Importantly, this introduced parallelism comes at almost no extra cost. For a fixed total433

number of memristors, a committee of smaller networks, compared to a large individual434

network, would only require a few additional output and bias neurons, and an averaging435

functionality, which could potentially be implemented in hardware. For example, an ANN436

with 50 hidden neurons would require 846 neurons in total, while a committee of two ANNs,437

each with 25 hidden neurons (and thus requiring almost the same total number of memris-438

tors), would require 857 neurons in total.439

In summary, our simulations employing experimental data from three different types of440

memristive devices show that committee machines employing ensemble averaging can be used441

to mitigate the effects of device- and system-level non-idealities in memristor-based neural442

networks. EA allows to achieve higher inference accuracy in physically implemented neural443

networks that suffer from faulty devices, device-to-device variability, random telegraph noise,444

and even line resistance. This method is a universal way to deal with the most common445

non-idealities and is straightforward to implement during the fabrication stage. Increased446

modularity of these memristive neural network systems will increase not only their inference447

accuracy, but also their robustness and flexibility, even without the need to sacrifice area.448

Although some level of non-idealities in memristors is unavoidable, CM method allows us449
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to deal with these on the system level and is agnostic to a particular technology or, to some450

degree, type of the non-ideality.451

METHODS452

Experiments453

Ta/HfO2 RRAM 1T1R array consists of NMOS transistors fabricated in a commercial454

fab (feature size of 2 µm) and Pt/HfO2/Ta devices. The bottom electrode was deposited by455

evaporation of 20 nm Pt layer on top of a 2 nm tantalum (Ta) adhesive layer; the electrode456

was patterned by photolitography and a lift-off process. A 5 nm HfO2 switching layer was457

deposited by atomic layer deposition using water and tetrakis(dimethylamido)hafnium as458

precursors at 250 ◦C. Sputter-deposited Ta of 50 nm thickness followed by 10 nm Pd was459

used in a lift-off process to serve as the top electrode. The filamentary based Ta2O5 device460

consists of a TiN/4nm stoichiometric Ta2O5/20 nm nonstoichiometric TaOx/10 nm TaN/TiN461

stack with a cross-sectional area of 75 nm×75 nm, while the non-filamentary-based aVMCO462

has a cross-sectional area of 135 nm × 135 nm and is composed of a TiN/8 nm amorphous-463

Si/8 nm anatase TiO2/TiN stack. Ta2O5 and aVMCO devices were fabricated by imec. The464

detailed fabrication process parameters can be found in references [11, 28, 29] for Ta/HfO2,465

Ta2O5 and aVMCO RRAMs respectively.466

The conductance of Ta/HfO2 devices was modulated by applying SET pulses (500µs @467

2.5 V and gate voltage increasing from 0.6 V to 1.6 V). After each of the 11 cycles, RESET468

pulses were applied (5 µs @ 0.9 V increasing to 2.2 V and gate voltage of 5 V). The voltage469

was being increased linearly throughout the 100 pulses. All electrical tests for Ta2O5 and470

aVMCO devices were done with a Keysight B1500A. The RTN data is extracted by switching471

the device into 8 uniformly distributed resistance levels between 25 kΩ and 200 kΩ, and 8472

nearly uniformly distributed resistance levels between 1 MΩ and 7.5 MΩ with incremental473

RESET DC sweeps [30] for Ta2O5 and aVMCO respectively. RTN measurement is then474

carried out at each resistance level at a 0.1 V and 3 V read-out for Ta2O5 and aVMCO475

respectively, with a sampling time of 2 ms/point and 10,000 sampling point per resistance476

level for an RTN measurement period of 20 s.477
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Simulations478

In this work, feed-forward ANNs with fully connected layers and continuous weights were479

trained to recognise handwritten digits using the MNIST data base. All 60,000 MNIST480

training images were used during the training stage; training set consisted of 50,000 images481

and verification set consisted of 10,000 images. All 10,000 test images were used to evaluate482

the inference accuracy of ANNs. Networks used 784 input neurons representing pixel inten-483

sities of MNIST images of 28× 28 pixel size, as well as one bias neuron. 10 output neurons484

were used; they represented the ANNs’ predictions of 10 handwritten digits. Hidden layer485

::::::
layers used sigmoid activation function, while the output layer used softmax activation func-486

tion. Weights were optimised by minimising cross-entropy error function using stochastic487

gradient descent. Learning rate of 0.01 and patience of 25 epochs were used. 25 networks488

were trained for each architecture explored by initialising them differently. When numer-489

ically optimising ANNs’ weightings, optimisation was performed by employing verification490

set, while the performance was evaluated using the test set. The code was implemented in491

Python.492

Weights were mapped onto pairs of memristors’ conductances using proportional map-493

ping scheme—synaptic weights were made proportional to one of the conductances in the494

pair, while the other was left unelectroformed. The zero weight was interpreted as given—495

in practise, it would be implemented by not electroforming the device, thus resulting in its496

negligible conductance. Although aVMCO devices do not have electroforming stage, for con-497

sistency we assumed that additional insulating circuit elements could be used to implement498

the zero weight. Negative weights would be implemented by placing certain memristors in499

dedicated bit lines of the crossbars whose outputs would be subtracted from the outputs at500

the corresponding bit lines implementing positive weights. Maximum weights after mapping501

were optimised separately for each set of network architecture and conductance levels; in502

each case this was done by excluding a certain proportion, pL, of weights with largest abso-503

lute values. What pL values were used for each simulation is summarised in Supplementary504

Table SI. More details on the mapping procedure can be found in our past work [20].505

All non-idealities, except for line resistance, were simulated by disturbing the individual506

conductances of memristor-based ANNs. To investigate line resistance, loop
::::::
nodal

:
analysis507

was employed. By setting up simultaneous linear equations using
:::::::
Ohm’s

::::
law

:::::
and

:
Kirch-508
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hoff’s current and voltage laws
:::
law, those were solved in sparse matrix representation using509

Python’s library scipy.510

After simulating memristor non-idealities, committees of different ANNs were composed.511

Committees used EA, i.e. the outputs of individual networks in a committee were averaged512

to produce a single output vector. In EA, the output vectors of individual networks can513

simply be added together (if the weightings of different networks are the same, as we assume514

in the main text); the label corresponding to the entry with the highest value would be515

the prediction of the committee. This addition can be performed either in software, or, if516

the activation function of the last neuronal layer can be implemented physically, it can be517

performed by adding corresponding currents produced by the circuitry of this activation518

function.519

In the simulations, neural networks that go into a committee were chosen randomly.520

This was done to reflect the most convenient strategy when manufacturing such systems—521

because one does not need to selectively choose the networks, manufactured crossbars can be522

easily programmed without the need to replace them if they perform poorly when working523

individually (unless their effect is so detrimental that they have to be ignored which can524

be made possible with this technique). Besides, devices might change over time, thus these525

simulations, which show what happens when one does not selectively choose the networks,526

are valuable to investigate conditions where it is not possible to replace the networks.527

In the simulations, 25 base networks were used (each having different set of weights) for528

each of the architectures. Then all of their weights were mapped onto pairs of conductances529

using HRS/LRS values extracted from experiments. Finally, to reflect the effect of each of530

the non-idealities, all networks were disturbed multiple times. In each disturbance iteration,531

multiple combinations of networks were chosen and their performance as a committee of532

certain size was evaluated. In total, for each simulation (except numerically optimised533

committees which used 1,000 points)
:::::
most

:::::::::::::
simulations, 10,000 data points were recorded534

for a committee of every size—these data captured the variations of base networks, their535

combinations and different disturbance iterations.
:::::
Only

::::::::::::
simulations

::::::::::
involving

::::
line

:::::::::::
resistance536

::
or

:::::::::::
numerical

::::::::::::::
optimisation

::
of

:::::::::
weights

:::::
had

::::::
fewer

:::::
data

:::::::
points

::::
for

::::::
some

::::::::::::
committee

:::::
sizes

::::::
(due537

::
to

:::::
long

::::::::::::
simulation

:::::::
times).

::
538
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Figure 1. Using multiple neural networks to improve inference accuracy. A) The principle of EA.

B) Using identical digital networks when implementing committees of memristive neural networks

only helps to deal with the damage to the networks caused by the non-idealities. C) Using different

digital networks when implementing committees of memristive neural networks both helps to deal

with the damage to the networks caused by the non-idealities and allows to combine the knowledge

of individual digital networks about the data set
::::::::
acquired

:::
by

:::::::::::
individual

::::::
digital

::::::::::
networks.
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Figure 2. Experimental data of Ta/HfO2 RRAM crossbar array of shape 128×64. A) Modulation

of devices’ conductance over 11 SET cycles, each consisting of a 100 potentiating pulses. Violin

plots of gradual conductance changes are shown for all Ta/HfO2 devices, with dots representing

median conductance after a certain number of pulses. 100 points were used for Gaussian kernel

density estimation. All violin plots have their maximum widths normalised. B-F) Examples of

devices with their conductance (in mS) B) spanning the full range, C) spanning part of the full

range, D) exhibiting cycle-to-cycle variability, E) stuck at high values, F) stuck at low values.

These diagrams show conductance of five devices from Ta/HfO2 crossbar array over 11 SET and

RESET cycles. The radial component represents the conductance, while the angular component

represents the number of applied pulses. The first SET cycle starts at the top of each of the

diagrams. The conductance (in blue) over 100 SET pulses is displayed in a clockwise fashion

across the right half of each of the diagrams. Following that, conductance (in orange) over 100

RESET pulses (starting at the bottom) is displayed across the left half of each of the diagrams,

after which the next cycle is displayed.
:::::::::
Cartesian

:::::::
version

:::
of

:::::
these

:::::
plots

:::
is

::::::
shown

:::
in

:::::::::::::::
Supplementary

::::::
Figure

::::
S9.
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Figure 3. Theoretical implementation of a synaptic layer of shape 785×25 using crossbars of shape

128×64. A) Mapping the first subset of weights onto one of the seven crossbars used to implement

the whole synaptic layer. Positive weights and negative weights are mapped onto memristors in

different bit lines. B) Heatmap of average changes in output currents due to line resistance (in all

seven Ta/HfO2 crossbars)without and with a scheme that maps certain inputs onto certain word

lines depending on expected average intensities of those inputs. For this particular simulation, it

was assumed that Ta/HfO2 devices can be programmed perfectly.
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Figure 4. Accuracy achieved by individual networks and their committees when faulty devices,

D2D variability data and line resistance of Ta/HfO2 crossbar are taken into account. The maximum

whisker length is set to 1.5× IQR.
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Figure 5. Cumulative probability plots of RTN-induced relative current deviations for all 8

resistance states of a Ta2O5 RRAM device. Lognormal fits are shown for each resistance state.
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Figure 6. Accuracy achieved by individual networks and their committees when RTN data of

a Ta2O5 device are taken into account. Additionally, interconnect resistance of 0.3 Ω
::::::
0.35 Ω

::::
and
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:
in
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the
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word
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and
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respectively,
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Figure 7. Cumulative probability plots of RTN-induced relative current deviations for all 8

resistance states of aVMCO RRAM device. Lognormal fits are shown for each resistance state.
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Figure 8. Accuracy achieved by individual networks and their committees when RTN data of

an aVMCO device are taken into account. Additionally, interconnect resistance of 0.3 Ω
:::::::
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and
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variability data from Ta/HfO2 crossbar.
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TABLES687

First author

(year)
Non-ideality Device type Proposed solution

C. Sung

(2018) [31]
Current/voltage non-linearity TaOx RRAM Hot-forming step is adopted

C. Li

(2018) [15]
Current/voltage non-linearity Ta/HfO2 RRAM 1T1R architecture is adopted

Y. Fang

(2018) [32]
Device-to-device variability HfOx RRAM

Ultra-thin ALD-TiN

buffer layer is introduced

B. Govoreanu

(2013) [33]
Device-to-device variability Al2O3/TiO2 (VMCO) RRAM Non-filamentary RRAM is adopted

A. J. Kenyon

(2019) [34]
Device-to-device variability SiOx RRAM

The roughness of bottom

electrodes is increased

L. Xia

(2017) [14]
Faulty devices -

A modified mapping algorithm

and redundancy schemes are used

S. Ambrogio

(2018) [7]
Limited dynamic range PCM

Two pairs of conductance of varying significance

for every synaptic weight are used

M. Hu

(2016) [17]
Line resistance -

Advanced mapping algorithms are used to

compensate for line resistance effects

W. Wu

(2018) [35]
Programming non-linearity HfOx RRAM

Electro-thermal modulation layer is

deposited on the switching layer

J. Woo

(2016) [9]
Programming non-linearity HfO2 RRAM Bilayer structure is adopted

S. Ambrogio

(2018) [7]
Programming non-linearity PCM

PCM devices are used together

with CMOS transistors

Z. Chai

(2018) [36]
Random telegraph noise TiO2/a-Si (aVMCO) RRAM Non-filamentary RRAM is adopted

Table I. Examples of past efforts at dealing with non-idealities of memristive devices and their

systems.
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