536 research outputs found

    Stem Loop Sequences Specific to Transposable Element IS605 Are Found Linked to Lipoprotein Genes in Borrelia Plasmids

    Get PDF
    BACKGROUND:Plasmids of Borrelia species are dynamic structures that contain a large number of repetitive genes, gene fragments, and gene fusions. In addition, the transposable element IS605/200 family, as well as degenerate forms of this IS element, are prevalent. In Helicobacter pylori, flanking regions of the IS605 transposase gene contain sequences that fold into identical small stem loops. These function in transposition at the single-stranded DNA level. METHODOLOGY/PRINCIPAL FINDINGS:In work reported here, bioinformatics techniques were used to scan Borrelia plasmid genomes for IS605 transposable element specific stem loop sequences. Two variant stem loop motifs are found in the left and right flanking regions of the transposase gene. Both motifs appear to have dispersed in plasmid genomes and are found "free-standing" and phylogenetically conserved without the associated IS605 transposase gene or the adjacent flanking sequence. Importantly, IS605 specific stem loop sequences are also found at the 3' ends of lipoprotein genes (PFam12 and PFam60), however the left and right sequences appear to develop their own evolutionary patterns. The lipoprotein gene-linked left stem loop sequences maintain the IS605 stem loop motif in orthologs but only at the RNA level. These show mutations whereby variants fold into phylogenetically conserved RNA-type stem loops that contain the wobble non-Watson-Crick G-U base-pairing. The right flanking sequence is associated with the family lipoprotein-1 genes. A comparison of homologs shows that the IS605 stem loop motif rapidly dissipates, but a more elaborate secondary structure appears to develop in its place. CONCLUSIONS/SIGNIFICANCE:Stem loop sequences specific to the transposable element IS605 are present in plasmid regions devoid of a transposase gene and significantly, are found linked to lipoprotein genes in Borrelia plasmids. These sequences are evolutionarily conserved and/or structurally developed in an RNA format. The findings show that IS605 stem loop sequences are multifaceted and are selectively conserved during evolution when the transposable element dissipates

    ClgR regulation of chaperone and protease systems is essential for Mycobacterium tuberculosis parasitism of the macrophage

    Get PDF
    Chaperone and protease systems play essential roles in cellular homeostasis and have vital functions in controlling the abundance of specific cellular proteins involved in processes such as transcription, replication, metabolism and virulence. Bacteria have evolved accurate regulatory systems to control the expression and function of chaperones and potentially destructive proteases. Here, we have used a combination of transcriptomics, proteomics and targeted mutagenesis to reveal that the clp gene regulator (ClgR) of Mycobacterium tuberculosis activates the transcription of at least ten genes, including four that encode protease systems (ClpP1/C, ClpP2/C, PtrB and HtrA-like protease Rv1043c) and three that encode chaperones (Acr2, ClpB and the chaperonin Rv3269). Thus, M. tuberculosis ClgR controls a larger network of protein homeostatic and regulatory systems than ClgR in any other bacterium studied to date. We demonstrate that ClgR-regulated transcriptional activation of these systems is essential for M. tuberculosis to replicate in macrophages. Furthermore, we observe that this defect is manifest early in infection, as M. tuberculosis lacking ClgR is deficient in the ability to control phagosome pH 1 h post-phagocytosis

    Identification of major factors influencing ELISpot-based monitoring of cellular responses to antigens from mycobacterium tuberculosis

    Get PDF
    A number of different interferon-c ELISpot protocols are in use in laboratories studying antigen-specific immune responses. It is therefore unclear how results from different assays compare, and what factors most significantly influence assay outcome. One such difference is that some laboratories use a short in vitro stimulation period of cells before they are transferred to the ELISpot plate; this is commonly done in the case of frozen cells, in order to enhance assay sensitivity. Other differences that may be significant include antibody coating of plates, the use of media with or without serum, the serum source and the number of cells added to the wells. The aim of this paper was to identify which components of the different ELISpot protocols influenced assay sensitivity and inter-laboratory variation. Four laboratories provided protocols for quantifying numbers of interferon-c spot forming cells in human peripheral blood mononuclear cells stimulated with Mycobacterium tuberculosis derived antigens. The differences in the protocols were compared directly. We found that several sources of variation in assay protocols can be eliminated, for example by avoiding serum supplementation and using AIM-V serum free medium. In addition, the number of cells added to ELISpot wells should also be standardised. Importantly, delays in peripheral blood mononuclear cell processing before stimulation had a marked effect on the number of detectable spot forming cells; processing delay thus should be minimised as well as standardised. Finally, a pre-stimulation culture period improved the sensitivity of the assay, however this effect may be both antigen and donor dependent. In conclusion, small differences in ELISpot protocols in routine use can affect the results obtained and care should be given to conditions selected for use in a given study. A pre-stimulation step may improve the sensitivity of the assay, particularly when cells have been previously frozen

    Host Genetics in Granuloma Formation: Human-Like Lung Pathology in Mice with Reciprocal Genetic Susceptibility to M. tuberculosis and M. avium

    Get PDF
    Development of lung granulomata is a hallmark of infections caused by virulent mycobacteria, reflecting both protective host response that restricts infection spreading and inflammatory pathology. The role of host genetics in granuloma formation is not well defined. Earlier we have shown that mice of the I/St strain are extremely susceptible to Mycobacterium tuberculosis but resistant to M. avium infection, whereas B6 mice show a reversed pattern of susceptibility. Here, by directly comparing: (i) characteristics of susceptibility to two infections in vivo; (ii) architecture of lung granulomata assessed by immune staining; and (iii) expression of genes encoding regulatory factors of neutrophil influx in the lung tissue, we demonstrate that genetic susceptibility of the host largely determines the pattern of lung pathology. Necrotizing granuloma surrounded by hypoxic zones, as well as a massive neutrophil influx, develop in the lungs of M. avium-infected B6 mice and in the lungs of M. tuberculosis-infected I/St mice, but not in the lungs of corresponding genetically resistant counterparts. The mirror-type lung tissue responses to two virulent mycobacteria indicate that the level of genetic susceptibility of the host to a given mycobacterial species largely determines characteristics of pathology, and directly demonstrate the importance of host genetics in pathogenesis

    Viewpoint: Scientific dogmas, paradoxes and mysteries of latent Mycobacterium tuberculosis infection

    Get PDF
    Worldwide, there are nearly 10 million new cases of active TB and 1.8 million associated deaths every year. WHO estimates that one-third of the world’s population is infected with Mycobacterium tuberculosis (Mtb), forming a huge latent Mtb global reservoir. This renders the prospect of ever eliminating Mtb from the human race almost impossible. Several controversial issues regarding host-pathogen interactions and existing prevention and eradication strategies for latent Mtb infections need to be critically re-examined. In this viewpoint, widely held assumptions on Mtb latency and isoniazid monotherapy and chemoprophylaxis are challenged. We highlight the need for future research to resolve these issues and to develop evidence-based strategies for better understanding of equilibrium and escape of Mtb in the human body, eventually leading to global recommendations for elimination of the latent Mtb state through informed policy and practice. Until such strategies and policies are realized, WHO and TB experts will have to settle for global TB control rather than eradication

    Comparative miRNA Expression Profiles in Individuals with Latent and Active Tuberculosis

    Get PDF
    The mechanism of latent tuberculosis (TB) infection remains elusive. Several host factors that are involved in this complex process were previously identified. Micro RNAs (miRNAs) are endogenous ∼22 nt RNAs that play important regulatory roles in a wide range of biological processes. Several studies demonstrated the clinical usefulness of miRNAs as diagnostic or prognostic biomarkers in various malignancies and in a few nonmalignant diseases. To study the role of miRNAs in the transition from latent to active TB and to discover candidate biomarkers of this transition, we used human miRNA microarrays to probe the transcriptome of peripheral blood mononuclear cells (PBMCs) in patients with active TB, latent TB infection (LTBI), and healthy controls. Using the software package BRB Array Tools for data analyses, 17 miRNAs were differentially expressed between the three groups (P<0.01). Hierarchical clustering of the 17 miRNAs expression profiles showed that individuals with active TB clustered independently of individuals with LTBI or from healthy controls. Using the predicted target genes and previously published genome-wide transcriptional profiles, we constructed the regulatory networks of miRNAs that were differentially expressed between active TB and LTBI. The regulatory network revealed that several miRNAs, with previously established functions in hematopoietic cell differentiation and their target genes may be involved in the transition from latent to active TB. These results increase the understanding of the molecular basis of LTBI and confirm that some miRNAs may control gene expression of pathways that are important for the pathogenesis of this infectious disease

    Evaluation of the burden of unsuspected pulmonary tuberculosis and co-morbidity with non-communicable diseases in sputum producing adult inpatients

    Get PDF
    A high burden of tuberculosis (TB) occurs in sub-Saharan African countries and many cases of active TB and drug-resistant TB remain undiagnosed. Tertiary care hospitals provide an opportunity to study TB co-morbidity with non-communicable and other communicable diseases (NCDs/CDs). We evaluated the burden of undiagnosed pulmonary TB and multi-drug resistant TB in adult inpatients, regardless of their primary admission diagnosis, in a tertiary referral centre. In this prospective study, newly admitted adult inpatients able to produce sputum at the University Teaching Hospital, Lusaka, Zambia, were screened for pulmonary TB using fluorescent smear microscopy and automated liquid culture. The burden of pulmonary TB, unsuspected TB, TB co-morbidity with NCDs and CDs was determined. Sputum was analysed from 900 inpatients (70.6% HIV infected) 277 (30.8%) non-TB suspects, 286 (31.8%) TB suspects and 337 (37.4%) were already receiving TB treatment. 202/900 (22.4%) of patients had culture confirmed TB. TB co-morbidity was detected in 20/275 (7.3%) NCD patients, significantly associated with diabetes (P = 0.006, OR 6.571, 95%CI: 1.706-25.3). 27/202 (13.4%) TB cases were unsuspected. There were 18 confirmed cases of MDR-TB, 5 of which were unsuspected. A large burden of unsuspected pulmonary TB co-morbidity exists in inpatients with NCDs and other CDs. Pro-active sputum screening of all inpatients in tertiary referral centres in high TB endemic countries is recommended. The scale of the problem of undiagnosed MDR-TB in inpatients requires further study

    Influence of Maternal Gestational Treatment with Mycobacterial Antigens on Postnatal Immunity in an Experimental Murine Model

    Get PDF
    BACKGROUND: It has been proposed that the immune system could be primed as early as during the fetal life and this might have an impact on postnatal vaccination. Therefore, we addressed in murine models whether gestational treatment with mycobacterial antigens could induce better immune responses in the postnatal life. METHODS/FINDINGS: BALB/c mice were treated subcutaneously (s.c.) at the second week of gestation with antigen (Ag)85A or heparin-binding hemagglutinin (HBHA) in the absence of adjuvant. Following birth, offspring mice were immunized intranasally (i.n.) with the same antigens formulated with the adjuvant cholera toxin (CT) at week 1 and week 4. One week after the last immunization, we assessed antigen-specific recall interferon gamma (IFN-gamma) responses by in vitro restimulation of lung-derived lymphocytes. Protection against infection was assessed by challenge with high dose Mycobacterium bovis Bacille Calmette-Guérin (BCG) given i.n. We found that recall IFN-gamma responses were higher in the offspring born to the treated mother compared to the untreated-mother. More importantly, we observed that the offspring born to the treated mother controlled infection better than the offspring born to the untreated mother. Since the gestational treatment was done in absence of adjuvant, essentially there was no antibody production observed in the pregnant mice and therefore no influence of maternal antibodies was expected. We hypothesized that the effect of maternal treatment with antigen on the offspring occurred due to antigen transportation through placenta. To trace the antigens, we conjugated fluorescent nanocrystals with Ag85A (Qdot-ITK-Ag85A). After inoculation in the pregnant mice, Qdot-ITK-Ag85A conjugates were detected in the liver, spleen of pregnant females and in all the fetuses and placentas examined. CONCLUSION: The fetal immune system could be primed in utero by mycobacterial antigens transported through the placenta

    Interactions of Attenuated Mycobacterium tuberculosis phoP Mutant with Human Macrophages

    Get PDF
    Background: Mycobacterium tuberculosis phoP mutant SO2 derived from a clinical isolate was shown to be attenuated in mouse bone marrow-derived macrophages and in vivo mouse infection model and has demonstrated a high potential as attenuated vaccine candidate against tuberculosis. Methodology/Principal Findings: In this study, we analyze the adhesion and the intracellular growth and trafficking of SO2 in human macrophages. Our results indicate an enhanced adhesion to phagocitic cells and impaired intracellular replication of SO2 in both monocyte-derived macrophages and human cell line THP-1 in comparison with the wild type strain, consistent with murine model. Intracellular trafficking analysis in human THP-1 cells suggest that attenuation of SO2 within macrophages could be due to an impaired ability to block phagosome-lysosome fusion compared with the parental M. tuberculosis strain. No differences were found between SO2 and the wild-type strains in the release and mycobacterial susceptibility to nitric oxide (NO) produced by infected macrophages. Conclusions/Significance: SO2 has enhanced ability to bind human macrophages and differs in intracellular trafficking as to wild-type M. tuberculosis. The altered lipid profile expression of the phoP mutant SO2 and its inability to secrete ESAT-6 i
    • …
    corecore