74 research outputs found

    Biomechanical responses to changes in friction on a clay court surface

    Get PDF
    Objectives: To examine the influence of clay court frictional properties on tennis players’ biomechanical response. Design: Repeated measures Methods: Lower limb kinematic and force data were collected on sixteen university tennis players during 10 x 180° turns (running approach speed 3.9 ± 0.20 m.s-1) on a synthetic clay surface of varying friction levels. To adjust friction levels the volume of sand infill above the force plate was altered (kg per m2 surface area; 12, 16 and 20 kg.m-2). Repeated measures ANOVA and Bonferroni’s corrected alpha post-hoc analyses were conducted to identify significant differences in lower limb biomechanics between friction levels. Results: Greater sliding distances (Ƌp2= 0.355, p = 0.008) were observed for the lowest friction condition (20 kg.m-2) compared to the 12 and 16 kg.m-2 conditions. No differences in ankle joint kinematics and knee flexion angles were observed. Later peak knee flexion occurred on the 20 kg.m-2 condition compared to the 12 kg.m-2 (Ƌp2 = 0.270, p = 0.023). Lower vertical (Ƌp2 = 0.345, p = 0.027) and shear (Ƌp2 = 0.396, p = 0.016) loading rates occurred for the 20 kg.m2 condition compared to the 16 kg.m2. Conclusions: Lower loading rates and greater sliding distances when clay surface friction was reduced suggests load was more evenly distributed over time reducing players’ injury risks. The greater sliding distances reported were accompanied with later occurrence of peak knee flexion, suggesting longer time spent braking and a greater requirement for muscular control increasing the likelihood of fatigue

    TESS Discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844

    Full text link
    Data from the newly-commissioned \textit{Transiting Exoplanet Survey Satellite} (TESS) has revealed a "hot Earth" around LHS 3844, an M dwarf located 15 pc away. The planet has a radius of 1.32±0.021.32\pm 0.02 R⊕R_\oplus and orbits the star every 11 hours. Although the existence of an atmosphere around such a strongly irradiated planet is questionable, the star is bright enough (I=11.9I=11.9, K=9.1K=9.1) for this possibility to be investigated with transit and occultation spectroscopy. The star's brightness and the planet's short period will also facilitate the measurement of the planet's mass through Doppler spectroscopy.Comment: 10 pages, 4 figures. Submitted to ApJ Letters. This letter makes use of the TESS Alert data, which is currently in a beta test phase, using data from the pipelines at the TESS Science Office and at the TESS Science Processing Operations Cente

    Frozen tissue coring and layered histological analysis improves cell type-specific proteogenomic characterization of pancreatic adenocarcinoma

    Get PDF
    Abstract Background Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. Methods We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. Results Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. Conclusions Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    TESS Hunt for Young and Maturing Exoplanets (THYME) IX: a 27 Myr extended population of Lower-Centaurus Crux with a transiting two-planet system

    Get PDF
    We report the discovery and characterization of a nearby (~ 85 pc), older (27 +/- 3 Myr), distributed stellar population near Lower-Centaurus-Crux (LCC), initially identified by searching for stars co-moving with a candidate transiting planet from TESS (HD 109833; TOI 1097). We determine the association membership using Gaia kinematics, color-magnitude information, and rotation periods of candidate members. We measure it's age using isochrones, gyrochronology, and Li depletion. While the association is near known populations of LCC, we find that it is older than any previously found LCC sub-group (10-16 Myr), and distinct in both position and velocity. In addition to the candidate planets around HD 109833 the association contains four directly-imaged planetary-mass companions around 3 stars, YSES-1, YSES-2, and HD 95086, all of which were previously assigned membership in the younger LCC. Using the Notch pipeline, we identify a second candidate transiting planet around HD 109833. We use a suite of ground-based follow-up observations to validate the two transit signals as planetary in nature. HD 109833 b and c join the small but growing population of <100 Myr transiting planets from TESS. HD 109833 has a rotation period and Li abundance indicative of a young age (< 100 Myr), but a position and velocity on the outskirts of the new population, lower Li levels than similar members, and a CMD position below model predictions for 27 Myr. So, we cannot reject the possibility that HD 109833 is a young field star coincidentally nearby the population.Comment: 23 pages, 15 figures, Accepted for publication in A

    The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d

    Get PDF
    We present Spitzer 4.5 ÎŒm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻Âč)

    A Giant Planet Candidate Transiting a White Dwarf

    Full text link
    Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by the star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.Comment: 50 pages, 12 figures, 2 tables. Published in Nature on Sept. 17, 2020. The final authenticated version is available online at: https://www.nature.com/articles/s41586-020-2713-

    A planet within the debris disk around the pre-main-sequence star AU Microscopii

    Full text link
    AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic activity on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.Comment: Nature, published June 24th [author spelling name fix
    • 

    corecore