1,133 research outputs found

    Developing a Framework for Evaluating the Patient Engagement, Quality, and Safety of Mobile Applications

    Get PDF
    Rising ownership of smartphones and tablets across social and demographic groups has made mobile applications, or apps, a potentially promising tool for engaging patients in their health care, particularly those with high health care needs. Through a systematic search of iOS (Apple) and Android app stores and an analysis of apps targeting individuals with chronic illnesses, we assessed the degree to which apps are likely to be useful in patient engagement efforts. Usefulness was determined based on the following criteria: description of engagement, relevance to the targeted patient population, consumer ratings and reviews, and most recent app update. Among the 1,046 health care–related, patient-facing applications identified by our search, 43 percent of iOS apps and 27 percent of Android apps appeared likely to be useful. We also developed criteria for evaluating the patient engagement, quality, and safety of mobile apps

    PRMT5 and the Role of Symmetrical Dimethylarginine in Chromatoid Bodies of Planarian Stem Cells

    Get PDF
    Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway

    Induction of Colonic Aberrant Crypts in Mice by Feeding Apparent N-Nitroso Compounds Derived From Hot Dogs

    Get PDF
    Nitrite-preserved meats (e.g., hot dogs) may help cause colon cancer because they contain N-nitroso compounds. We tested whether purified hot-dog-derived total apparent N-nitroso compounds (ANC) could induce colonic aberrant crypts, which are putative precursors of colon cancer. We purified ANC precursors in hot dogs and nitrosated them to produce ANC. In preliminary tests, CF1 mice received 1 or 3 i.p. injections of 5mg azoxymethane (AOM)/kg. In Experiments 1 and 2, female A/J mice received ANC in diet. In Experiment 1, ANC dose initially dropped sharply because the ANC precursors had mostly decomposed but, later in Experiment 1 and throughout Experiment 2, ANC remained at 85 nmol/g diet. Mice were killed after 8 (AOM tests) or 17–34 (ANC tests) wk.Median numbers of aberrant crypts in the distal 2 cm of the colon for 1 and 3 AOMinjections, CF1 controls, ANC (Experiment 1), ANC (Experiment 2),and untreated A/J mice were 31, 74, 12, 20, 12, and 5–6, with P < 0.01 for both ANC tests. Experiment 2 showed somewhat increased numbers of colonic mucin-depleted foci in the ANC-treated group. We conclude that hot-dog-derived ANC induced significant numbers of aberrant crypts in the mouse colon

    A Finite Element Computation of the Gravitational Radiation emitted by a Point-like object orbiting a Non-rotating Black Hole

    Full text link
    The description of extreme-mass-ratio binary systems in the inspiral phase is a challenging problem in gravitational wave physics with significant relevance for the space interferometer LISA. The main difficulty lies in the evaluation of the effects of the small body's gravitational field on itself. To that end, an accurate computation of the perturbations produced by the small body with respect the background geometry of the large object, a massive black hole, is required. In this paper we present a new computational approach based on Finite Element Methods to solve the master equations describing perturbations of non-rotating black holes due to an orbiting point-like object. The numerical computations are carried out in the time domain by using evolution algorithms for wave-type equations. We show the accuracy of the method by comparing our calculations with previous results in the literature. Finally, we discuss the relevance of this method for achieving accurate descriptions of extreme-mass-ratio binaries.Comment: RevTeX 4. 18 pages, 8 figure

    Wing-Body Aeroelasticity Using Finite-Difference Fluid/Finite-Element Structural Equations on Parallel Computers

    Get PDF
    This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration

    Neutral-current neutrino cross section and expected supernova signals for 40^{40}Ar from a three-fold increase in the magnetic dipole strength

    Full text link
    In view of the great interest in liquid argon neutrino detectors, the 40^{40}Ar(γ,γ\gamma,\gamma')40^{40}Ar^{*} reaction was revisited to guide a calculation of the neutral current neutrino cross section at supernova energies. Using the nuclear resonance fluorescence technique with a monoenergetic, 99% linearly polarized photon beam, we report a three-fold increase in magnetic dipole strength at around 10 MeV in 40^{40}Ar. Based on shell-model calculations, and using the experimentally identified transitions, the neutral current neutrino cross sections for low-energy reactions on 40^{40}Ar are calculated

    The regeneration capacity of the flatworm Macrostomum lignano—on repeated regeneration, rejuvenation, and the minimal size needed for regeneration

    Get PDF
    The lion’s share of studies on regeneration in Plathelminthes (flatworms) has been so far carried out on a derived taxon of rhabditophorans, the freshwater planarians (Tricladida), and has shown this group’s outstanding regeneration capabilities in detail. Sharing a likely totipotent stem cell system, many other flatworm taxa are capable of regeneration as well. In this paper, we present the regeneration capacity of Macrostomum lignano, a representative of the Macrostomorpha, the basal-most taxon of rhabditophoran flatworms and one of the most basal extant bilaterian protostomes. Amputated or incised transversally, obliquely, and longitudinally at various cutting levels, M. lignano is able to regenerate the anterior-most body part (the rostrum) and any part posterior of the pharynx, but cannot regenerate a head. Repeated regeneration was observed for 29 successive amputations over a period of almost 12 months. Besides adults, also first-day hatchlings and older juveniles were shown to regenerate after transversal cutting. The minimum number of cells required for regeneration in adults (with a total of 25,000 cells) is 4,000, including 160 neoblasts. In hatchlings only 1,500 cells, including 50 neoblasts, are needed for regeneration. The life span of untreated M. lignano was determined to be about 10 months
    corecore