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Reduced order modelling of large civil aircraft under gust excitation in transonic flight
is discussed to enable computational fluid dynamics for routine gust load analysis. The
impact of the elastically deforming structure is captured by tracing eigenmodes which
originate in the structure, using the Schur complement method. Such global aeroelastic
modes are computed for a case with nearly 48 million degrees of freedom. The gust
response behaviour of the same full order system is sampled by computing complex-valued
sinusoidal gust responses at several discrete frequencies. Modes representing the gust
influence are obtained from the proper orthogonal decomposition technique which solves
a small eigenvalue problem correlated to the sampling data. Afterwards, both sets of
modes are combined and the linearised operator of the Reynolds-averaged Navier–Stokes
equations is projected onto the coupled subspace. The obtained reduced order model can
be solved in a rapid fashion to investigate various gust parameters.

I. Introduction

The investigation of aircraft responses to atmospheric turbulence is a crucial part during the aircraft
design process since maximum gust loads are critical for wing sizing. A wide range a different parame-
ters, e.g. gust shape and length, need to be investigated. Thus, low cost methods which offer highly accurate
results are desired to ensure an accurate prediction of loads within an affordable time frame. Traditionally,
linear aerodynamics in frequency domain, mostly the doublet lattice method,1 are used to obtain forces
rapidly. Examples for this are widespread from isolated wings2 to full aircraft configurations.3 Whereas
compressibility effects are accounted for, non-linear aerodynamic behaviour, such as shocks and boundary
layer separation, is neglected even though these are inevitable at transonic flight conditions where nearly all
modern aircraft operate. Two options are common to overcome this known lack of accuracy. Correction fac-
tors, either from experiments or computational fluid dynamics (CFD), can be applied after calculating linear
aerodynamic forces to increase accuracy.4 While this method nearly retains the computational efficiency
of the underlying linear potential method, correction factors are based on sampling only a few frequencies
and modes using CFD. Nevertheless, correcting aerodynamic loads is the current industrial standard. The
second option is analysing responses using CFD only,5,6 which predicts loads with increased accuracy also
at nonlinear conditions. Unfortunately, computational cost of time-accurate simulations is still prohibitive
during an industrial loads process.

A promising approach to reduced computational cost of CFD simulations, and thus to make it available
in the aircraft loads process, is reduced order modelling (ROM).7 Model reduction based on system eigen-
modes was initially used in combination with linear aerodynamics8 but has also gained interest within fluid
dynamics.9 Considering a coupled fluid-structure problem, the Schur complement method can be applied
to track structural eigenmodes while being affected by linearised CFD aerodynamics.10 Critical eigenmodes
can be used in a centre manifold reduction to investigate transonic aeroelastic limit cycle oscillations and
perform parameter sensitivity analysis.11 While excellent agreement between results from the full nonlinear
system and ROM is observed for free response, results are not as satisfying during gust excitation.12 More
recently, the authors proposed a modal extension to overcome this lack of accuracy by including additional
modes representing the gust response characteristics of the system.13
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A second, commonly used model reduction technique is based on proper orthogonal decomposition
(POD).14 It allows the creation of a reduced basis for problems of very large size because the system be-
haviour is sampled rather than the characteristics of the system Jacobian matrix are investigated, which
quickly becomes computationally prohibitive for industry relevant cases. POD was first used in fluid dynam-
ics to model coherent structures in turbulent flow fields.15 A small eigenvalue problem, related to snapshots
generated by numerically analysing the full system, is solved to obtain modes. This approach was soon
extended towards frequency-domain sampling data from an incompressible three-dimensional vortex lattice
method.16 Linearised CFD aerodynamics were first considered to analyse the dynamic response of a pitch-
plunge aerofoil.17 More recently, an application for gust responses has been presented for an aerofoil in sub-
and transonic flow conditions,13 showing excellent agreement at two orders of magnitude reduced compu-
tational cost. Combining POD with a linearised frequency-domain method not only reduces computational
cost further, but, more importantly, an interpolation for frequencies not pre-computed can be avoided and
a stable time-domain model is readily available. Results have also been presented for a large civil aircraft in
cruise conditions.18

This paper enriches an eigenmode decomposition (EMD) ROM with POD modes to increase the predic-
tion accuracy for loads occurring during transient gust responses of an aeroelastic aircraft. The construction
of the EMD ROM is first discussed and mode traces are analysed. The lack of accuracy for gust responses
is demonstrated for a 1-cos gust. A POD model is then introduced and both modal sets are combined.
Responses of the coupled ROM are compared with full-order model (FOM) simulations for integrated quan-
tities, structural deformations and surfaces pressures. Finally, computational cost for creating and solving
the ROM is discussed.

II. Theoretical Formulation

A. Introducing Linearised Aerodynamics

The full-order nonlinear system is first presented. The state-space vector w of size n can be written as

w =
[
wT

f ,w
T
s

]T
(1)

where wf and ws denote fluid and structural degrees of freedom, respectively. While the size of ws is O(100)
using a modal structural model, the fluid degrees-of-freedom can be many millions. The governing equation
in semi-discrete form is

dVw
dt

= R(w,vg) (2)

where R is the nonlinear residual corresponding to the unknowns and vg denotes external disturbances due
to gusts. The diagonal matrix V contains the cell volumes for fluid degrees of freedom and an identity
matrix for the structure. The difference between an equilibrium solution w0 and the state-space vector w is
introduced as

∆w = w −w0 (3)

and accordingly for external disturbances vg and the cell volume matrix V. The residual in Eq. (2) is
expressed around the equilibrium point by a first-order Taylor expansion assuming small motions

V∆ẇ = R(w0,vg0) +
∂R

∂w
∆w +

∂R

∂vg
∆vg (4)

where ∂R
∂w = A denotes the coupled Jacobian matrix which can be partitioned just as the state-space vector

as

A =

[
Aff Afs

Asf Ass

]
(5)

Note that changes in the cell volume w0V̇ are contained within the matrix part Afs to simplify the notation.19

The term R(w0,vg0) in Eq. (4) represents the steady-state solution and is assumed to be zero.
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B. Evaluating Basis from Eigenmodes

Right and left eigenvectors φi and ψi of the system Jacobian matrix A are calculated by solving the eigenvalue
problems

Aφi = λiφi and ATψi = λiψi for i = 1, . . . ,m (6)

for which the number m is far smaller than the initial system size n. Considering Eq. (5), the coupled direct
eigenvalue problem can be rewritten as

Aφi =

[
Aff Afs

Asf Ass

]
φi = λiφi and ATψi =

[
Aff

T Asf
T

Afs
T Ass

T

]
ψi = λiψi for i = 1, . . . ,m (7)

where also the eigenvector φi is partitioned just as the state-space vector in fluid and structural contributions.
The adjoint operation follows accordingly. The Schur complement method is used to determine eigenmodes
by tracking structural modes while they are affected by the fluid. Thus, it is assumed that eigenvalues of
interest are not eigenvalues of the aerodynamic block Aff . Therefore, the small nonlinear eigenvalue problems
can be solved for right and left eigenvalues

S(λi)φs,i = λiφs,i and ST (λi)ψs,i = λiψs,i (8)

where the matrix S(λi) is the Schur complement of Aff in A

S(λ) = Ass −Asf(Aff − λV)−1Afs (9)

Newton’s method is applied to solve Eq. (8) using structural frequencies as an initial guess to the eigenvalue.10

Computational cost is reduced by precomputing the term (Aff − λV)−1Afs at a small number of reduced
frequencies for all structural modes of interest. An interpolation surrogate model is then applied during
Newton’s method to obtain aerodynamic forces.20 Whereas the structural entries of φi and ψi are readily
available after solving Eq. (8), the aerodynamic entries need an additional linear system solve using the
eigenvalue as a complex shift.

Collecting the eigenvectors, the right and left modal matrices are formed as

ΦEMD =
[
φ1, . . . ,φm,φ1, . . . ,φm

]
and ΨEMD =

[
ψ1, . . . ,ψm,ψ1, . . . ,ψm

]
(10)

Because structural eigenvalues appear as complex conjugate pairs, these are added to the model basis at no
additional cost. Furthermore, the eigenvectors are normalised to fulfil the biorthonormality condition

ΨH
EMDVΦEMD = I (11)

C. Evaluating Basis from Proper Orthogonal Decomposition Modes

First, K snapshots at discrete reduced frequencies ω∗, normalised using the freestream velocity U∞ and the
reference chord length lref , are generated solving the linear system

(Aff − iω∗V) ŵf = −∂Rf

∂vg
v̂g(ω∗) (12)

with ŵ and v̂ as complex-valued Fourier coefficients, assuming that ∆w and ∆vg change harmonically in
time.21 Solutions ŵf are stored as columns in the snapshot matrix S as

S =
[
ŵf,1, . . . , ŵf,K , ŵf,1, . . . , ŵf,K

]
(13)

The POD basis ΦPOD is obtained as a linear combination of snapshots

ΦPOD = SV (14)

where the columns of V are scaled so that vectors in ΦPOD are unit length. The eigenvalue problem of
dimension K

SHVSvj = µjvj for j = 1, . . . ,K (15)
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is solved to ensure the best possible approximation in Eq. (14). Note, that the dot product has been altered
by considering the matrix V.22 Whereas the previously introduced EMD-based ROM is unaffected by this
change in dot product, the characteristics of the POD model change. First, cells with a small volume are
becoming less important resulting in a more global flowfield representation. Second and more importantly,
the resulting POD model is most likely to be stable compared with the case excluding V. Eigenvalues µk

are real and positive because SHVS is a Hermitian matrix. The relative information content contributed to
the system by a certain mode, also often referred to as energy, is given by

rk = µk

(
K∑
i=0

µi

)−1

(16)

This can be used to decrease the number of modes further by only considering those with a high relative
information content.

D. Combined Model Basis and Model Reduction

An aeroelastic ROM is introduced to investigate the influence of gust excitations on flexible structures by
combining the two bases just introduced as

Φ = [ΦEMD , ΦPOD] and Ψ = [ΨEMD , ΨPOD] (17)

where ΨPOD = ΦPOD. Only the aerodynamic subsystem is considered to identify ΦPOD and thus all POD
modes are padded with zero entries in the structural part to match the dimensions of the coupled system.

Describing the change in state-space vector ∆w by

∆w = Φz (18)

and substituting in Eq. (4), gives after performing a Petrov-Galerkin projection

ΨHVΦż = ΨHAΦz + ΨH ∂R

∂vg
∆vg (19)

Since biorthonormality is no longer fulfilled for the coupled model, the inverse of ΨHVΦ is pre-multiplied
resulting in the time-domain representation of the coupled reduced order model

ż = (ΨHVΦ)−1ΨHAΦz + (ΨHVΦ)−1ΨH ∂R

∂vg
∆vg (20)

While multiplying with the inverse changes the projection based on Ψ, the reduction described by Φ remains
unchanged. Solving the reduced system in either frequency or time domain, and reconstructing full order
solutions afterwards, is an efficient way to investigate gust encounter for coupled fluid-structure systems.

E. Computational Fluid Dynamics Method

Aerodynamics are solved using the DLR-TAU code which is widely used in the European aerospace sector
and validations of the code are available in the literature for steady23,24 as well as unsteady cases.24,25 The
RANS equations in conjunction with the Spalart–Allmaras turbulence model26 are solved. Inviscid fluxes are
discretised applying a central scheme with the scalar artificial dissipation of Jameson, Schmidt and Turkel.27

Exact gradients used for viscous and source terms are computed using the Green–Gauss approach. Steady-
state solutions are obtained using the backward Euler method with lower-upper Symmetric–Gauss–Seidel
iterations28 and local time-stepping. Convergence is accelerated by applying a 2v multigrid scheme.

Structural deformations are considered using a modal approach. The surface deformations of both,
bending and torsion dominated modes, multiplied by a scaling factor for better visualisation, are shown in
Fig. 1 together with the undeformed surface. Arising volume mesh deformations are calculated by the DLR-
TAU code applying the radial basis function method.29 Gusts are modelled using the field velocity approach
which introduces an artificial mesh velocity.30 The velocity term is added to the governing equations and is
prescribed based on the gust excitation while no additional deformation of the computational grid is required.
The gust parameters are visualised in Fig. 2.
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(a) Bending dominated mode (b) Torsion dominated mode

Figure 1. Representative mode shapes projected on the CFD surface mesh with the undeformed surface in
light grey

Figure 2. Sketch of gust parameters

Abort density residual 10−3

Non-dimensional time-step size 0.1

Number of time steps 1500

Number of subiterations 5

Table 1. Time-domain numerical parameters

During unsteady simulations aerodynamic and structural systems are solved separately from each other
and data is exchanged on a subiteration level.31 Subiterations at each time-step are performed until the
euclidean norm of the generalised-force update drops below 10−4 or a maximum number of 5 is reached.
For the aerodynamic system a dual time-stepping combined with the second-order backward differentiation
formula is used, settings of which are summarised in Table 1. Time-step size and number of time steps
follow from numerical experiments. Further, a Cauchy convergence criterion with a tolerance of 10−8 for the
relative error of the drag coefficient is applied in addition to an abort criterion based on the density residual.
The structural system is integrated in time applying the Newmark-beta method.32

The linearised frequency-domain formulation is based on a first-discretise-then-linearise, matrix-forming
approach with an analytical, hand-differentiated Jacobian matrix. A generalised conjugate residual solver
with deflated restarting is used to solve arising linear systems.33 For preconditioning a block incomplete
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Number of Krylov vectors 80

Number of deflation vectors 20

Abort density residual 10−7

Table 2. Frequency-domain numerical parameters

(a) First finite-difference evaluation (b) Second finite-difference evaluation

Figure 3. Demonstration of finite-difference approach for forming ∂R/∂vg

lower-upper factorisation of the Jacobian matrix with zero level of fill-in is applied.34 The number of Krylov
and deflation vectors employed to solve linear systems together with the linear convergence criterium are
given in Table 2 and are based on previously published results.33

F. Numerical Aspects

The matrix ∂R/∂vg in Eq. (20) is formed using a central finite-difference approach

− ∂R
∂vg

=
∂R

∂ẋ
=

R(+εẋ)−R(−εẋ)

2ε
(21)

since an analytical derivation is currently missing. Computational cost is reduced by disturbing grid-point
velocities of all points that are neither first nor second neighbour of another disturbed point. The set
of disturbed points defines the columns of the matrix, while the resulting non-zero residual entries define
the rows. For a second-order accurate scheme this procedure is demonstrated on a Cartesian grid in Fig. 3.
Following a first finite-difference evaluation shown in Fig. 3(a), a new set of, as yet undisturbed, grid points is
selected. This procedure is repeated until all points have been disturbed once. Depending on the partitioning
applied, between 190-230 finite-difference evaluations are required for the presented test case to construct the
full matrix. Note that, even though the procedure is demonstrated using a Cartesian grid, the computational
grid of the test case is hybrid.

Since a linear Taylor expansion is used, the assumption of a dynamically linear response also extends to
integrated quantities, such as lift and moment coefficient. Thus, changes in global coefficients, e.g. ∆CL,
can be computed by forming the partial derivative ∂CL/∂w and then substituting the expression in Eq. (18)

∆CL =
∂CL

∂w
∆w =

∂CL

∂w
Φz (22)

This enables the analysis of global coefficients without the need of reconstructing the surface solution from
the ROM data.

III. Results

The chosen test case is a large civil aircraft in cruise flight. The computational mesh consists of nearly 8
million points. A steady-state solution at a Mach number of 0.85 and an altitude of 10 km is obtained using
an elastic trimming procedure based on Broyden’s method,35 which balances lift and weight while ensuring
zero pitching moment. The steady simulation includes 94 structural modes to represent elastic deformation
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(a) Trimmed surface mesh (b) Steady surface pressure distribution

Figure 4. Trimmed surface mesh and steady-state surface pressure coefficient

Figure 5. Change in real and imaginary part for 15 eigenmodes over altitude

while for trimming an artificial mode for the elevator deflection is used. The elevator deflection and angle
of attack are iteratively adjusted until the desired aerodynamic coefficients are reached. The final surface
mesh, after driving the density residual to converge seven orders of magnitude, is visualised in Fig. 4(a). A
strong shock along the wingspan at roughly 70% chord length can be seen in the steady surface pressure
distribution in Fig. 4(b). Furthermore, the effects of the first wing bending mode in conjunction with the
torsion mode cause a decrease of sectional lift towards the wing tip. The elevator is deflected during the
trimming process resulting in a strong suction area around the leading edge but no shock formation.

The 15 highest amplified structural modes are identified during the steady trimming process and consid-
ered in the following for dynamic responses. Aerodynamic responses of theses structural modes are sampled
at 12 reduced frequencies between 0 and 2. No structural damping is considered The evolution of the
structural eigenvalues whilst affected by the fluid is then traced solving Eq. (8) at a starting altitude of
50 km until the target altitude of 10 km is reached. Resulting mode traces are shown in Fig. 5. With
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(a) Change in lift coefficient (b) Wing-tip deflection in z-direction

Figure 6. Gust response of EMD-based ROM for 1-cos gust with Lg = 116 m

decreasing altitude the density increases and thus the coupling between aerodynamic and structural forces
becomes stronger. This coupling causes all modes to deviate from the imaginary axis towards a negative real
part. Left and right eigenvectors are computed, discarding the real part of the eigenvalue, just as the initial
p-k-type sampling, when solving for the aerodynamic part. As outlined in Sec. II B complex-conjugates of
all modes are included at no additional cost. Subsequently, the coupled Jacobian and gust influence matrices
are reduced and projected onto the model basis to reduce the system size from 48 million to only 30 degrees
of freedom.

Next, the generated EMD ROM is used to investigate the gust response of the flexible aircraft rapidly.
The gust parameters are Lg = 116 m, vgz = 0.01 × U∞ and x0 = 5 × lref , which is a medium gust length
considering the certification requirements for large civil aircraft.36 The small amplitude is chosen to ensure
a dynamically linear response of the time-marching solution. The changes in lift coefficient and wing tip
displacement in z-direction are displayed in Figs. 6(a) and 6(b), respectively. The ROM is not capable of
reproducing the lift build-up due to the gust excitation, which effectively introduces an increment in angle
of attack. However, once the gust is past the aircraft and the change in lift is dominated by the damped
structural response, the FOM and ROM predict a similar response. This behaviour can also be observed for
the wing tip deflection even though not as distinct.

In principle, the accuracy of responses to external excitation, such as gust, can be increased by enriching
the modal basis with modes originating in the aerodynamic block Aff of the coupled Jacobian matrix. In
fact, this is common for ROMs based on linear potential theory or even more simplistic using Küssner and
Wagner aerodynamics for a pitch-plunge aerofoil.37 The problem of this approach in combination with
CFD-level aerodynamics is twofold. The size of the Jacobian matrix directly correlates with the mesh size as
well as the number of conservative variables. For the presented case this results in approximately 48 million
degrees of freedom and thus determining all eigenvalues and a-posterori selecting the eigenvalues of interest,
is computationally prohibitive. Instead, computing a small number of eigenmodes for such problems is
possible as demonstrated for stability analyses.38–40 However, for these approaches a region of interest needs
to be defined a-priori which is currently not understood for gust responses. Thus, including eigenmodes
from Aff is considered not feasible and instead a subspace is approximated in the following using POD based
on linearised responses of the aircraft to gust excitation.

The gust response of the aerodynamic subsystem is sampled at 20 reduced frequencies, again between 0
and 2. Results and their corresponding complex-conjugates are used as snapshots to construct a POD ROM
as outlined in Sec. II C. The retained energy rk is set to 99.99% resulting in 39 POD modes. Analysing the
same gust parameters as for Fig. 6, the change in lift coefficient for a full-order, rigid aircraft gust response
simulation and the POD ROM is shown in Fig. 7(a) with good agreement. Some minor deviations are visible
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(a) Change in lift coefficient to gust with Lg = 116 m (b) Eigenspectrum of reduced fluid Jacobian matrix

Figure 7. POD-based ROM characteristics

Figure 8. Eigenspectrum of reduced Jacobian matrix for POD, EMD and coupled ROM

in the ROM response after the gust has passed the aircraft, which is a result of the sampled frequency range.
A more detailed discussion of the POD ROM for this particular case, including pressure distributions for the
first mode and responses to different gust lengths, has been presented previously.18 Part of the eigenspectrum
of the fluid Jacobian matrix projected onto the POD modes, ΨH

PODAffΦPOD, is displayed in Fig. 7(b). It
was demonstrated in [17] for a significantly smaller case that this eigenspectrum is an approximation of the
full-order eigenspectrum of Aff . In fact, the outer shape of the eigenspectrum is clearly visible.

Both modal bases are combined by using the technique outlined in Sec. II D. Part of the coupled eigen-
spectrum, together with both individual solutions, is displayed in Fig. 8. The dimension of the coupled ROM
is 69 which is significantly smaller than the FOM with nearly 48 million. The influence of the multiplica-
tion with (ΨHVΦ)−1 is expected to be small since the diagonal entries are one, due to ΨH

EMDVΦEMD = I
and ΨH

PODVΦPOD = I. However, some eigenvalues, which are originating from POD modes, experience a
slight shift in real part whereas the imaginary part remains mostly unchanged. EMD-based eigenvalues are
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(a) Change in lift coefficient (b) Wing-tip deflection in z-direction

(c) ∆cp for FOM at CL,max (d) ∆cp for ROM at CL,max

Figure 9. Gust response of coupled ROM for 1-cos gust with Lg = 116 m

basically unaffected by the coupling. The coupled formulation now contains the subspace of both individual
ROMs and thus is capable of predicting a coupled fluid-structure response subject to gust excitation.

The coupled ROM is now used to investigate the same gust parameters as in Fig. 6. The changes
in lift coefficient and wing tip displacement in z-direction are shown in Figs. 9(a) and 9(b), respectively.
For both quantities of interest an improvement is observed. The ROM correctly predicts the change in
lift coefficient while the gust is above the aircraft. Some minor differences occur around the peak value
and during the transition from an aerodynamically dominated response to structural dominated behaviour
around t = 0.7 s. The wing tip deflection shows an even better improvement making the FOM and ROM
nearly indistinguishable. The ROM not only offers global coefficients and structural degrees of freedom at
greatly reduced cost but also the flow topology of the whole domain. Thus, the change in surface pressure
at the peak lift value is displayed in Figs. 9(c) and 9(d) for the FOM and ROM, respectively. Overall
good agreement is observed with some minor differences close to the wing tip and in the engine-pylon-wing
junction region. Based on the presented surface pressures, quantities of interest during the aircraft loads
process, such as sectional loads and root wing bending moments, are readily accessible.

Once the ROM is verified for a single 1-cos gust, arbitrary gust lengths can be analysed at negligible
additional computational cost. Dynamic responses for the change in lift coefficient for two representative
gust lengths of Lg = 18 m and 214 m, are visualised in Fig. 10(a). Excellent agreement between the reduced
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(a) Change in lift coefficient (b) Wing-tip deflection in z-direction

Figure 10. Gust responses of coupled ROM for 1-cos gusts with Lg = 18 m and Lg = 214 m

Offline Tasks 192 cores Cost

Time-domain simulation (single 1-cos response) 47 h

Reduced order model construction 120 h

a) Sampling EMD basis 107 h

b) Sampling POD basis 13 h

c) Constructing coupled ROM �1 h

Online Tasks 1 core Cost

Reduced order model solving 7 min

Rebuilding global coefficients �1 min

Rebuilding surfaces pressure distributions �1 min

Table 3. Comparison of computational cost for aircraft case

model and the full order reference solutions is obtained for the longer gust length. Minor differences occur
around maximum lift for the shorter gust length. Adding sampling data also at higher reduced frequencies
for the POD ROM will increase the accuracy of the coupled ROM also for shorter gust lengths. However,
the dynamic response of the wing tip deflection in Fig. 10(b) shows good agreement between the full and
reduced model.

Computational cost is summarised for the FOM and ROM in Tab. 3. Timings were obtained on the UK
based high power computing facility ARCHERa using 192 standard compute cores. Since the computational
time for a time-domain 1-cos simulation depends on the investigated gust length, the time listed with 47 h
is an average of all three presented gust responses. The time of 120 h for the ROM generation contains
the time needed for producing all sampling data and the subsequent coupled model construction. Solving
the ROM can afterwards be done on a single core desktop computer and requires roughly 7 minutes, again
slightly depending on the gust length of interest. It should be noted that roughly 95% of this time is needed
for forming the matrix vector product ΨH ∂R

∂vg
∆vg since this is performed over the full-order dimension.

Further reduction can be investigated in the future. Reconstruction of global coefficients, surface pressure
distributions and structural deformations is negligible. Also, as demonstrated above, the ROM can be used

aAdvanced Research Computing High End Resource
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to investigate a wide range of gust parameters without recomputing it, assuming the frequency range of
interest is covered. Thus, the ROM method offers a speed-up factor compared to time-marching, coupled
fluid-structure simulations if more than 2 different sets of gust parameters are of interest. Based on the
acceptable means of compliance,41 published together with the certification requirements, around 30 different
sets of gust parameters are of interest at one flight point which results in a speed up factor of one order of
magnitude using the ROM approach presented herein.

IV. Conclusions

This paper outlines a method to compute coupled fluid-structure responses to gust encounter at reduced
computational cost while preserving the accuracy of the underlying computational fluid dynamics solver.
Structural deformations are accounted for by considering aeroelastic eigenmodes which originate from the
structure. This model is then extended by adding proper orthogonal decomposition modes to enhance the
prediction accuracy during gust encounter. Following the model reduction, a large number of gust responses
can be obtained at negligible computational cost on a local desktop machine.

The presented test case is an elastically-trimmed passenger aircraft at transonic flight conditions. First,
global direct and adjoint eigenmodes are calculated for this industry-relevant test case with nearly 48 million
degrees of freedom using the Schur complement formulation. Secondly, the gust response behaviour of the
aerodynamic system is sampled in the frequency domain and subsequently a proper orthogonal decomposition
model is constructed. Both modal bases are then combined and a coupled model is created by accounting
for the non-existing biorthonormality. The resulting dimension of the small-sized system is 69 and thus
a significant reduction is achieved compared to nearly 48 million. Coupled gust responses are compared
to time-marching simulations for several quantities of interest, including change in lift coefficient, wing tip
deflection and instantaneous surface pressure distributions, with good agreement. Finally, computational
cost is discussed to evaluate the efficiency gain provided from the proposed model reduction.

Additional snapshots at higher reduced frequencies should be included in the aerodynamic proper or-
thogonal decomposition model to increase the accuracy for short gust lengths. Further, the influence of the
pk-style sampling, neglecting aerodynamic damping, on the eigenmode model should be investigated by fully
solving the Schur formulation. The efficiency of the reduced order model can be increased further by also
reducing the size of the matrix ΨH ∂R

∂vg
by applying e.g. a multigrid technique.
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