814 research outputs found

    Moments of the Virtual Photon Structure Function

    Full text link
    The photon structure function is a useful testing ground for QCD. It is perturbatively computable apart from a contribution from what is usually called the hadronic component of the photon. There have been many proposals for this nonperturbative part of the real photon structure function. By studying moments of the virtual photon structure function, we explore the extent to which these proposed nonperturbative contributions can be identified experimentally.Comment: LaTeX, 16 pages + 14 compressed and uuencoded postscript figures, UMN-TH-1111/9

    Fracture model with variable range of interaction

    Full text link
    We introduce a fiber bundle model where the interaction among fibers is modeled by an adjustable stress-transfer function which can interpolate between the two limiting cases of load redistribution, the global and the local load sharing schemes. By varying the range of interaction several features of the model are numerically studied and a crossover from mean field to short range behavior is obtained. The properties of the two regimes and the emergence of the crossover in between are explored by numerically studying the dependence of the ultimate strength of the material on the system size, the distribution of avalanches of breakings, and of the cluster sizes of broken fibers. Finally, we analyze the moments of the cluster size distributions to accurately determine the value at which the crossover is observed.Comment: 8 pages, 8 figures. Two columns revtex format. Final version to be published in Phys. Rev.

    Hawking's radiation in non-stationary rotating de Sitter background

    Full text link
    Hawking's radiation effect of Klein-Gordon scalar field, Dirac particles and Maxwell's electromagnetic field in the non-stationary rotating de Sitter cosmological space-time is investigated by using a method of generalized tortoise co-ordinates transformation. The locations and the temperatures of the cosmological horizons of the non-stationary rotating de Sitter model are derived. It is found that the locations and the temperatures of the rotating cosmological model depend not only on the time but also on the angle. The stress-energy regularization techniques are applied to the two dimensional analog of the de Sitter metrics and the calculated stress-energy tensor contains the thermal radiation effect.Comment: 13 pages, LaTex format, accepted for publication Astrophysics and Space Science, Springer; Journal ID: 10509, Article ID: 606, Date 2011-01-1

    The Strategic Exploitation of Limited Information and Opportunity in Networked Markets

    No full text
    This paper studies the effect of constraining interactions within a market. A model is analysed in which boundedly rational agents trade with and gather information from their neighbours within a trade network. It is demonstrated that a trader’s ability to profit and to identify the equilibrium price is positively correlated with its degree of connectivity within the market. Where traders differ in their number of potential trading partners, well-connected traders are found to benefit from aggressive trading behaviour.Where information propagation is constrained by the topology of the trade network, connectedness affects the nature of the strategies employed

    Time evolution of damage under variable ranges of load transfer

    Full text link
    We study the time evolution of damage in a fiber bundle model in which the range of interaction of fibers varies through an adjustable stress transfer function recently introduced. We find that the lifetime of the material exhibits a crossover from mean field to short range behavior as in the static case. Numerical calculations showed that the value at which the transition takes place depends on the system's disorder. Finally, we have performed a microscopic analysis of the failure process. Our results confirm that the growth dynamics of the largest crack is radically different in the two limiting regimes of load transfer during the first stages of breaking.Comment: 8 pages, 7 figures, revtex4 styl

    Naked Singularity Explosion

    Full text link
    It is known that the gravitational collapse of a dust ball results in naked singularity formation from an initial density profile which is physically reasonable. In this paper, we show that explosive radiation is emitted during the formation process of the naked singularity.Comment: 6 pages, 3 figures, Accepted for Publication in Phys. Rev. D as a Rapid Communicatio

    Crystallization of a supercooled liquid and of a glass - Ising model approach

    Full text link
    Using Monte Carlo simulations we study crystallization in the three-dimensional Ising model with four-spin interaction. We monitor the morphology of crystals which grow after placing crystallization seeds in a supercooled liquid. Defects in such crystals constitute an intricate and very stable network which separate various domains by tensionless domain walls. We also show that the crystallization which occurs during the continuous heating of the glassy phase takes place at a heating-rate dependent temperature.Comment: 7 page

    Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons

    Get PDF
    The stability of cosmological event and Cauchy horizons of spacetimes associated with plane symmetric domain walls are studied. It is found that both horizons are not stable against perturbations of null fluids and massless scalar fields; they are turned into curvature singularities. These singularities are light-like and strong in the sense that both the tidal forces and distortions acting on test particles become unbounded when theses singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques

    Escaping from cycles through a glass transition

    Get PDF
    A random walk is performed over a disordered media composed of NN sites random and uniformly distributed inside a dd-dimensional hypercube. The walker cannot remain in the same site and hops to one of its nn neighboring sites with a transition probability that depends on the distance DD between sites according to a cost function E(D)E(D). The stochasticity level is parametrized by a formal temperature TT. In the case T=0T = 0, the walk is deterministic and ergodicity is broken: the phase space is divided in a O(N){\cal O}(N) number of attractor basins of two-cycles that trap the walker. For d=1d = 1, analytic results indicate the existence of a glass transition at T1=1/2T_1 = 1/2 as N→∞N \to \infty. Below T1T_1, the average trapping time in two-cycles diverges and out-of-equilibrium behavior appears. Similar glass transitions occur in higher dimensions choosing a proper cost function. We also present some results for the statistics of distances for Poisson spatial point processes.Comment: 11 pages, 4 figure
    • 

    corecore