
PHYSICAL REVIEW E 68, 016104 ~2003!
Escaping from cycles through a glass transition
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A random walk is performed over a disordered media composed ofN sites random and uniformly distributed
inside a d-dimensional hypercube. The walker cannot remain in the same site and hops to one of itsn
neighboring sites with a transition probability that depends on the distanceD between sites according to a cost
functionE(D). The stochasticity level is parametrized by a formal temperatureT. In the caseT50, the walk
is deterministic and ergodicity is broken: the phase space is divided in aO(N) number of attractor basins of
two-cycles that trap the walker. Ford51, analytic results indicate the existence of a glass transition atT1

51/2 asN→`. Below T1, the average trapping time in two-cycles diverges and an out-of-equilibrium behav-
ior appears. Similar glass transitions occur in higher dimensions when the right cost function is chosen. We
also present some results for the statistics of distances for Poisson spatial point processes.
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I. INTRODUCTION

Random walks in random media constitute an interes
mathematical problem with several physical applicatio
@1,2#. The study of deterministic walks in random media
also a fascinating topic but presents difficulties~nonergodic-
ity, for instance! common to the area of dynamical system
The statistics of such deterministic walks, which pres
transient and cycling parts, have been much less investig
@3–7# up to date. Here we investigate the transition fro
deterministic to random walks in a disordered medium.
find that escaping from a cycle dominated phase is d
through a glass transition in the ‘‘weak ergodicity breakin
scenario present in Limoge-Bocquet@8# and Bouchaud’s trap
models@9–14#.

Any spin lattice model with deterministic parallel upda
may be viewed as performing a deterministic walk in
phase space. Examples are the Little model@15,16# ~a
‘‘Hopfield neural network’’ with parallel dynamics!, asym-
metric neural networks with parallel update@17#, Kauffmann
Boolean networks@18#, etc. Since such systems have a hu
and complex phase space, it is interesting to compare t
behavior to other simpler dynamical systems with quenc
disorder. This is the rationale for studying toy models as
random map@19# that shares some generic statistical a
dynamical properties with those more complex systems.

A phase composed only by two-cycles~i.e., cycles involv-
ing only two states! occurs in the neural and Kauffman ne
works cited above. However, such two-cycle phase is
present in the random map model. Recently, we introduce
simple dynamical system with quenched disorder that p
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sents such a phase: thetourist walk @5–7#. It is a determin-
istic walk over a set ofN points. The points may be sites i
a d-dimensional Euclidean space@5,7# or nodes in a graph
with ordered neighborhood~for example, words in a thesau
rus @7#!. The tourist rule is that at each time step, the walke
must go to the nearest site not visited in the pastt steps~a
self-avoiding window!. We have found that, for anyt win-
dow, the phase space is divided in aO(N) number of basins
of p-cycles attractors. In particular, whent50, all attractors
have periodp52. For t51, in thed→` limit, the tourist
walk presents a power-law distribution of cycle periods
the form P(p)}p21, with a cutoff which scales withAN.
This is similar to the distribution present in the random m
model @19#.

The above lattice systems also have been studied
stochastic dynamics. We expect that above a certain temp
ture, the dynamics is no longer dominated by the cycles.
not clear how to introduce a stochastic dynamics in the r
dom map but we found that it is easy~and even natural! to
introduce a formal temperatureT in the tourist walk such tha
the deterministic limit is recovered whenT50. The main
question we address here is how ergodicity could be rec
ered from such deterministic dynamical systems w
quenched disorder. The introduction of dynamical stochas
ity is necessary to break the cycles, but a low level of s
chasticity may not be sufficient for full ergodicity recover
Indeed, we have found a glasslike transition at a finite s
chasticity level~temperature! Tc . We expect that a similar
behavior is present in, for example, stochastic versions
Kauffman networks.

Here we consider a stochastic tourist walk where
walker, at sitei, is allowed to jump to its firstn neighbors
with a transition probability proportional to exp@2E(Dij)/T#.
The stochasticity level is parametrized byT ~a formal tem-
perature! and the cost functionE(Di j ) is a monotone in-
creasing function of the distance between the sites. When
formal temperatureT is zero, one has a simple tourist wa

/
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RISAU-GUSMAN, MARTINEZ, AND KINOUCHI PHYSICAL REVIEW E 68, 016104 ~2003!
without self-avoiding window (t50): the walker always
goes to the nearest neighboring site, eventually being trap
in a two-cycle when a pair of reciprocally nearest neighb
is found. ForT.0, the two-cycles are no longer stable, b
ing characterized by a distribution of trapping timesP(t r).
However, for low values ofT, the walker is in an out-of-
equilibrium regime, presenting a divergent average trapp
time when N→` ~weak ergodicity breaking scenari
@8–14#!. IncreasingT, one is able to study the ergodicit
recovery transition where the average trapping time beco
finite. For one-dimensional systems, this occurs atT151/2
for all values of the connectivityn.

The paper is organized as follows. In Sec. II, we defi
the model and set the notation. In Sec. III, we show that
network structure, where hops occur, forms a directed gra
This graph presents interesting sets of points that we
sinksandsources. We present analytic results on the dens
of sinks of a given size. In Sec. IV, we obtain some jo
distributions of distances for the Poisson spatial point p
cess. These results are used in the calculation of bound
the average trapping time in two-cycles. In Sec. V, we sh
that in one-dimensional systems there is a glass transitio
T151/2. BelowT1, the average trapping time diverges a
the system falls into an out-of-equilibrium state. A discuss
on the existence of such glass transitions in higher dim
sions is presented. Exploratory behavior with a power-l
hopping process is discussed via the introduction of a pro
cost function. Our final remarks and conclusions are offe
in Sec. VII.

II. DESCRIPTION OF THE MODEL

The model is defined by an underlying disordered latt
composed ofN sites, whose coordinatesxi

(k) ( i 51, . . . , N;
k51, . . . ,d) are distributed uniformly in thed-dimensional
unitary volume@0,1#d. From the sites coordinates, one co
structs the Euclidean distance matrix:

Di j [N1/dH (
k51

d

@xi
(k)2xj

(k)#2J 1/2

, ~1!

where the factorN1/d has been introduced to simulate a co
stant density of points, when the thermodynamical limitN
→` is taken. In this limit, the point distribution is equivale
to that of a Poisson process inRd, using the geometrica
distance.

Now consider a hopping process between sites. The t
sition probability from sitei to site j is defined as

Wi→ j~b!5
e2bE(Di j )

Zi
, ~2!

where the normalization factor is

Zi~b!5 (
j PNN

e2bE(Di j ), ~3!
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with the sum running over then nearest neighbors~NN! of
point i. The cost functionE(Di j ) depends only on the dis
tancesDi j , and is a monotone increasing function.

Several scenarios can be envisaged. IfE(Di j )5Di j , then
the transition probability decays exponentially with the d
tance. If E(Di j )5Di j

2 , a Gaussian decay is obtained f
Wi→ j . If E(Di j )5 ln Dij , then Wi→ j}Di j

2b decays as a
power law of the distance.

Notice that the transition probabilities are not symmet
(Wi→ jÞWj→ i) because the normalization factors are diffe
ent (ZiÞZj ): the neighbors ofi are not the same as th
neighbors ofj. Furthermore, the walker is not allowed t
remain at the same site, i.e.,Wi→ i50 ~which is equivalent to
settingDii 5` in the distance matrix!.

The stochastic parameter or ‘‘temperature’’T51/b regu-
lates the distance dependent bias of the model. Wheb
→0, all the transition probabilities are equal and one obta
unbiased hopping inside a disordered lattice. Whenb→`, in
Eq. ~3! the term corresponding to the first-nearest neigh
dominates, yielding eitherWi→ j51, if the sitej is the near-
est neighbor of sitei, or Wi→ j50, otherwise. The touris
goes imperatively to the nearest site, relative to the ac
position, thus performing a deterministic walk@5# without a
self-avoiding window~that is, witht50).

Observe that the model has not been defined in a reg
lattice because in that case the number of nearest neigh
is degenerated~greater than one! and determinism cannot b
recovered. The prohibition for the walker to remain at t
same site is needed to fulfill the tourist walk rule.

Whenn5N21, any site is accessible from any other si
However, if n is small, the underlying network is a dilute
directed graph. Such graphs have a complicated topolo
some sites may not be accessible from other sites and
graph may be disconnected. Thus, we will first study
topology induced in this graph by a finite degreen of outgo-
ing links. Afterwards, we present the dynamical~‘‘glass’’ !
transition that occurs in the walks performed on this gra
whenT is sufficiently low.

III. TOPOLOGY OF THE UNDERLYING NETWORK

We have assumed that transitions occur only to the firsn
nearest neighbors of each sitei. Viewing each transition term
Wi→ j as the weight of the link between sitesi and j, we
obtain a directed network or graph. The degree distribut
of outgoing links is ad function, P(kout)5dk,n , and the
distribution of ingoing links P(kin) is binomial. Notice,
however, that this is not a random graph, as it is restricte
a d-dimensional Euclidean space, and thus it cannot be f
characterized by using only the distribution of ingoing a
outgoing links. This graph is the underlying network whe
deterministic tourist walks occur~if we set n5t11), so it
has been called atourist graph.

A. Sinks and sources

For all finite values ofn, topological constraints induce
special sets of points. For example, usingn52 andd52,
consider a set of three points such that each point has
4-2
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ESCAPING FROM CYCLES THROUGH A GLASS TRANSITION PHYSICAL REVIEW E68, 016104 ~2003!
other two points as nearest neighbors. All the outgoing lin
of such points remain inside this set of three points, form
a triangle. If this triangle does not receive any ingoing li
from outside points, this triangle is an isolated cluster. I
receives some ingoing links, it acts as an absolute trap:
cluster may be attained from outside, but there is no po
bility to escape from it, since there are no transition ter
Wi→ j to any sitej outside the triangle. Such sets, which
not present outgoing links, we callsinks. When these sinks
are minimal ~i.e., there are no smaller sinks inside them!,
they correspond to what are calledirreducible closed setsin
the terminology of Markov processes@20#. Sinks are com-
posed of persistent states and the rest of the graph is c
posed of transient ones@20#. Notice that, since there are a
waysn outgoing links from each point, a single site cann
be a sink. Sinks have a minimal size ofn11 points.

Consider also a set of points~or even a single point! that
present outgoing links to points outside the given set,
with no ingoing links from exterior points. Such sets a
calledsources. A walk may be started inside a source, but
the walker exits this set, she cannot return to it any long

Sinks and sources are easily visualized in dimensiod
51 ~see Fig. 1! because we can define special poin
~‘‘walls’’ !. A site w is a ~semipermeable! wall whenever all
of its n outgoing links point along the same direction. How
ever,w may have ingoing links from the opposite directio
that is, the walls behave as semipermeable membranes:
allow the flux of walkers from one side to another but not t
other way around. Thus the walls are characterized by
directions in which the walker flux is allowed. This is ind
cated in Fig. 1 by arrows and, as a shorthand, we say tha
wall ‘‘points’’ to the direction indicated by the large arrow

In d51 systems, two consecutive walls define differe
regions on the disordered lattice depending on their orie
tion. If the two walls point to the center of a region~inwards!
(u⇒⇐u), the set of points comprising all the points betwe
the walls is a minimal sink. Once a walker attains a si
there is no escape: the only permissible movement is to w
der stochastically inside it. If the two consecutive walls po
outwards a region (⇐uu⇒), this region is a source. Once
walker escapes from such a region, it cannot return.

Going to a higher level of description, our graph can
characterized by the sets discussed in Refs.@21# and @22#.
For d.1 and large enough values ofn, the graph has agiant
weakly connected componentmade of points connected b
links ~without considering their direction!. Inside this set,
there is a giant strongly connected component~GSCC!,
where every point is accessible from every other point of
set through a directed path. This is the set where, most p
ably, a random walker roams until she eventually falls int
sink. By definition@22#, the GSCC does not contain eith
sinks or sources. The~disjoint! set of sources whose outgo

FIG. 1. Sinks and sources in one dimension. Large arrows
resent walls.
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ing links lead to the GSCC is thein-component~IN!, i.e., the
set of points from where the GSCC is reachable but can
be reached from it. If the walker is initially placed in the IN
she will leave this set for the GSCC in a relatively sm
amount of time. The disjoint set of sinks that can be reac
from the GSCC is called theout-component~OUT!. This is
the set where almost every random walker will end up. Th
are the greatest sets in our graph, but other smaller sets
possible, for example, the set of all the sources that are
connected to the GSCC, but to other sinks; or the set of s
that cannot be reached from any other point in the graph

In d51, due to the very special topology ofR, things are
different. Sinks disconnect the graph~nothing passes from
one side to the other side of a sink! and a GSCC cannot b
formed.

Notice that the presence of sources and sinks occurs e
in the high temperature limit (T→`). It is a topological
property, not a dynamical one, emerging from the fact t
each site has onlyn outgoing links. The glass transition dis
cussed in Sec. V has nothing to do with such topologi
constraints. Simulations show that it is present even in
fully connected casen5N21. Sinks are an undesirable~al-
though inevitable! factor that complicates the study of th
glass transition in our random walk. On the other hand, fin
connectivity allows us to extract some analytical resu
which is not the case forn→`.

B. Density of sinks

Next we calculate the density of sinks in one dimens
and ask for the conditions which enable the emergence
single macroscopic connected region where any poin
reachable from any other.

In d51, a sink is formed by two inward walls where eac
wall site hasn outgoing links. Thus, the smallest sink com
prisesn11 points. It is possible to calculate explicitly th
density~also called concentration! Cm(n) of sinks with sizes
n1m for m small.

Consider a set ofn13 consecutive points, relabeled asi
51, . . . ,n13 and with coordinatesxi . Let Xi5xi 112xi be
the distance separating two consecutive points. We first
culate the probability that pointi 52 is a wall pointing to the
right and that, simultaneously, pointi 5n12 is a wall point-
ing to the left with no wall between these two walls. IfX1 is
greater than the total distance between pointsi 52 and i
5n12, then pointi 52 is a left wall pointing to the right.
Similarly, if Xn12 is greater than the total distance betwe
points i 52 andi 5n12, then pointi 5n12 is a right wall
pointing to the left. Since points are randomly spaced alo
the line ~Poisson process!, the probability of having a dis-
tanceXi is P(Xi)5e2Xi. Thus, the concentration of sink
havingn11 points is

C1~n!5E )
i 51

n12

~dXie
2Xi !QS X12 (

i 52

n11

Xi D
3QS Xn122 (

i 52

n11

Xi D 5
1

3n
. ~4!

p-
4-3
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TABLE I. Expression of functionpd(x) for some values of the dimensiond @see Eq.~8!#. This generalizes
Table II of Ref.@7#. For the last column, see Eq.~21!.

d pd(x) pd(1) ]Vø(D1 ,D0)/]D1

1
x

2

1

2
2

2 2

p Fx2A12S x

2D 2

1arctanA ~x/2!2

12~x/2!2G 33/212p

6p
2pD114D1arctanA @D1 /~2D0!#2

12@D1 /~2D0!#2

3
3

2F x

2
2

1

3S x

2D 3G 11

16
2pD1@2D11D0#
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Similar ~but more cumbersome! calculations give the con
centration for the next two sink sizes (n12 andn13). For
n>2,

C2~n!5
1

4 S 1

3n21
2

1

5n21D , ~5!

C3~n!5
1

16S 1

3n22
2

1

5n22
1

1

9

1

7n22
1

1

12

1

9n22D . ~6!

For large values of n, C2(n)/C1(n)→3/4 and
C3(n)/C2(n)→3/4. One may conjecture that, asympto
cally, this will hold true for all size concentrations. In oth
words,Cm11(n)/Cm(n)→3/4 for all values ofm. If this con-
jecture is valid, the fraction of points that belong to sinks
asymptotically, F(n)5(m51

` (m1n)Cm(n)5(4n120)/3n

and the total concentration of sinks isC(n)5(m51
` Cm(n)

54/3n. This means that for large values ofn, the graph is
effectively disconnected and the clusters have, on aver
@12F(n)#/C(n)5(3n24n220)/4 points.

This result can be used to estimate the minimum value
n for which there exists a single cluster of sizeO(N). If one
imposesNC(n)51, one getsnmin5 ln(4N)/ln 3. This implies
that it is not necessary to taken5N21 to have a single
macroscopic cluster: it can be obtained with very high pr
ability for low values@O(ln N)# of n.

It is easy to see that for higher dimensions and finiten,
there will also be a finite fraction of sinks and sources, in
thermodynamical limitN→`. However, numerical evidenc
presented in Sec. V B seems to imply that the glass trans
studied in Sec. V occurs in the GSCC, that is, outside
sinks and sources.

IV. COUPLE STATISTICS

In this section, we obtain the density of couples~which
form two-cycles traps! in d dimensions and we derive prob
ability density functions for distances inside couples and
tween couples and their neighbors.
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A. Density of couples

With T50, starting the walk at a given site, after a fa
transient@23#, the walker eventually reaches two ‘‘reflexiv
nearest neighbors’’~or ‘‘couple,’’ for short! @24#. A couple
a↔b is formed when sitea is the nearest neighbor of siteb
andb is the nearest neighbor ofa. Once a couple is attained
the walker is trapped in a two-cycle attractor (a2b2a2b
2•••). As shown in Ref.@7#, for d51, the expected numbe
of couples isM (1)5N/3, and for general values ofd one
has the couple density:

M ~d!

N
5 1

2 Pd~a↔b!5
1

2@11pd~1!#
, ~7!

wherePd(a↔b) is the probability that a point belongs to
couple and

pd~x!5I (x/2)2S 1

2
,
d11

2 D , ~8!

with the definitions@25#

I z~a,b!5
1

B~a,b!
E

0

z

dtta21~12t !b21, ~9!

B~a,b!5E
0

1

dtta21~12t !b215
G~a!G~b!

G~a1b!
, ~10!

G~z!5E
0

`

dttz21e2t, ~11!

where I z(a,b) is the incompleteb function, B(a,b) is the
beta function, andG(z) is the gamma function. The functio
pd(x) is given in Table I for some values ofd, and its geo-
metrical meaning is presented below~Sec. IV B!.

The couples trap permanently the walker only atT50.
Notice that, in principle, there is no relationship betwe
couples and sinks~for example, couples may be source!.
However, the special casen51 ~a single outgoing link for
each point! is equivalent to aT50 scenario. In this case
sinks and couples are identical. From Eq.~4!, C1(1)51/3
gives the concentration of couples, which is compatible w
Eq. ~7!, for d51.
4-4
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ESCAPING FROM CYCLES THROUGH A GLASS TRANSITION PHYSICAL REVIEW E68, 016104 ~2003!
As we are using a spatial Poisson process, the probab
of a point being located in a given volume is proportional
the volume itself and there is no correlation between poi
Next we present some analytical results on the distance
tistics of point processes inRd that could be of general in
terest ~for example, in studies of the travelling salesm
problem@26#!.

B. Couple distance distribution function

First we calculate the probability density function~PDF!
for the distances between the points of a couple. Follow
Cox @24#, without loss of generality, we consider a unita
intensity Poisson process ind dimensions. For such a pro
cess, the probability of having no points inside a hypersph
of volumeV and radiusD is e2V. Then, the PDF of finding
the nearest neighbor of a particular sitea at a distanceD is

Pnn~D !5
dV~D !

dD
e2V(D)5AddDd21e2V(D), ~12!

with

V~D !5AdDd,

Ad5
pd/2

G~d/211!
. ~13!

Consider also the volume of the union of twod spheres of
radiusD centered at sitesa andb separated by a distanceD0
~see Fig. 2!:

Vø~D,D0!52V~D !2Vù~D,D0!, ~14!

whereVù(D,D0) is the volume of the intersection of twod
spheres whose centers are separated by a distanceD0. Using
the variablex5cosf ~see Fig. 2!, we get

FIG. 2. Union of two hyperspheres of radiusD centered at sites
a and b, which are a distanceD0 apart. There are no other site
inside the inner hyperspheres of radiusD0.
01610
ity

s.
ta-

g

re

Vù~D,D0!5
2V~D !

BS 1

2
,
d11

2 D ED0/2D

1

dx~12x2!(d21)/2

5
V~D !

BS 1

2
,
d11

2 D E(D0/2D)2

1

dtt21/2~12t !(d21)/2

5V~D !F12pdS D0

D D G . ~15!

Notice that pd(x)5@V(D)2Vù(D,D0)#/V(D) is the vol-
ume fraction occupied by the ‘‘hyper crescent.’’ Thus, t
total volume is

Vø~D,D0!5V~D !F11pdS D0

D D G . ~16!

The joint PDF that the pointsa andb form a couple and
have a pair distanceD0 corresponds to the probability that n
other points lie inside the volumeVø(D0 ,D0):

Pd~D0 ,a↔b!5
dV~D0!

dD0
e2Vø(D0 ,D0)

5AddD0
d21e2[11pd(1)]V(D0). ~17!

For example, ind51 we haveP1(D0 ,a↔b)52e23D0. No-
tice that Pd(D0 ,a↔b) is not normalized: integrating with
respect toD0 one recovers the couple densityPd(a↔b)
given by Eq.~7!.

C. Couple nearest neighbor distance distribution function

Define D j as the distance of thej th nearest neighbor (1
< j <n) to the couple a↔b. For instance, the distance of th
first-nearest neighbor to the couple isD15min$Da1,Db1%,
that is, the minimal one between the distance from sitea
andb to their second-nearest neighbors. Thus, the distanc
the second-nearest neighbor to the couple will be the m
mal one among the remaining distances (max$Da1,Db1%) and
$Da2 ,Db2%: D25min$max$Da1,Db1%,Da2,Db2%.

To calculate the couple’s joint PDFP(D0 ,D1), one asks
first for the probability that the couple nearest neighbor is
a distancer larger thanD1. That is, one asks for the prob
ability that twod spheres of radiusD1, one centered at sitea
and the other centered at siteb, are empty,giventhe fact that
thed spheres of radiusD0 centered at the same sites are a
empty. For a Poisson process, this probability is

Pd~r .D1uD0!5
e2Vø(D1 ,D0)

e2Vø(D0 ,D0)
. ~18!

Then, the probability density function thatr .D1 is

Pd~r .D1 ,D0!5Pd~r .D1uD0!Pd~D0 ,a↔b!

5
dV~D0!

dD0
e2Vø(D1 ,D0), ~19!
4-5
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wherePd(D0 ,a↔b) has been given by Eq.~17!. Taking the
derivative of the above equation with respect toD1, one
finally obtains the probability distribution function to have
couplea↔b of sizeD0 with the first neighbor to the coupl
at a distanceD1:

Pd~D1 ,D0 ,a↔b!

5exp@2Vø~D1 ,D0!#
dV~D0!

dD0

]Vø~D1 ,D0!

]D1

3Q~D12D0!, ~20!

where the Heaviside step functionQ(D12D0) has been in-
troduced to ensure thatD1.D0 and

]Vø~D1 ,D0!

]D1
5

Vø~D1 ,D0!d

D1
1

]pd~D0 /D1!

]D1
V~D1!,

~21!

where

]pd~D0 /D1!

]D1
5

2D0F12S D0

2D1
D 2G (d21)/2

D1
2BS 1

2
,
d11

2 D . ~22!

For the expression of]Vø(D1 ,D0)/]D1 for some values of
d, see Table I.

D. Generalizing the joint distribution function

Generalizing this procedure, the joint PDF of distanc
for thekth nearest neighbors of thea↔b couple is obtained:

Pd~Dk ,Dk21 , . . . ,D0 ,a↔b!

5exp@2Vø~Dk ,D0!#
dV~D0!

dD0
)
j 51

k F]Vø~D j ,D0!

]D j

3Q~D j2D j 21!G . ~23!

Notice that the above result is not normalized~stressed by
the label a↔b). To normalize it, one must divide b
Pd(a↔b)51/@11pd(1)# @see Eq.~7!#. For instance, ford
51 one has

P1~Dk ,Dk21 , . . . ,D0!52k3e2(D012Dk))
i 51

k

Q~Di2Di 21!.

~24!

Notice that normalized PDF’s do not carry the labela↔b.

E. Stability distribution function

Let us define the ‘‘stability’’ of an arbitrary pair of point
(a,b) ~not necessarily reflexive neighbors! to be

D5Dnn2Dab , ~25!
01610
s

where Dnn5min$Dak,Dbk% is the distance to the neare
neighbork of a or b not includinga or b. Notice that if~and
only if! the stabilityD is positive, thena andb are reflexive
neighbors~a couple!. This is an alternative way of defining
couples and we may writeD5D12D0. The couple stability
PDF is

Pd~D!5E
0

`

dD0dD1Pd~D1 ,D0!d@D2~D12D0!#.

~26!

For example, ford51 this gives

P1~D!52exp~22D!Q~D!. ~27!

V. GLASS TRANSITION

So far we have considered the topological aspects of
network where the walk is performed. Now we turn our a
tention to the dynamics of the hopping process. As m
tioned before, forT50 the walk is deterministic. After a
transient, the walker falls into a two-cycle defined by
couple. However, forT.0 the couples are not absolute tra
any longer, being characterized by a residence or trapp
time, t r . To calculate the average residence time leta andb
be the sites of a couple,D05Dab their pair distance, and
Da j(Db j) the distance froma(b) to its (j 11)th nearest
neighbor. Consider first a linear cost functionE(D)5D
~other cost functions will be discussed later!. The probabili-
ties of transition from sitea to siteb and vice versa are

pa[Wa→b~b!5
e2bD0

Za~b!
, Za~b!5 (

i 50

n21

e2bDai,

pb[Wb→a~b!5
e2bD0

Zb~b!
, Zb~b!5 (

i 50

n21

e2bDbi. ~28!

Suppose that att50 the walker is at sitea. The probabil-
ity that the walker remains inside the couple fort steps and
then leaves it is ~as schemed in Table II!: Pe(t)
5(papb)

t/2qa , for even values of t and Po(t)
5(papb)(t21)/2paqb for odd values oft, with qa512pa and

TABLE II. Probability P(t) that a walker, initially placed at
point a, makes its first exit from the couple at timet.

Time step (t) P(t)

0 qa

1 paqb

2 papbqa

3 papbpaqb

4 (papb)2qa

5 (papb)2paqb

6 (papb)3qa

A A
t odd (papb)(t21)/2paqb

t even (papb) t/2qa
4-6
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ESCAPING FROM CYCLES THROUGH A GLASS TRANSITION PHYSICAL REVIEW E68, 016104 ~2003!
qb512pb . If at t50 the walker is at siteb, one simply has
to exchange the indicesa and b in Po(t) and Pe(t). Since
the travel may start either at sitea or siteb, the probabilities
that the walker remains in the cycle up to timet are Pe(t)
5(papb) t/2(qa1qb)/2 and Po(t)5(papb)(t21)/2(paqb

1pbqa)/2, with P(t) properly normalized: ( t50
` P(t)

5(k50
` @Pe(2k)1Po(2k11)#51.

The expected residence time for this couple is

t r5(
t50

`

P~ t !t5 (
k50

`

@Pe~2k!2k1Po~2k11!~2k11!#

5
papb1~pa1pb!/2

12papb
. ~29!

The calculation of the average^t r& ~over all possible re-
alizations of the points! is somewhat involved, for genera
values ofn. The problem lies in the fact that the set of ne
est neighbors to sitea and the corresponding one for siteb
are neither uncorrelated~independent! nor completely corre-
lated.

The consideration of all the possible correlations involv
a number of integrals that increases exponentially withn.
Nevertheless, it is possible to calculate bounds for^t r& which
reveal its characteristic diverging behavior. To obtain th
bounds, we next present a simple approximation which
physically intuitive followed by improvements to this calc
lation.

A. Symmetrical and asymmetrical approximations

In the symmetrical approximation, forn52, the transition
probabilities corresponding to the two members of a cou
are taken to be equal:pa5pb5p5e2bD0/Z, usingZa5Zb
5Z5e2bD01e2bD1, with D15min(D1a ,D1b) ~as defined in
Sec. IV C!. The residence time is then given byt rs5p/(1
2p)5ebD, whereD5D12D0 is the stability of the couple
defined by Eq.~25!. This would be exact if the nearest neig
bors to the couple were degenerated, that is, if there was
point at a distanceD1 from a and a point at a distanceD1
from b.

In the general case,t rs is a lower bound tot r . This stems
from the very definition ofD1: for one of the points of the
couple, the distance to its second-nearest neighbor~SNN! is,
in the general case, necessarilylarger thanD1. Thus, given
D1, a couple whose members have their respective SNN
the same distance,D1, has the shortest possible residen
time.

In the asymmetrical approximation, for the member of t
couple~say,b) whose SNN is at a distance larger thanD1,
the transition probability to the SNN is taken to be zero, t
is, pb51. This leads to a residence timet ra52ebD11/2.
This residence time clearly bounds the true residence t
from above, because we are assuming that the walker ca
leave the couple from pointb.

From these approximations, one obtains

ebD<t r<2ebD1 1
2 . ~30!
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The average over the disorder is calculated using Eq.~27!:

^ebD&5E
0

`

dDP1~D!ebD52E
0

`

dDe2D(22b)5
2

22b
,

~31!

for b,bc52.
Thus, the average residence time is bounded as

2<~22b!^t r&<52
b

2
~32!

and diverges whenb→bc52. These bounds are shown
Fig. 3.

Above the critical temperature, the walker falls into tra
~two-cycles! which have finite average residence time. Th
allows normal diffusion for long time scales. However, t
walker eventually falls into a sink which is analogous to
absorbing state. Notice that in general, sinks are not coup
Sinks are absolute traps arising from the finite connectiv
n. Couples are dynamical traps and temperature allows
escaping from couples but not from sinks. Below the critic
temperatureT151/b151/2, the system falls into an out-of
equilibrium ‘‘glassy’’ phase where the walker explore
deeper and deeper~more stable! couples and presents agin
phenomena such as in Bouchaud’s trap model@10#. This sce-
nario has been called weak ergodicity breaking by Bouch
and co-workers@13#.

FIG. 3. Bounds for the average residence time ford51 with
n52. HereC2(b)<(22b)^t r&<C1(b). The ascending dashe
curve is the upper bound given by Eq.~33! and the descending line
is the upper bound given by Eq.~32!. The horizontal line is the
lower boundC252 common to both equations. Solid lines are t
tighter C6 bounds obtained in the Appendix.
4-7
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B. Improved bounds for the residence time

The previous simple calculations give insight on t
physical mechanism involved in the divergence of the re
dence time, but we can obtain better estimates for the bou
on the residence time, which work for general values ofn.
Using the ordered set of distances, we have thatD j<Da(b) j
<D j1D0. The second inequality expresses the fact that
definition of the set of valuesD j implies that ad sphere of
radiusD j1D0, centered at pointa ~or b) contains at leastj
points. Thus, we can bound the normalization factors in
~28! as follows: Z2<Za(b)<Z1, where Z15e2bD0

1( j 51
n21e2bD j andZ25e2bD0@11( j 51

n21e2bD j #. This implies
that p1<pa(b)<p2, with p15e2bD0/Z1 and p2
5e2bD0/Z2, which allows us to bound the residence tim
t r 1

<t r<t r 2
, with t r 1

5p1 /(12p1) and t r 2
5p2 /(12p2).

To average over the disorder, one needs the joint PDF
the distances of the nearest neighbors to the couple@Eq.
~23!#. For d51 one obtains, again forb,bc52,

2<~22b!^t r&<
6

32b
for n52 ~33!

and

I b~n!<~22b!^t r&<
3I b~n!

32b
for n.2, ~34!

with

I b~n!52E
0

`
)
i 51

n22

~dxie
2xi !

11 (
j 51

n22

)
i 51

j

e2bxi /2

5E
0

1
)
i 51

n22

dyi

11 (
j 51

n22

)
i 51

j

yi
b/2

.

~35!

In Fig. 3, we give an example of the relationship betwe
these bounds and the exact value of^t r&, for the casen
52. In fact, the comparison is made not with the exact va
but with very tight bounds to it~solid lines in Fig. 3! that
have no simple analytical form and have only been obtai
for the particular case ofd51 andn52 ~see the Appendix!.

It is easy to see that 2/(n21),I b(n),2 for all values of
b. Thus, by looking at the bounds we can deduce that^t r&
too diverges whenb→bc52, for all finite values ofn.

The functionI 2(n) can be proven to be a decreasing fun
tion of n. But it would be interesting to know whether
tends to a positive constant asn→`, or it tends to zero. We
have not been able to calculate this limit analytically. Ne
ertheless, numerical results~see Fig. 4! show that I 2(n)
seems to decrease toward a positive constant (;0.56). This
suggests that a glass transition also exists in the limin
→`.

Moreover, asn grows, the decay ofI 2(n) is very slow
compared to the exponential decrease of density of s
@C(n);4/3n#. Thus, the divergence of the residence tim
should not depend on couples inside the sinks; it seems t
01610
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produced only by couples in the GSCC. This suggests
the glass transition occurs to walkers in the GSCC bef
they fall into sinks.

C. Distribution of residence times

The origin of the glass transition that appears ind51 is
related to the trapping times PDFP(t r). Exact analytical
results are difficult to obtain. Nevertheless, the probabi
distribution for the approximate residence timest r 1

and t r 2

~defined in the preceding section! gives an idea of its behav
ior. For the casen52, we obtain

P1~ t r 1
!5E

0

`

dD0dD1Pd~D0 ,D1!d@ t r 1
2e2b(D02D1)#

5
2

b
t r 1

2(2/b11), ~36!

P2~ t r 2
!5E

0

`

dD0dD1P~D0 ,D1!d@ t r 2
2eb(D1)#

5
6

b
t r 2

2(2/b11)F12
1

t r 2

b G . ~37!

The divergence of the average residence time is a direct
sequence of the fact that the tail of these distributions dec
with exponentg,2 whenb.2. Thus, the behavior of the
walker is dominated by couples which have far apart nea
neighbors.

VI. GENERALIZATION TO HIGHER DIMENSIONS AND
DIFFERENT COST FUNCTIONS

For higher-dimensional systems (d.1), the calculations
of the properties of the system become harder but some
timates can be obtained.

FIG. 4. Numerical calculation ofI 2(n) as a function ofn show-
ing that I 2(n) tends to a positive constant.
4-8
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ESCAPING FROM CYCLES THROUGH A GLASS TRANSITION PHYSICAL REVIEW E68, 016104 ~2003!
A. Asymptotic behavior of the residence times

It is possible to calculate the behavior of^t r 1
& and ^t r 2

&
when n52. For d>2 andb@1, the calculated asymptoti
bounds tô t r& are

1

Fd1BS d11

2
,
1

2D Gd <
^t r&

Cdexp@Edbd/(d21)#
<1 ~38!

with

Ed5~d21!~dAd
1/d!2d/(d21), ~39!

Cd5A 2

d21
BS d11

2
,
1

2D d

GS d

2
11D ~322d!/~2d22!

3d! d(2d223)/(2d22)p (d22d/221)/(2d22), ~40!

whereAd is given by Eq.~13!.
Thus, there is no glass transition whend>2 for the linear

cost functionE(Di j )5Di j . However, as we show below
there is a specific cost function which yields a glass tran
tion for each dimension.

B. Generalized cost functions

Consider the general case where the transition rates
the form Wi→ j5exp@2bE(Dij)#/Zi with an arbitrary cost
function E(Di j ). In the symmetric approximation, the ave
age residence time is

^t rs&5E
0

`

dD1dD0Pd~D1 ,D0!eb[E(D1)2E(D0)] , ~41!

wherePd(D1 ,D0) is given by Eq.~24! ~using k51). It is
clear that the two competing factors which create the po
bility of a glass transition are~i! the tail of Pd(D1 ,D0) and
~ii ! the exploding exp@bE(D1)# factor. As it can be seen
from Eq. ~23!, the tail of Pd(D1 ,D0) is Pd(D1 ,D0)
}exp(2AdD1

d), where Ad is given by Eq.~13!. Thus, the
symmetric approximation leads to

^t rs&}E
D0

`

dD1ebE(D1)2AdD1
d
. ~42!

Consider, for instance, the family of cost functions:E
5Di j

a . If a is smaller thand, the residence time is alway
finite and no glassy behavior is observed~as we have previ-
ously observed in the cased52 and a51). The limiting
caseT51/b→0 will be examined elsewhere. On the oth
hand, if a.d, the system is always in the glassy state
any value ofb.

If the cost function exponent is equal to the space dim
sionality,a5d, the two terms in the argument of exponent
function in Eq.~42! can compete independently of the val
of D1 and a glass transition occurs atbd5Ad5pd/2/G(d/2
11). For example,b152 for d51 ~as seen previously!,
b25p for d52, andb354p/3 for d53.
01610
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This kind of glass transition generalizes those found
trap models. In trap models, once the tail of the barrier d
tribution is given~say, a Gaussian tail as in Ref.@14#!, one
cannot carpenter the Arrhenius term to compete with it. T
is different in our exploratory random walk model. In ou
case what is given is not the barrier distributionP(E), but
the distance distributionP(Di j ) which characterizes the
landscape. Since the transition probability for explorato
random walks depends on an arbitrary cost functionE(Di j ),
one can always find what condition must be satisfied by
cost function so that a glass transition occurs.

C. Lévy flights

From Eq.~42!, one sees that anya,d prevents the glass
transition. In particular, one can study the limita→0, i.e.,
E(Di j )5 ln Dij . In this case, a hopping process with th
power-law tail,Wi→ j5Di j

2b/( j PNNDi j
2b is found. Transition

probabilities with power-law~‘‘Lé vy’’ ! tails lead to finite av-
erage residence times for any value ofd. Such Lévy explo-
ration process has been considered, for instance, in R
@27–29#.

But glass transitions may occur if the distribution of poi
distances also has power-law tails. For example, suppose
the points coordinates are drawn from some distribution t
producesP(D1 ,D0)}D1

2b . Then, the diverging part of the
residence time integral has the form^t rs&}*dD1D1

b2b . This
means that a glass transition occurs ifb>bc5b21.

VII. CONCLUSION

We have introduced a random walk in a disordered m
dium dependent on a control parameter which tunes the
tem from an ergodic to a nonergodic regime through a gl
transition. The random walk is similar to a hopping proce
in a multivalley landscape. Thed51 ‘‘local minima’’ or
traps emerge as two-cycle attractors produced by sites w
are mutual nearest neighbors. Ford51 these traps present
power-law distribution of trapping times and the avera
trapping time diverges forT<Tc51/2, leading to a ‘‘glass’’
transition in the weak ergodicity breaking scenario
Bouchaud’s trap model@10,12#. Given any distribution of
distances and any dimensionality, one can always find a
function for which a similar glass transition occurs.

The analytical treatment to estimate the bounds of
average residence time has been possible because we
considered finite connectivity. The finite value ofn is also
responsible for the appearance of special sets of points~sinks
and sources! in the directed graph where the walks are p
formed. Sinks are absolute, inescapable topological traps
sensitive to temperature. Couples~that produce two-cycles!
are relative traps that can be escaped with finite tempera
We have considered a possible glass transition involv
couples before the walker falls into sinks. Given the behav
of the bounds to the average residence time, we also exp
glass transition to appear in the fully connected network w
n5N21, where no sinks exist, only couples.

Concerning the application of our model to explorato
behavior, one~a posteriori! obvious conclusion is that free
4-9
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RISAU-GUSMAN, MARTINEZ, AND KINOUCHI PHYSICAL REVIEW E 68, 016104 ~2003!
exploration~diffusion or superdiffusion! occurs when the tai
of the hop’s PDF decays slower than the tail of the fi
neighbors distances’ PDF. However, if costs are associ
with the traveling distance, the marginal scenario, where
two PDF tails (a5d) compete, may be of interest. We co
jecture that working at the glass transition border may
optimal when high costs are associated with travel distan
~this will be presented elsewhere!.

The two-cycle phase~at zero temperature! and the glassy
behavior of the stochastic tourist walk may be compared
similar behaviors in neural and Kauffman networks. Su
comparison is not possible by using the random map.
random walk in a disordered graph introduced here is in
esting because it generalizes the usual trap models: in
tourist walk, traps are made of dynamical cycles instead
energy minima. We are currently studying the stocha
tourist walk with memoryt.0, so that traps are cycles wit
large periods~similar to what happens in Kauffmann ne
works and asymmetric neural networks@17#!. We expect that
the relevant features should be the same as those observ
the present work. In short, if one wants to escape from
cious cycles, small perturbations may not be sufficient: fr
dom only appears above a finite temperatureTc .
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APPENDIX: IMPROVED BOUNDS

In this appendix, we derive tighter bounds than tho
given by Eqs.~32! and ~33!, but they are only valid in the
special case ofd51 andn52.

Consider first a couple of points,a andb, separated by a
distanceD0. To calculateZa andZb @see Eq.~28!#, one only
needs the positions ofa and b and their two nearest neigh
bors. The first neighbor to each of them is, by definition,
other member of the couple. Since the distribution of
distances of the neighborsto the coupleis known, one needs
to determine which of these neighbors is the second-nea
neighbor toa and which is the SNN tob.

Without loss of generality, we assumeb to be the right-
most point of the couple. The first neighbor to the cou
~called FNNC! is taken to be placed at a distanceD1 ~with
D1.D0), and at the right ofb, which makes it the SNN tob.
Now the task is reduced to the determination of the SNN
point a.

When one considers the position of the second-nea
e
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neighbor to the couple~called SNNC!, at a distanceD2 ~with
D2.D1), three possibilities arise for the SNN ofa.

~I! D2.D11D0. In this case, the SNN toa is the FNNC,
and its distance to pointa is D11D0.

~II ! D2,D11D0, but it is placed to theleft of a. In this
case, the SNN toa is the SNNC, and its distance to pointa
is D2.

~III ! D2,D11D0, but it is placed to theright of b. In this
case, one needs to know the position of further neighbor
the couple to obtain the SNN toa. If they are placed at
distances larger thanD11D0, then the SNN toa would be
the SNNC. Otherwise, one would have to know which neig
bors, of those having distances smaller thanD11D0, are
placed to the left ofa.

The corresponding residence times can be calculated
actly for cases~I! and ~II !.

For case~I!, the partition functions areZaI(b)5e2bD0

1e2b(D01D1) and ZbI(b)5e2bD01e2bD1. For case~II !,
they are ZaII(b)5e2bD01e2bD2 and ZbII(b)5e2bD0

1e2bD1.
Equations~29! and ~28! yield the residence times

t r I~b!5
~11e2bD0!/212eb(D12D0)

11e2bD01e2bD1
,

t r II~b!5
2e2bD01~e2bD11e2bD2!/2

e2bD11e2bD21eb(D02D12D2)
. ~A1!

The problem witht r III is that to calculate it exactly, one
needs to break case~III ! into an infinity of particular cases
For our purposes, it suffices to calculate some bounds to
real value. As it has been discussed in case~III !, the distance
of point a to its SNN satisfiesD2,DSNNa,D01D1. There-
fore, it is clear that the corresponding residence time m
satisfy t r I,t r III ,t r II .

Remembering that the probability for a given point to
at one side of the couple is 1/2, and averaging, one obt
the bound

E dD0dD1dD2P1~D0 ,D1 ,D2!F t r IQ~D22D12D0!

1
t r I1t r II

2
Q~D11D02D2!G<^t r&

<E dD0dD1dD2P1~D0 ,D1 ,D2!@ t r IQ~D22D12D0!

1t r IIQ~D11D02D2!#. ~A2!

We have calculated these integrals numerically, and the
sulting bounds are presented as full lines in Fig. 3.
ath.
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