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Arandom walk is performed over a disordered media composébsites random and uniformly distributed
inside ad-dimensional hypercube. The walker cannot remain in the same site and hops to onenof its
neighboring sites with a transition probability that depends on the dis@aregween sites according to a cost
functionE(D). The stochasticity level is parametrized by a formal temperakuie the casel =0, the walk
is deterministic and ergodicity is broken: the phase space is dividediNg number of attractor basins of
two-cycles that trap the walker. For=1, analytic results indicate the existence of a glass transition, at
=1/2 asN—x. BelowT,, the average trapping time in two-cycles diverges and an out-of-equilibrium behav-
ior appears. Similar glass transitions occur in higher dimensions when the right cost function is chosen. We
also present some results for the statistics of distances for Poisson spatial point processes.
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[. INTRODUCTION sents such a phase: theurist walk[5-7]. It is a determin-
istic walk over a set oN points. The points may be sites in
Random walks in random media constitute an interestinga d-dimensional Euclidean spa¢B,7] or nodes in a graph
mathematical problem with several physical applicationswith ordered neighborhoodor example, words in a thesau-
[1,2]. The study of deterministic walks in random media isfus[7]). Thetourist ruleis that at each time step, the walker
also a fascinating topic but presents difficultiesnergodic- Mmust go to the nearest site not visited in the pasteps(a
ity, for instancé common to the area of dynamical systems.self-avoiding window. We have found that, for any win-
The statistics of such deterministic walks, which presendow, the phase space is divided ifOgN) number of basins
transient and cycling parts, have been much less investigateédf p-cycles attractors. In particular, wher=0, all attractors
[3—7] up to date. Here we investigate the transition fromhave periodp=2. For7=1, in thed—c limit, the tourist
deterministic to random walks in a disordered medium. Wewalk presents a power-law distribution of cycle periods of
find that escaping from a cycle dominated phase is donthe form P(p)op~*, with a cutoff which scales with/N.
through a glass transition in the “weak ergodicity breaking” This is similar to the distribution present in the random map
scenario present in Limoge-Bocquéi and Bouchaud's trap model[19].
models[9-14]. The above lattice systems also have been studied with
Any spin lattice model with deterministic parallel update stochastic dynamics. We expect that above a certain tempera-
may be viewed as performing a deterministic walk in itsture, the dynamics is no longer dominated by the cycles. It is
phase space. Examples are the Little mofieh,16 (a  not clear how to introduce a stochastic dynamics in the ran-
“Hopfield neural network” with parallel dynamigs asym- dom map but we found that it is eaggnd even naturafto
metric neural networks with parallel upddte/], Kauffmann introduce a formal temperatufiéin the tourist walk such that
Boolean network$18], etc. Since such systems have a hugethe deterministic limit is recovered wheh=0. The main
and complex phase space, it is interesting to compare thefuestion we address here is how ergodicity could be recov-
behavior to other simpler dynamical systems with quenche@éred from such deterministic dynamical systems with
disorder. This is the rationale for studying toy models as thejuenched disorder. The introduction of dynamical stochastic-
random map[19] that shares some generic statistical andity is necessary to break the cycles, but a low level of sto-
dynamical properties with those more complex systems. chasticity may not be sufficient for full ergodicity recovery.
A phase composed only by two-cyclé®., cycles involv-  Indeed, we have found a glasslike transition at a finite sto-
ing only two statesoccurs in the neural and Kauffman net- chasticity level(temperature T.. We expect that a similar
works cited above. However, such two-cycle phase is nobehavior is present in, for example, stochastic versions of
present in the random map model. Recently, we introduced Kauffman networks.
simple dynamical system with quenched disorder that pre- Here we consider a stochastic tourist walk where the
walker, at sitei, is allowed to jump to its firsh neighbors
with a transition probability proportional to expE(D;;)/T].
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without self-avoiding window £=0): the walker always with the sum running over the nearest neighboré\NN) of
goes to the nearest neighboring site, eventually being trappgubint i. The cost functiorE(D;;) depends only on the dis-
in a two-cycle when a pair of reciprocally nearest neighborgancesD;;, and is a monotone increasing function.
is found. ForT>0, the two-cycles are no longer stable, be-  Several scenarios can be envisage®&(ID;;) =D;; , then
ing characterized by a distribution of trapping timeét,). the transition probability decays exponentially with the dis-
However, for low values off, the walker is in an out-of- tance. If E(Dij)zDizj , a Gaussian decay is obtained for
equilibrium regime, presenting a divergent average trappingwi_)j, If E(D;;)=InDj, then Wi_”-ocDiEﬁ decays as a
time when N—« (weak ergodicity breaking scenario power law of the distance.
[8-14)). IncreasingT, one is able to study the ergodicity =~ Notice that the transition probabilities are not symmetric
recovery transition where the average trapping time become(s/viﬂ. #W, ;) because the normalization factors are differ-
finite. For one-dimensional systems, this occurs gt 1/2 ent (Zigﬁzj); the neighbors ofi are not the same as the
for all values of the connectivity. neighbors ofj. Furthermore, the walker is not allowed to
The paper is organized as follows. In Sec. Il, we defineremain at the same site, i.&V; ;=0 (which is equivalent to
the model and set the notation. In Sec. Ill, we show that thettingD; =« in the distance matrix
network structure, where hops occur, forms a directed graph. The stochastic parameter or “temperatufe 1/8 regu-
This graph presents interesting sets of points that we calhtes the distance dependent bias of the model. When
sinksandsources We present analytic results on the density _, o all the transition probabilities are equal and one obtains
of sinks of a given size. In Sec. IV, we obtain some jointynpiased hopping inside a disordered lattice. WAen, in
distributions of distances for the Poisson spatial point progq, (3) the term corresponding to the first-nearest neighbor
cess. These results are used in the calculation of bounds fggminates, yielding eithew; ;=1, if the sitej is the near-
the average trapping time in two-cycles. In Sec. V, we shovgst neighbor of site, or W;_;=0, otherwise. The tourist
that in one-dimensional systems there is a glass transition ges imperatively to the nearest site, relative to the actual
T,=1/2. BelowT;, the average trapping time diverges andposition, thus performing a deterministic w4 without a
the system falls into an out-of-equilibrium state. A discussionsejt-ayoiding window(that is, with 7=0).
on the existence of such glass transitions in higher dimen-  opserve that the model has not been defined in a regular
sions is presented. Exploratory behavior with a power-lawattice because in that case the number of nearest neighbors
hopping process is discussed via the introduction of a propgg degeneratetgreater than oneand determinism cannot be
cost function. Our final remarks and conclusions are offeredecovered. The prohibition for the walker to remain at the
in Sec. VII. same site is needed to fulfill the tourist walk rule.
Whenn=N-1, any site is accessible from any other site.
Il. DESCRIPTION OF THE MODEL However, ifn is small, the underlying network is a diluted
directed graph. Such graphs have a complicated topology:
The model is defined by an underlying disordered latticesome sites may not be accessible from other sites and the
composed oN sites, whose coordinates® (i=1,...,N;  graph may be disconnected. Thus, we will first study the
k=1, ... d) are distributed uniformly in thel-dimensional topology induced in this graph by a finite degreef outgo-
unitary volume[0,1]%. From the sites coordinates, one con-ing links. Afterwards, we present the dynamic4glass”)
structs the Euclidean distance matrix: transition that occurs in the walks performed on this graph,
whenT is sufficiently low.

d 1/2
— N 1/d K k)12
Djj=N {kZl [x{—x{] ] ; () Ill. TOPOLOGY OF THE UNDERLYING NETWORK

We have assumed that transitions occur only to therfirst
where the factoN'® has been introduced to simulate a con-nearest neighbors of each sit&/iewing each transition term
stant density of points, when the thermodynamical linit Wi_.; as the weight of the link between sitésand j, we
— o is taken. In this limit, the point distribution is equivalent obtain a directed network or graph. The degree distribution
to that of a Poisson process Rf', using the geometrical ©f outgoing links is aé function, P(kyy) = dy,n, and the

distance. distribution of ingoing links P(k;,) is binomial. Notice,
Now consider a hopping process between sites. The trafowever, that this is not a random graph, as it is restricted to
sition probability from sitd to sitej is defined as a d-dimensional Euclidean space, and thus it cannot be fully
characterized by using only the distribution of ingoing and
o BE(D;)) outgoing links. This graph is the underlying network where
WiHj(B)ZT' (2)  deterministic tourist walks occuif we setn=r7+1), so it

[ has been called #urist graph

where the normalization factor is A. Sinks and sources

For all finite values ofn, topological constraints induce
Z:(B)= 2 e~ BE(D}), 3) special sets of points. For example, usimg2 andd=2,
jeNN consider a set of three points such that each point has the
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D) (o o) D @ & ing links lead to the GSCC is tha-componentIN), i.e., the
o m set of points from where the GSCC is reachable but cannot

° %7 =" pe reached from it. If the walker is initially placed in the IN,

Sink Source Sink Source she will leave this set for the GSCC in a relatively small
amount of time. The disjoint set of sinks that can be reached
Pfrom the GSCC is called theut-componentOUT). This is
the set where almost every random walker will end up. These
other two points as nearest neighbors. All the outgoing linksare the greatest sets in our graph, but other smaller sets are
of such points remain inside this set of three points, formingpossible, for example, the set of all the sources that are not
a triangle. If this triangle does not receive any ingoing link connected to the GSCC, but to other sinks; or the set of sinks
from outside points, this triangle is an isolated cluster. If itthat cannot be reached from any other point in the graph.
receives some ingoing links, it acts as an absolute trap: the | g= 1, due to the very special topology Bf things are
cluster may be attained from outside, but there is no possigifrerent. Sinks disconnect the graghothing passes from

bility to escape from it, since there are no transition terms;ne side to the other side of a sjrénd a GSCC cannot be
W,_; to any sitej outside the triangle. Such sets, which do ¢y 4

not present outgoing links, we callnks When these sinks
are minimal (i.e., there are no smaller sinks inside them
they correspond to what are calleceducible closed sets

the terminology of Markov processé¢20]. Sinks are com-

FIG. 1. Sinks and sources in one dimension. Large arrows re
resent walls.

Notice that the presence of sources and sinks occurs even
in the high temperature limitT{—). It is a topological
property, not a dynamical one, emerging from the fact that

posed of persistent states and the rest of the graph is corﬁf’mh Sit? has onlg outgoing'links. The g!ass transition di;-
posed of transient ong&0]. Notice that, since there are al- cussed in Sec. V has nothing to do with such topological

ways n outgoing links from each point, a single site cannotconstraints. Simulations show that it is present even in the
be a sink. Sinks have a minimal sizen;)frl points. fully connected casea=N-—1. Sinks are an undesirahlal-
Consider also a set of pointsr even a single pointhat though inevitablg factor that complicates the study of the

present outgoing links to points outside the given set buglass transition in our random walk. On the other hand, finite
with no ingoing links from exterior points. Such sets areconnectivity allows us to extract some analytical results,

calledsourcesA walk may be started inside a source, but if Which is not the case fan—oo.
the walker exits this set, she cannot return to it any longer. _ _
Sinks and sources are easily visualized in dimenslon B. Density of sinks

=1 (see Fig. 1 because we can define special points Next we calculate the density of sinks in one dimension
(“walls™ ). A site w is a (semipermeablewall whenever all  and ask for the conditions which enable the emergence of a

of its n outgoing links point along the same direction. How- single macroscopic connected region where any point is
ever,w may have ingoing links from the opposite direction, reachable from any other.

that is, the walls behave as semipermeable membranes: they |n d=1, a sink is formed by two inward walls where each

allow the flux of walkers from one side to another but not thevva” site hasn Outgoing links. Thus, the smallest sink com-
other way around. Thus the walls are characterized by thgrisesn+1 points. It is possible to calculate explicitly the
directions in which the walker flux is allowed. This is indi- gensity(also called concentratioiC,,(n) of sinks with sizes
cated in Fig. 1 by arrows and, as a shorthand, we say that the m for m small.

wall “points™ to the direction indicated by the large arrows.  consider a set ofi+3 consecutive points, relabeled ias

In d=1 systems, two consecutive walls define different—_1 143 and with coordinates; . Let X;=x;.,,—x; be
regions on the disordered lattice depending on their orientane distance separating two consecutive points. We first cal-
tion. If the two walls point to the center of aregiGnwards  cyjate the probability that poirit=2 is a wall pointing to the
(|= 1), the set of points comprising all the points betweenyight and that, simultaneously, point n+2 is a wall point-
the walls is a minimal sink. Once a walker attains a 5'”k-ing to the left with no wall between these two wallsXf is
there is no escape: the only permissible movement is to Wallgreater than the total distance between point2 and i
der stochastically inside it. If the two consecutive walls point= 4 5 then pointi =2 is a left wall pointing to the right.

outwards a region«||=), this region is a source. Once a Similarly, if X,,., is greater than the total distance between
walker escapes from such a region, it cannot return. pointsi=2 andi=n+2, then poini =n+2 is a right wall

Going to a higher level of description, our graph can bepinting to the left. Since points are randomly spaced along
characterized by the sets discussed in REF8] and[22].  the jine (Poisson processthe probability of having a dis-

Ford>1 and large enough valuesfthe graph has giant  (ancex; is P(X,)=e %. Thus, the concentration of sinks
weakly connected componemiade of points connected by havingn+1 points is

links (without considering their directign Inside this set,
there is agiant strongly connected compone(SCQ, n+2 n+l
where every point is accessible from every other point of the c.m=| 11 (dXie‘Xi)®( Xi— >, Xi)
set through a directed path. This is the set where, most prob- =1 1=2
ably, a random walker roams until she eventually falls into a

sink. By definition[22], the GSCC does not contain either )

n+1 1
! Xni2— 2 xi>=—n. (4)
sinks or sources. Th@lisjoint) set of sources whose outgo- i=2 3
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TABLE I. Expression of functiopy(x) for some values of the dimensiai{see Eq(8)]. This generalizes

Table Il of Ref.[7]. For the last column, see E(1).

d Pa(x) Pa(1) Vy(D1,Do)/ 9Dy
1 X 1 2
2 2
2 2 3/2 2
3%+ 2 D,/(2D

2 E)_( 1-| 2| +arcta ﬂ T 2wD1+4D1arctan\/M

|2 2 1—(x/2)? 6 1-[D4/(2Dg)]?

3

3 gf_l(; 11 27D,[2D,+Dy]

2 3

16

Similar (but more cumbersomealculations give the con-
centration for the next two sink sizea{2 andn+3). For

n=2,
1/ 1 1
Cam=7 31 i) (5
_1 1 1 1 1 1 1
CB(n)_]__G 3n—2_5n—2+§7n—2+1_29n—2 : (6)
For large values of n, C,(n)/C4(n)—3/4 and

C3(n)/Cy(n)—3/4. One may conjecture that, asymptoti-
cally, this will hold true for all size concentrations. In other
words,C,,1(n)/C,,(n)— 3/4 for all values om. If this con-

jecture is valid, the fraction of points that belong to sinks is,

asymptotically, F(n)=X._;(m+n)Cy(n)=(4n+20)/3"
and the total concentration of sinks &n)==,_,C(n)
=4/3". This means that for large values of the graph is

effectively disconnected and the clusters have, on average,

[1—F(n)]/C(n)=(3"—4n—20)/4 points.

A. Density of couples

With T=0, starting the walk at a given site, after a fast
transient[ 23], the walker eventually reaches two “reflexive
nearest neighbors{or “couple,” for short) [24]. A couple
a«—b is formed when sita is the nearest neighbor of site
andb is the nearest neighbor af Once a couple is attained,
the walker is trapped in a two-cycle attract@<b—a—b
—---). As shown in Ref[ 7], ford=1, the expected number
of couples isM(1)=N/3, and for general values af one
has the couple density:

-
2[1+py(1)]"

whereP4(a«Db) is the probability that a point belongs to a
couple and

M(d
1P yach)-

N @

This result can be used to estimate the minimum value of

n for which there exists a single cluster of si2€N). If one
imposesNC(n)=1, one gets,;,=In(4N)/In 3. This implies
that it is not necessary to take=N—1 to have a single

macroscopic cluster: it can be obtained with very high prob-

ability for low values[ O(In N)] of n.
It is easy to see that for higher dimensions and finite

there will also be a finite fraction of sinks and sources, in th%/vherel

thermodynamical limitN—oc. However, numerical evidence

presented in Sec. V B seems to imply that the glass transition
studied in Sec. V occurs in the GSCC, that is, outside th

sinks and sources.

IV. COUPLE STATISTICS

In this section, we obtain the density of couplgghich
form two-cycles trapsin d dimensions and we derive prob-

1 d+1
pd(X):l(x/2)2<§-T : (8)
with the definitiong 25]
1 z

Iz(a,b)=mfodtta’l(l—t)b’l, 9

1 I'(a)I'(b
B(a,b)=fodtta‘l(l—t)b*:%, (10)
F(z)=jxdttz’1e’t, (11

0

,(a,b) is the incomplete8 function, B(a,b) is the
beta function, and'(z) is the gamma function. The function

é)d(x) is given in Table | for some values df and its geo-

Mmetrical meaning is presented beldBec. IV B.

The couples trap permanently the walker onlyTat 0.
Notice that, in principle, there is no relationship between
couples and sinkgfor example, couples may be sources
However, the special case=1 (a single outgoing link for
each poink is equivalent to al=0 scenario. In this case,
sinks and couples are identical. From E4), C,(1)=1/3

ability density functions for distances inside couples and begives the concentration of couples, which is compatible with

tween couples and their neighbors.

Eq. (7), ford=1.
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2V(D) (1 ,
-~ _y2y(d-1)12
Va(D.Do)= 1477 fDO/ZDdxu x2)
2" 2
V(D) fl
1 d+1) J(p,/2p)2 (1~
2’ 2
Do
=V(D)[1-pd 5| |- (15)

Notice thatpy(x)=[V(D)—V~(D,Dg)]/V(D) is the vol-
ume fraction occupied by the “hyper crescent.” Thus, the
total volume is

FIG. 2. Union of two hyperspheres of radibscentered at sites
a andb, which are a distanc®, apart. There are no other sites Vy(D,Dg)=V(D)
inside the inner hyperspheres of radig.

1+pyg

Do
3) } . (16)

. ) ] __ The joint PDF that the pointa andb form a couple and
As we are using a spatial Poisson process, the probabilitiaye a pair distandd, corresponds to the probability that no
of a point being located in a given volume is proportional togther points lie inside the volumé,(Dy,Dy):
the volume itself and there is no correlation between points.

Next we present some analytical results on the distance sta- dV(Dgy)

tistics of point processes iRY that could be of general in- P4(Do,ab)=—g5—e Vu(Po:Do)

terest (for example, in studies of the travelling salesman 0

problem[26]). =A4dDY e [1+Pa(IV(Do) (17)

For example, ird=1 we haveP,(D,a«~b)=2e 3Po. No-
tice thatP4(Dg,a<b) is not normalized: integrating with
First we calculate the probability density functiGADF) respect toD, one recovers the couple densiBy(a«—b)

for the distances between the points of a couple. Followingjiven by Eq.(7).
Cox [24], without loss of generality, we consider a unitary
intensity Poisson process thdimensions. For such a pro- ¢ Couple nearest neighbor distance distribution function

cess, the probability of having no points inside a hypersphere , ) ) )
of volumeV and radiusD is e~ V. Then, the PDF of finding DefineD; as the distance of thigh nearest neighbor (1

the nearest neighbor of a particular sitet a distancé is ~ ~J=") o0 the couple & b. For instance, the distance of the
first-nearest neighbor to the couple B =min{D,;,Dy},

dv(D) that is, the minimal one between the distance from sites
Pan(D) = d—De‘V(D)=Add D te”V(®, (12 andbto their second-nearest neighbors. Thus, the distance of
the second-nearest neighbor to the couple will be the mini-
. mal one among the remaining distances ({Pax,Dy,}) and
with {Da2, Dz} Do=minfmaxDyy Dig},Da, Dol
To calculate the couple’s joint PDP(Dy,D4), one asks
V(D)=AdDd, first for the probability that the couple nearest neighbor is at
a distance larger thanD,. That is, one asks for the prob-
ability that twod spheres of radiuB 4, one centered at sige

B. Couple distance distribution function

dr2

A= ™ 13) and the other centered at skieare emptygiventhe fact that
AUr(dr2+1)" thed spheres of radiuB, centered at the same sites are also
empty. For a Poisson process, this probability is
Consider also the volume of the union of tdspheres of ~V,(D1.Do)
radiusD centered at sitea andb separated by a distantg, Py(r>D4|Dg)= e - (18)
. . d 11~0 —V,(Dg.Dg)
(see Fig. 2 e Vu(Do.Dg

V,(D,Dg)=2V(D)—V,(D,Do), (14) Then, the probability density function thet-D; is

Py(r>Dy,Dg)=Py(r>D4|Dg)Py(Dg,a+b)
whereV(D,D,) is the volume of the intersection of twdb
spheres whose centers are separated by a disbBnddsing - dV(Do) e Vu(P1.Dg) (19
the variablex=cos¢ (see Fig. 2, we get dDg '
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wherePy4(Dg,a<b) has been given by Eq17). Taking the
derivative of the above equation with respectDg, one

finally obtains the probability distribution function to have a

couplea—b of sizeD with the first neighbor to the couple
at a distancdq:

Py4(D1,Dg,a<b)

dV(Dg) aV,(D1,Dg)
=exi —Vy(D1.Do) g5 — 55—

XO(D;—Dy), (20

where the Heaviside step functiéh(D,—Dg) has been in-
troduced to ensure th&i;>D, and

dVy(D1,Do) =VU(D11DO)d dpy(Do/D1)

9D, D, dD, V(D)
(21)
where
Do 27(d—1)/2
0415 |
dpy(Do/Dy) 2D, (22)
Dy , (1 d+1
12202

For the expression ofV(D,,Dy)/dD, for some values of
d, see Table I.

D. Generalizing the joint distribution function

Generalizing this procedure, the joint PDF of distances

for the kth nearest neighbors of tlee—b couple is obtained:

P4(Dk,Dk-1, ... .Dg,a<>b)
k
) dV(Do) ry [@Vu(Dj,Do)
=exd —Vy(Dy,Dg)] dD, j];'[l dD;
XO(Dj—Dj_q1)|. @3

Notice that the above result is not normaliZettessed by
the label a<b). To normalize it, one must divide by
Py(a—b)=1[1+py(1)] [see Eq.7)]. For instance, fod
=1 one has

k
P1(Dy,Dy_1, - .. Do) =2"3e o200 ][] ©(D;-D;_,).
i=1

(24)

Notice that normalized PDF’s do not carry the labekb.

E. Stability distribution function
Let us define the “stability” of an arbitrary pair of points
(a,b) (not necessarily reflexive neighboi® be

A=D;n—Dap, (295

PHYSICAL REVIEW E 68, 016104 (2003

TABLE II. Probability P(t) that a walker, initially placed at
point a, makes its first exit from the couple at tinhe

Time step €) P(t)
0 Ja
1 paqb
2 PaPbda
3 PaPbPalp
4 (PaPb)?a
5 (PaPb)*Padlp
6 (PaPo)%da
t odd (Papp) Y %paap
t even ©aPy) "4

where D,,,=min{D4,Dy¢ is the distance to the nearest
neighbork of a or b not includinga or b. Notice that if(and
only if) the stabilityA is positive, thera andb are reflexive
neighbors(a couple. This is an alternative way of defining
couples and we may writd =D, —D,. The couple stability
PDF is

Pa(4)= | "dDAD,P(D,.D0) 1A~ (D1~ Do)
(26)
For example, fod=1 this gives

Pi(A)=2exgd—2A)0O(A). (27)

V. GLASS TRANSITION

So far we have considered the topological aspects of the
network where the walk is performed. Now we turn our at-
tention to the dynamics of the hopping process. As men-
tioned before, forT=0 the walk is deterministic. After a
transient, the walker falls into a two-cycle defined by a
couple. However, foil >0 the couples are not absolute traps
any longer, being characterized by a residence or trapping
time, t, . To calculate the average residence timealandb
be the sites of a coupl®),=D,, their pair distance, and
D,j(Dyp;j) the distance froma(b) to its (j+1)th nearest
neighbor. Consider first a linear cost functi&(D)=D
(other cost functions will be discussed lateFhe probabili-
ties of transition from site to siteb and vice versa are

e_ﬁDO n-1
Pa=Wan(B) =555 ZalB)= EO e PPai,
,EDO n—-1
Po=Wha(B) =75, zb(ﬁ>=i§0 e FPoi. (28)

Suppose that at=0 the walker is at sita. The probabil-
ity that the walker remains inside the couple fateps and
then leaves it is(as schemed in Table )Il Pg(t)
=(p.Pr)¥%q,, for even values of t and Pg(t)
=(papp)t P"?p,qy for odd values of, with g,=1—p, and
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q,=1—p,. Ifatt=0 the walker is at sité, one simply has 65 y T y T y T
to exchange the indices andb in P,(t) and P4(t). Since [
the travel may start either at si¢eor siteb, the probabilities
that the walker remains in the cycle up to tirhare P(t)
=(PaPp)"A(dat )2 and  Po(t)=(papp) " A(pap
+ppda)/2, with P(t) properly normalized: =;_ ,P(t)
=3 r_o[Pe(2K) + Po(2k+1)]=1.
The expected residence time for this couple is

oo o] a
t,=> P(t)t= 2, [Po(2k)2k+Po(2k+1)(2k+1)] O
t=0 k=0
+ + 12
_ PaPot (Pat pp)/2 (29
1_papb

The calculation of the averagé,) (over all possible re-
alizations of the poinjsis somewhat involved, for general
values ofn. The problem lies in the fact that the set of near- :
est neighbors to sita and the corresponding one for she 15 . L . L . L

are neither uncorrelateéhdependentnor completely corre- 00 05 1[30 15 20
lated.

The consideration of all the possible correlations involves FIG. 3. Bounds for the average residence time der1 with
a number of integrals that increases exponentially with | _ HereC_(B)<(2—B)(t;)<C,(B). The ascending dashed
Nevertheless, Iitis pf)s_s'bI? to C_alculate b(_)unds{fp}rwhlch curve is the upper bound given by E§3) and the descending line
reveal its characteristic diverging behavior. To obtain thesgy he upper bound given by E¢32). The horizontal line is the

bounds, we next present a simple approximation which igower houndC_=2 common to both equations. Solid lines are the
physically intuitive followed by improvements to this calcu- tighter C.. bounds obtained in the Appendix.

lation.
The average over the disorder is calculated using Eq:

A. Symmetrical and asymmetrical approximations

In the symmetrical approximation, for=2, the transition (eBly= deA Pl(A)eBAZZdeAe—A(Z—B):i
0 0

probabilities corresponding to the two members of a couple 2—p’
are taken to be equap,=p,=p=e PPo/Z, usingZ,=Z, (31
=Z=ge APo+e AP1 with D;=min(D,,,Dy,) (as defined in
Sec. IV Q. The residence time is then given lby=p/(1 for p<pB.=2.
—p)=e?4, whereA=D,—Dj is the stability of the couple, Thus, the average residence time is bounded as
defined by Eq(25). This would be exact if the nearest neigh-
bors to the couple were degenerated, that is, if there was one B
point at a distanc®; from a and a point at a distand®, 2<(2—-B)(t;)<5— 5 (32
from b.
In the general case,s is a lower bound td, . This stems
from the very definition oD ;: for one of the points of the and diverges wheg— S.=2. These bounds are shown in
couple, the distance to its second-nearest neigt®N) is, Fig. 3.
in the general case, necessatdyger thanD;. Thus, given Above the critical temperature, the walker falls into traps
D,, a couple whose members have their respective SNNs 4wo-cycles which have finite average residence time. This
the same distanc@l, has the shortest possib|e residencea”OWS normal diffusion for |0ng time scales. However, the
time. walker eventually falls into a sink which is analogous to an
In the asymmetrica] approximation’ for the member of theabsorbing state. Notice that in general, sinks are not COUpleS.
couple(say,b) whose SNN is at a distance larger thag, Sinks are absolute traps arising from the finite connectivity
the transition probability to the SNN is taken to be zero, that. Couples are dynamical traps and temperature allows the
is, p,=1. This leads to a residence tintg,=2e#*+1/2.  escaping from couples but not from sinks. Below the critical
This residence time clearly bounds the true residence timé&mperaturel;=1/8,=1/2, the system falls into an out-of-
from above, because we are assuming that the walker cann@@uilibrium “glassy” phase where the walker explores

leave the couple from poirit. deeper and deepémore stablg couples and presents aging
From these approximations, one obtains phenomena such as in Bouchaud's trap m¢#i@). This sce-
nario has been called weak ergodicity breaking by Bouchaud
efr<t <2efr+ 1. (30)  and co-worker$13].
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B. Improved bounds for the residence time 0.70 L e B L A

The previous simple calculations give insight on the -
physical mechanism involved in the divergence of the resi-
dence time, but we can obtain better estimates for the bound
on the residence time, which work for general values.of 0.65
Using the ordered set of distances, we have Byat D, p);
<D;+D,. The second inequality expresses the fact that ourg
definition of the set of valueB; implies that ad sphere of = .
radiusD;+ Dy, centered at poira (or b) contains at least 0.60
points. Thus, we can bound the normalization factors in Eq.

(28) as follows: Z,<Z,p<Z;, where Z;=e APo | \

+37”1e #PiandZ,=e AP 1+ 37" le APi]. This implies ~a—,
that p;<pup=<pz Wwith p,=e #°9Z; and p, N
=e APo/7,, which allows us to bound the residence time: T2 4 6 8 10 12 14 16
t st st with t, = p./(1—py1) andt,2= po/(1—p,).

/

n
To average over the disorder, one needs the joint PDF of . ) )
the distances of the nearest neighbors to the co[fte FIG. 4. Numerical calculation df,(n) as a function oh show-
(23)]. Ford=1 one obtains, again fg8< 8.=2, ing thatl,(n) tends to a positive constant.
6 produced only by couples in the GSCC. This suggests that
2<(2=p)t)= 3-8 for n=2 (33 the glass transition occurs to walkers in the GSCC before
they fall into sinks.
and
C. Distribution of residence times
1 g(n)<(2—B)(t,)< 3l5(n) for n>2, (34) The origin of the glass transition that appearsdinl is
3-8 related to the trapping times PDIF(t,). Exact analytical
_ results are difficult to obtain. Nevertheless, the probability
with distribution for the approximate residence tin‘tels andtr2
(defined in the preceding sectiogives an idea of its behav-
n—-2 n—2 . .
o ior. For the casen=2, we obtain
H (dxe ™) dy;

3| -
N

! 1 i=
(=2  —5= =, =T
1+ [T e =1+ 3 ] yf*

=1i=1 j=1i=1

2

Pat,,) = J dDodD4Py(Dg,Dy) ot —e APo~P1)]
0

In Fig. 3, we give an example of the relationship between
these bounds and the exact value(bf), for the casen °
=2. In fact, the comparison is made not with the exact value Pa(t,,)= f dDodD;P(Dg,Dy) o[ t,,—e#P7]
but with very tight bounds to ifsolid lines in Fig. 3 that 0
have no simple analytical form and have only been obtained
for the particular case af=1 andn=2 (see the Appendix — Et—(2/5+ Hi1— i

It is easy to see that 2i(- 1)<<1 5(n) <2 for all values of B2 tfz
B. Thus, by looking at the bounds we can deduce {hat
too diverges wheB— B.=2, for all finite values of. _ ) o _

The functionl ,(n) can be proven to be a decreasing func- The divergence of the average _reS|dence t|.me_ is a direct con-
tion of n. But it would be interesting to know whether it Seguence of the fact that the tail of these distributions decays
tends to a positive constant as-, or it tends to zero. We With exponenty<2 wheng>2. Thus, the behavior of the
have not been able to calculate this limit analytically. Nev-Walker is dominated by couples which have far apart nearest
ertheless, numerical resultsee Fig. 4 show thatl,(n)  neighbors.
seems to decrease toward a positive constarft.56). This
suggests that a glass transition also exists in the Imit
— 00,

Moreover, asn grows, the decay of,(n) is very slow
compared to the exponential decrease of density of sinks For higher-dimensional systemd>*1), the calculations
[C(n)~4/3"]. Thus, the divergence of the residence timeof the properties of the system become harder but some es-
should not depend on couples inside the sinks; it seems to lisnates can be obtained.

. (37)

VI. GENERALIZATION TO HIGHER DIMENSIONS AND
DIFFERENT COST FUNCTIONS
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A. Asymptotic behavior of the residence times This kind of glass transition generalizes those found in
trap models. In trap models, once the tail of the barrier dis-
tribution is given(say, a Gaussian tail as in R¢f.4]), one
cannot carpenter the Arrhenius term to compete with it. This
is different in our exploratory random walk model. In our
case what is given is not the barrier distributiBgE), but

It is possible to calculate the behavior @f ) and(t; )

whenn=2. Ford=2 andB>1, the calculated asymptotic
bounds to(t,) are

! 3< (t) <1 (39 the distance distributiorP(D;;) which characterizes the
[d+B d+1 }” Cyexg EgBY4~1)] landscape. Since the transition probability for exploratory
2 '2 random walks depends on an arbitrary cost funcigb;),
one can always find what condition must be satisfied by the
with cost function so that a glass transition occurs.
Eq=(d—1)(dAf") "D, (39 ,
C. Levy flights
[ 2 [d+1 1\¢ /d (3-2d)i(2d=2) From Eq.(42), one sees that any<d prevents the glass
Ca= d—1-\ 2 '2 I P transition. In particular, one can study the linit-0, i.e.,
5 5 E(Dj;)=InDj;. In this case, a hopping process with the
X dl (247 3)/(2d=2) (d7=dl2=1)l(2d=2), (400 power-law tail,W;_;=D;; /= _ywD;; * is found. Transition

o probabilities with power-law“Le vy” ) tails lead to finite av-
whereA, is given by Eq.(13). erage residence times for any valuedfSuch Lery explo-
Thus, there is no glass transition whets 2 for the linear  ration process has been considered, for instance, in Refs.
cost functionE(D;;) =D;;. However, as we show below, [27-29.

there is a specific cost function which yields a glass transi- Byt glass transitions may occur if the distribution of point

tion for each dimension. distances also has power-law tails. For example, suppose that
the points coordinates are drawn from some distribution that
B. Generalized cost functions producesP(D;,Dq)*D;°. Then, the diverging part of the

. . . —b .
Consider the general case where the transition rates haysidence time integral has the fofi,)< /dD,Df . This
the form W_;=exgd—BE(D;))/Z with an arbitrary cost Means that a glass transition occurg#.=b—1.

function E(Dj;). In the symmetric approximation, the aver-
age residence time is VIl. CONCLUSION

o We have introduced a random walk in a disordered me-
(trs>=f dD;dDoPy(D1,D)efE(CDEMPI - (41)  dium dependent on a control parameter which tunes the sys-
0 tem from an ergodic to a nonergodic regime through a glass

L : _ . transition. The random walk is similar to a hopping process
where P4(D,Do) is given by Eq.(24) (usingk=1). It is in a multivalley landscape. Thd=1 “local minima” or

clear that the two competing factors which create the possi: . .
- I . . traps emerge as two-cycle attractors produced by sites which
bility of a glass transition ar€é) the tail of P4(D1,D,) and P 9 Y b y

. ) ; are mutual nearest neighbors. Fbr 1 these traps present a
(i) the exploding eXmE(Dl)] factor. As It can be seen power-law distribution of trapping times and the average
from Eq. (23), the tail of P4y(D4,Dg) is Py4(D1,Dg) trapoing fi : -7 _ ; p ”

a L pping time diverges fof <T.=1/2, leading to a “glass
ocexp(—Ale), Wh?re A.‘d is given by Eq.(13). Thus, the transition in the weak ergodicity breaking scenario of
symmetric approximation leads to Bouchaud’s trap model10,12. Given any distribution of
" distances and any dimensionality, one can always find a cost

<trs>ocf leeBE(Dl)*AdD‘i_ (42)  function for which a similar glass transition occurs.
Do The analytical treatment to estimate the bounds of the
average residence time has been possible because we have
Consider, for instance, the family of cost functiors:  considered finite connectivity. The finite value fis also
=Dj{j. If a is smaller thand, the residence time is always responsible for the appearance of special sets of p(sirtks
finite and no glassy behavior is observ@s we have previ- and sourcesin the directed graph where the walks are per-
ously observed in the cask=2 anda=1). The limiting  formed. Sinks are absolute, inescapable topological traps in-
caseT=1/8—0 will be examined elsewhere. On the other sensitive to temperature. Couplébat produce two-cyclgs
hand, if «>d, the system is always in the glassy state forare relative traps that can be escaped with finite temperature.
any value ofg. We have considered a possible glass transition involving
If the cost function exponent is equal to the space dimeneouples before the walker falls into sinks. Given the behavior
sionality,a=d, the two terms in the argument of exponential of the bounds to the average residence time, we also expect a
function in Eq.(42) can compete independently of the value glass transition to appear in the fully connected network with
of D; and a glass transition occurs @j=Ay=7Y%T'(d/2 n=N-1, where no sinks exist, only couples.
+1). For example,B8,=2 for d=1 (as seen previously Concerning the application of our model to exploratory
Bo=m for d=2, andB;=4/3 for d=3. behavior, onga posteriorj obvious conclusion is that free
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exploration(diffusion or superdiffusionoccurs when the tail neighbor to the coupléalled SNNG, at a distanc®, (with
of the hop’s PDF decays slower than the tail of the firstD,>D,), three possibilities arise for the SNN af
neighbors distances’ PDF. However, if costs are associated (I) D,>D;+ D,. In this case, the SNN tais the FNNC,
with the traveling distance, the marginal scenario, where thend its distance to poir is D+ Dy,.
two PDF tails @¢w=d) compete, may be of interest. We con-  (ll) D,<D;+Dy, but it is placed to théeft of a. In this
jecture that working at the glass transition border may becase, the SNN ta is the SNNC, and its distance to poiat
optimal when high costs are associated with travel distances D,.
(this will be presented elsewhere (1) D,<D;+ Dy, butitis placed to theight of b. In this

The two-cycle phaséat zero temperatuyeand the glassy case, one needs to know the position of further neighbors to
behavior of the stochastic tourist walk may be compared tahe couple to obtain the SNN ta. If they are placed at
similar behaviors in neural and Kauffman networks. Suchdistances larger thab;+D,, then the SNN ta would be
comparison is not possible by using the random map. Théne SNNC. Otherwise, one would have to know which neigh-
random walk in a disordered graph introduced here is interbors, of those having distances smaller tiap+D,, are
esting because it generalizes the usual trap models: in thslaced to the left of.
tourist walk, traps are made of dynamical cycles instead of The corresponding residence times can be calculated ex-
energy minima. We are currently studying the stochasticactly for casegl) and(ll).
tourist walk with memoryr>0, so that traps are cycles with For case(l), the partition functions are,(B)=e #Po
large periods(similar to what happens in Kauffmann net- + e A(Po*P1) gnd z,,(8)=e #Po+e #P1. For case(ll),
works and asymmetric neural netwofks’]). We expect that  they are Z,,(B)=e #Po+e #P2 and Z,,(B)=e FPo
the relevant features should be the same as those observed4irg—58D1

the present work. In short, if one wants to escape from vi- Equations(29) and (28) yield the residence times
cious cycles, small perturbations may not be sufficient: free-

dom only appears above a finite temperaftige . (1+ e PPo)/2+ 2eA(P1~Do)
n(B)= 1+ o Pot o FD
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For our purposes, it suffices to calculate some bounds to its
APPENDIX: IMPROVED BOUNDS real value. As it has been discussed in cdie, the distance

of pointa to its SNN satisfie® ,<Dgyns<Do+D;. There-

In this appendix, we derive tighter bounds than thosefore, it is clear that the corresponding residence time must
given by Egs.(32) and(33), but they are only valid in the satisfyt, <t <t, .
special case ofl=1 andn=2. Remembering that the probability for a given point to be

Consider first a couple of pointa,andb, separated by a at one side of the couple is 1/2, and averaging, one obtains
distanceD,. To calculateZ, andZ, [see Eq(28)], one only  the bound
needs the positions @ andb and their two nearest neigh-
bors. The first neighbor to each of them is, by definition, the
other member of the couple. Since the distribution of the
distances of the neighbots the coupldas known, one needs
to determine which of these neighbors is the second-nearest Lty
neighbor toa and which is the SNN td. 2

Without loss of generality, we assunheto be the right-

most point of the couple. The first neighbor to the couple sf dDodD,dD,P;(Dyg,D4,D)[t,®(Dy—D;—Dg)
(called FNNQ is taken to be placed at a distaribg (with

f dDodD,d D2P1(D0,D1,D2){tr|®(D2_ D;—Dy)

O(D;,+ Do—Dz)}gar)

D;>Do), and at the right ob, which makes it the SNN tb. +1,,0(Dy+Do—Dy)]l. (A2)
Now the task is reduced to the determination of the SNN to
point a. We have calculated these integrals numerically, and the re-

When one considers the position of the second-nearesulting bounds are presented as full lines in Fig. 3.
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