563 research outputs found
Integral Human Pose Regression
State-of-the-art human pose estimation methods are based on heat map
representation. In spite of the good performance, the representation has a few
issues in nature, such as not differentiable and quantization error. This work
shows that a simple integral operation relates and unifies the heat map
representation and joint regression, thus avoiding the above issues. It is
differentiable, efficient, and compatible with any heat map based methods. Its
effectiveness is convincingly validated via comprehensive ablation experiments
under various settings, specifically on 3D pose estimation, for the first time
The nature of functional variability in plantar pressure during a range of controlled walking speeds
During walking, variability in step parameters allows the body to adapt to changes in substrate or unexpected perturbations that may occur as the feet interface with the environment. Despite a rich literature describing biomechanical variability in step parameters, there are as yet no studies that consider variability at the body–environment interface. Here, we used pedobarographic statistical parametric mapping (pSPM) and two standard measures of variability, mean square error (m.s.e.) and the coefficient of variation (CV), to assess the magnitude and spatial variability in plantar pressure across a range of controlled walking speeds. Results by reduced major axis, and pSPM regression, revealed no consistent linear relationship between m.s.e. and speed or m.s.e. and Froude number. A positive linear relationship, however, was found between CV and walking speed and CV and Froude number. The spatial distribution of variability was highly disparate when assessed by m.s.e. and CV: relatively high variability was consistently confined to the medial and lateral forefoot when measured by m.s.e., while the forefoot and heel show high variability when measured by CV. In absolute terms, variability by CV was universally low (less than 2.5%). From these results, we determined that variability as assessed by m.s.e. is independent of speed, but dependent on speed when assessed by CV
Consenting to health record linkage: evidence from a multi-purpose longitudinal survey of a general population
Background: The British Household Panel Survey (BHPS) is the first long-running UK longitudinal survey with a non-medical focus and a sample covering the whole age range to have asked for permission to link to a range of administrative health records. This study determines whether informed consent led to selection bias and reflects on the value of the BHPS linked with health records for epidemiological research. Methods. Multivariate logistical regression is used, with whether the respondent gave consent to data linkage or not as the dependent variable. Independent variables were entered as four blocks; (i) a set of standard demographics likely to be found in most health registration data, (ii) a broader set of socio-economic characteristics, (iii) a set of indicators of health conditions and (iv) information about the use of health services. Results: Participants aged 16-24, males and those living in England were more likely to consent. Consent is not biased with respect to socio-economic characteristics or health. Recent users of GP services are underrepresented among consenters. Conclusions: Whilst data could only be linked for a minority of BHPS participants, the BHPS offers a great range of information on people's life histories, their attitudes and behaviours making it an invaluable source for epidemiological research. © 2012 Knies et al; licensee BioMed Central Ltd
HIV Testing for Children in Resource-Limited Settings: What Are We Waiting For?
Scott Kellerman and Shaffiq Essajee argue that the time has come to increase access to HIV testing for children, especially in sub-Saharan Africa
On the relation between action selection and movement control in 5- to 9-month-old infants
Although 5-month-old infants select action modes that are adaptive to the size of the object (i.e., one- or two-handed reaching), it has largely remained unclear whether infants of this age control the ensuing movement to the size of the object (i.e., scaling of the aperture between hands). We examined 5-, 7-, and 9-month-olds’ reaching behaviors to gain more insight into the developmental changes occurring in the visual guidance of action mode selection and movement control, and the relationship between these processes. Infants were presented with a small set of objects (i.e., 2, 3, 7, and 8 cm) and a large set of objects (i.e., 6, 9, 12, and 15 cm). For the first set of objects, it was found that the infants more often performed two-handed reaches for the larger objects based on visual information alone (i.e., before making contact with the object), thus showing adaptive action mode selection relative to object size. Kinematical analyses of the two-handed reaches for the second set of objects revealed that inter-trial variance in aperture between the hands decreased with the approach toward the object, indicating that infants’ reaching is constrained by the object. Subsequent analysis showed that between hand aperture scaled to object size, indicating that visual control of the movement is adjusted to object size in infants as young as 5 months. Individual analyses indicated that the two processes were not dependent and followed distinct developmental trajectories. That is, adaptive selection of an action mode was not a prerequisite for appropriate aperture scaling, and vice versa. These findings are consistent with the idea of two separate and independent visual systems (Milner and Goodale in Neuropsychologia 46:774–785, 2008) during early infancy
Cross-Modal Object Recognition Is Viewpoint-Independent
BACKGROUND: Previous research suggests that visual and haptic object recognition are viewpoint-dependent both within- and cross-modally. However, this conclusion may not be generally valid as it was reached using objects oriented along their extended y-axis, resulting in differential surface processing in vision and touch. In the present study, we removed this differential by presenting objects along the z-axis, thus making all object surfaces more equally available to vision and touch. METHODOLOGY/PRINCIPAL FINDINGS: Participants studied previously unfamiliar objects, in groups of four, using either vision or touch. Subsequently, they performed a four-alternative forced-choice object identification task with the studied objects presented in both unrotated and rotated (180 degrees about the x-, y-, and z-axes) orientations. Rotation impaired within-modal recognition accuracy in both vision and touch, but not cross-modal recognition accuracy. Within-modally, visual recognition accuracy was reduced by rotation about the x- and y-axes more than the z-axis, whilst haptic recognition was equally affected by rotation about all three axes. Cross-modal (but not within-modal) accuracy correlated with spatial (but not object) imagery scores. CONCLUSIONS/SIGNIFICANCE: The viewpoint-independence of cross-modal object identification points to its mediation by a high-level abstract representation. The correlation between spatial imagery scores and cross-modal performance suggest that construction of this high-level representation is linked to the ability to perform spatial transformations. Within-modal viewpoint-dependence appears to have a different basis in vision than in touch, possibly due to surface occlusion being important in vision but not touch
Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control
The displacement of the center-of-pressure (COP) during quiet stance has often been accounted for by the control of COP position dynamics. In this paper, we discuss the conclusions drawn from previous analyses of COP dynamics using fractal-related methods. On the basis of some methodological clarification and the analysis of experimental data using stabilogram diffusion analysis, detrended fluctuation analysis, and an improved version of spectral analysis, we show that COP velocity is typically bounded between upper and lower limits. We argue that the hypothesis of an intermittent velocity-based control of posture is more relevant than position-based control. A simple model for COP velocity dynamics, based on a bounded correlated random walk, reproduces the main statistical signatures evidenced in the experimental series. The implications of these results are discussed
Option selection in whole-body rotation movements in gymnastics
Abstract When a gymnast performs a somersault, the linear and angular momentum along with a particular control of inertia during the flight phase constrain the possibilities for action. Given the complexity and dynamic nature of the human moving system, one could argue that there exist a particular amount of stable coordination states when performing somersaults. The goal of this study was to explore the manifold of movement options and coordination states along with their differentiating parameters for a single somersault in gymnastics based on a simple mathematical model reflecting gymnast’s rotation behavior during the flight phase. Biomechanical parameters determining rotation behavior during a somersault were systematically varied with regard to a particular set of biomechanical constraints defining a successful somersault performance. Batch simulations revealed that from 10229760 simulation cycles only 655346 (approximately 6.41%) led to successful somersault performance. A subsequent analysis of the movement option landscape for the optimum angular momentum revealed ten coordination states for a single somersault that could be clearly distinguished based on the simulation parameters. Taken the results together, it becomes apparent that it may be most advisable to perform a single somersault with a larger moment of inertia when achieving the tucked position, a longer duration to achieve the tucked position, a longer duration of staying tucked, and an intermediate moment of inertia during landing. This strategy comprises the largest amount of movement options associated with an upright landing and thus the highest probability of success when performing a single somersault
Keeping an eye on noisy movements: On different approaches to perceptual-motor skill research and training
Contemporary theorising on the complementary nature of perception and action in expert performance has led to the emergence of different emphases in studying movement coordination and gaze behaviour. On the one hand, coordination research has examined the role that variability plays in movement control, evidencing that variability facilitates individualised adaptations during both learning and performance. On the other hand, and at odds with this principle, the majority of gaze behaviour studies have tended to average data over participants and trials, proposing the importance of universal 'optimal' gaze patterns in a given task, for all performers, irrespective of stage of learning. In this article, new lines of inquiry are considered with the aim of reconciling these two distinct approaches. The role that inter- and intra-individual variability may play in gaze behaviours is considered, before suggesting directions for future research
- …