456 research outputs found

    Doping driven magnetic instabilities and quantum criticality of NbFe2_{2}

    Full text link
    Using density functional theory we investigate the evolution of the magnetic ground state of NbFe2_{2} due to doping by Nb-excess and Fe-excess. We find that non-rigid-band effects, due to the contribution of Fe-\textit{d} states to the density of states at the Fermi level are crucial to the evolution of the magnetic phase diagram. Furthermore, the influence of disorder is important to the development of ferromagnetism upon Nb doping. These findings give a framework in which to understand the evolution of the magnetic ground state in the temperature-doping phase diagram. We investigate the magnetic instabilities in NbFe2_{2}. We find that explicit calculation of the Lindhard function, χ0(q)\chi_{0}(\mathbf{q}), indicates that the primary instability is to finite q\mathbf{q} antiferromagnetism driven by Fermi surface nesting. Total energy calculations indicate that q=0\mathbf{q}=0 antiferromagnetism is the ground state. We discuss the influence of competing q=0\mathbf{q}=0 and finite q\mathbf{q} instabilities on the presence of the non-Fermi liquid behavior in this material.Comment: 8 pages, 7 figure

    New Development in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Get PDF
    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research program at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. Throughout phases of these missions, our practices, hardware and operations have evolved from tested to developed standards, and we are able to modify and customize our procedure and operations for mission specific requirements. The Rodent Research Habitat is capable of providing a living environment for animals on ISS according to standard animal welfare requirements. Using the cameras in the Habitat, the Rodent Research team has the ability to perform daily health checks on animals, and further analyze the collected videos for behavioral studies. A recent development of the Rodent Research hardware is inclusion of enrichment, to provide the animals the ability to rest and huddle. The Enrichment Hut is designed carefully for adult mice (up to 35 week old) within animal welfare, engineering, and operations constraints. The Hut is made out of the same stainless steel mesh as the cage interior, it has an ingress and an egress to allow animals move freely, and a hinge door to allow crewmembers remove the animals easily. The Rodent Research team has also developed Live Animal Return (LAR) capability, which will be implemented during Rodent Research-5 mission for the first time. The animals will be transported from the Habitat to a Transporter, which will return on the Dragon capsule and splashes down in the Pacific Ocean. Once SpaceX retrieves the Dragon, all powered payloads will be transferred to a SeaVan and transferred to the Long Beach pier. The NASA team then receives the transporter and delivers to a PI-designated laboratory within 120 mile radius of Long Beach. This is a significant improvement allowing researchers to examine animals within 72 hrs. of reentry or to conduct recovery experiments. Together, the hardware improvements and experience that the Rodent Research team has gained working with principal investigators and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical objectives

    Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 52 (2005): 123-143, doi:10.1016/j.dsr2.2004.08.016.As a part of the GLOBEC-Northeast Pacific project, we investigated variation in the abundance of marine birds in the context of biological and physical habitat conditions in the northern portion of the California Current System (CCS) during cruises during the upwelling season 2000. Continuous surveys of seabirds were conducted simultaneously in June (onset of upwelling) and August (mature phase of upwelling) with ocean properties quantified using a towed, undulating vehicle and a multi-frequency bioacoustic instrument (38-420 kHz). Twelve species of seabirds contributed 99% of the total community density and biomass. Species composition and densities were similar to those recorded elsewhere in the CCS during earlier studies of the upwelling season. At a scale of 2-4 km, physical and biological oceanographic variables explained an average of 25% of the variation in the distributions and abundance of the 12 species. The most important explanatory variables (among 14 initially included in each multiple regression model) were distance to upwelling-derived frontal features (center and edge of coastal jet, and an abrupt, inshore temperature gradient), sea-surface salinity, acoustic backscatter representing various sizes of prey (smaller seabird species were associated with smaller prey and the reverse for larger seabird species), and chlorophyll concentration. We discuss the importance of these variables in the context of what factors may be that seabirds use to find food. The high seabird density in the Heceta Bank and Cape Blanco areas indicate them to be refuges contrasting the low seabird densities currently found in most other parts of the CCS, following decline during the recent warm regime of the Pacific Decadal Oscillation.Support from National Science Foundation Grant OCE-0001035, National Oceanic and Atmospheric Administration (NOAA)/Woods Hole Oceanographic Institution-CICOR Grant NA17RJ1223 is gratefully acknowledged

    Opportunities for process intensification technologies in nuclear effluent treatment: A review of precipitators, adsorbers and separators

    Get PDF
    This paper reviews the technologies and opportunities for process intensification (PI) in nuclear effluent treatment. PI is an area that has already created many innovations within the chemicals industry, and offers a growing field of research and development potential for nuclear operations. Technologies are considered here to be those ultimately resulting in step-change improvements to a number of operational aspects; such as smaller unit footprints, enhanced heat and mass transfer, reduction in secondary wastes, improved process safety and synergy, or direct integration with other downstream processes. Herein, we conduct a rigorous evaluation and scoping assessment of unit designs for the treatment of nuclear liquid effluents and solid-liquid waste management. Specific focus is given to precipitation, adsorption and separation operations, where over 250 articles are detailed, and prospects for technology transfer are discussed. In general, there is a trade-off in PI designs between operational simplicity (which may be more easily adopted in nuclear treatments) and more mechanically complex strategies that may, however, attain suitable scale-up requirements. Analysed options vary from those that would be radically different for industry, to those where applications are increasingly common in other process areas, with the advantages and limitations of all being discussed

    New Developments in NASA's Rodent Research Hardware for Conducting Long Duration Biomedical and Basic Research in Space

    Get PDF
    Animal models, particularly rodents, are the foundation of pre-clinical research to understand human diseases and evaluate new therapeutics, and play a key role in advancing biomedical discoveries both on Earth and in space. The National Research Councils Decadal survey emphasized the importance of expanding NASA's life sciences research to perform long duration, rodent experiments on the International Space Station (ISS) to study effects of the space environment on the musculoskeletal and neurological systems of mice as model organisms of human health and disease, particularly in areas of muscle atrophy, bone loss, and fracture healing. To accomplish this objective, flight hardware, operations, and science capabilities were developed at NASA Ames Research Center (ARC) to enhance science return for both commercial (CASIS) and government-sponsored rodent research. The Rodent Research Project at NASA ARC has pioneered a new research capability on the International Space Station and has progressed toward translating research to the ISS utilizing commercial rockets, collaborating with academia and science industry, while training crewmembers to assist in performing research on orbit. The Rodent Research Habitat provides a living environment for animals on ISS according to standard animal welfare requirements, and daily health checks can be performed using the habitats camera system. Results from these studies contribute to the science community via both the primary investigation and banked samples that are shared in publicly available data repository such as GeneLab. Following each flight, through the Biospecimen Sharing Program (BSP), numerous tissues and thousands of samples will be harvested, and distributed from the Space Life and Physical Sciences (SLPS) to Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). Every completed mission sets a foundation to build and design greater complexity into future research and answer questions about common human diseases. Together, the hardware improvements (enrichment, telemetry sensors, cameras), new capabilities (live animal return), and experience that the Rodent Research team has gained working with principal investigator teams and ISS crew to conduct complex experiments on orbit are expanding capabilities for long duration rodent research on the ISS to achieve both basic science and biomedical research objectives

    Reduction in Fracture Rate and Back Pain and Increased Quality of Life in Postmenopausal Women Treated with Teriparatide: 18-Month Data from the European Forsteo Observational Study (EFOS)

    Get PDF
    The European Forsteo Observational Study was designed to examine the effectiveness of teriparatide in postmenopausal women with osteoporosis treated for up to 18 months in normal clinical practice in eight European countries. The incidence of clinical vertebral and nonvertebral fragility fractures, back pain, and health-related quality of life (HRQoL, EQ-5D) were assessed. Spontaneous reports of adverse events were collected. All 1,648 enrolled women were teriparatide treatment-naive, 91.0% of them had previously received other anti-osteoporosis drugs, and 72.8% completed the 18-month study. A total of 168 incident clinical fractures were sustained by 138 (8.8%) women (821 fractures/10,000 patient-years). A 47% decrease in the odds of fracture in the last 6-month period compared to the first 6-month period was observed (P < 0.005). Mean back pain VAS was reduced by 25.8 mm at end point (P < 0.001). Mean change from baseline in EQ-VAS was 13 mm by 18 months. The largest improvements were reported in the EQ-5D subdomains of usual activities and pain/discomfort. There were 365 adverse events spontaneously reported, of which 48.0% were considered related to teriparatide; adverse events were the reason for discontinuation for 79 (5.8%) patients. In conclusion, postmenopausal women with severe osteoporosis who were prescribed teriparatide in standard clinical practice had a significant reduction in the incidence of fragility fractures and a reduction in back pain over an 18-month treatment period. This was associated with a clinically significant improvement in HRQoL. Safety was consistent with current prescribing information. These results should be interpreted in the context of the open-label, noncontrolled design of the study

    The association between iliocostal distance and the number of vertebral and non-vertebral fractures in women and men registered in the Canadian Database For Osteoporosis and Osteopenia (CANDOO)

    Get PDF
    BACKGROUND: The identification of new methods of evaluating patients with osteoporotic fracture should focus on their usefulness in clinical situations such that they are easily measured and applicable to all patients. Thus, the purpose of this study was to examine the association between iliocostal distance and vertebral and non-vertebral fractures in patients seen in a clinical setting. METHODS: Patient data were obtained from the Canadian Database of Osteoporosis and Osteopenia (CANDOO). A total of 549 patients including 508 women and 41 men participated in this cross-sectional study. There were 142 women and 18 men with prevalent vertebral fractures, and 185 women and 21 men with prevalent non-vertebral fractures. RESULTS: In women multivariable regression analysis showed that iliocostal distance was negatively associated with the number of vertebral fractures (-0.18, CI: -0.27, -0.09; adjusted for bone mineral density at the Ward's triangle, epilepsy, cerebrovascular disease, inflammatory bowel disease, etidronate use, and calcium supplement use) and for the number of non-vertebral fractures (-0.09, CI: -0.15, -0.03; adjusted for bone mineral density at the trochanter, cerebrovascular disease, inflammatory bowel disease, and etidronate use). However, in men, multivariable regression analysis did not demonstrate a significant association between iliocostal distance and the number of vertebral and non-vertebral fractures. CONCLUSIONS: The examination of iliocostal distance may be a useful clinical tool for assessment of the possibility of vertebral fractures. The identification of high-risk patients is important to effectively use the growing number of available osteoporosis therapies

    Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis

    Get PDF
    Vertebral fractures are a major adverse consequence of osteoporosis. In a large placebo-controlled trial in postmenopausal women with osteoporosis, strontium ranelate reduced vertebral fracture risk by 33% over 4 years, confirming the role of strontium ranelate as an effective long-term treatment in osteoporosis. INTRODUCTION: Osteoporotic vertebral fractures are associated with increased mortality, morbidity, and loss of quality-of-life (QoL). Strontium ranelate (2 g/day) was shown to prevent bone loss, increase bone strength, and reduce vertebral and peripheral fractures. The preplanned aim of this study was to evaluate long-term efficacy and safety of strontium ranelate. METHODS: A total of 1,649 postmenopausal osteoporotic women were randomized to strontium ranelate or placebo for 4 years, followed by a 1-year treatment-switch period for half of the patients. Primary efficacy criterion was incidence of patients with new vertebral fractures over 4 years. Lumbar bone mineral density (BMD) and QoL were also evaluated. RESULTS: Over 4 years, risk of vertebral fracture was reduced by 33% with strontium ranelate (risk reduction = 0.67, p < 0.001). Among patients with two or more prevalent vertebral fractures, risk reduction was 36% (p < 0.001). QoL, assessed by the QUALIOST(R), was significantly better (p = 0.025), and patients without back pain were greater (p = 0.005) with strontium ranelate than placebo over 4 years. Lumbar BMD increased over 5 years in patients who continued with strontium ranelate, while it decreased in patients who switched to placebo. Emergent adverse events were similar between groups. CONCLUSION: In this 4- and 5-year study, strontium ranelate is an effective and safe treatment for long-term treatment of osteoporosis in postmenopausal women

    What are the beliefs, attitudes and practices of front-line staff in long-term care (LTC) facilities related to osteoporosis awareness, management and fracture prevention?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Compared to the general elderly population, those institutionalized in LTC facilities have the highest prevalence of osteoporosis and subsequently have higher incidences of vertebral and hip fractures. The goal of this study is to determine how well nurses at LTC facilities are educated to properly administer bisphosphonates. A secondary question assessed was the nurse's and PSW's attitudes and beliefs regarding the role and benefits of vitamin D for LTC patients.</p> <p>Methods</p> <p>Eight LTC facilities in Hamilton were surveyed, and all nurses were offered a survey. A total 57 registered nurses were surveyed. A 21 item questionnaire was developed to assess existing management practices and specific osteoporosis knowledge areas.</p> <p>Results</p> <p>The questionnaire assessed the nurse's and personal support worker's (PSWs) education on how to properly administer bisphosphonates by having them select all applicable responses from a list of options. These options included administering the drug before, after or with meals, given with or separate from other medications, given with juice, given with or without water, given with the patient sitting up, or finally given with the patient supine. Only 52% of the nurses and 8.7% of PSWs administered the drug properly, where they selected the options: (given before meals, given with water, given separate from all other medications, and given in a sitting up position). If at least one incorrect option was selected, then it was scored as an inappropriate administration. Bisphosphonates were given before meals by 85% of nurses, given with water by 90%, given separately from other medication by 71%, and was administered in an upright position by 79%. Only 52% of the nurses and 8.7% of PSWs surveyed were administering the drug properly. Regarding the secondary question, of the 57 nurses surveyed, 68% strongly felt their patients should be prescribed vitamin D supplements. Of the 124 PSWs who completed the survey, 44.4% strongly felt their patients should be prescribed vitamin D supplementation.</p> <p>Conclusion</p> <p>Bisphosphonates are quite effective in increasing the bone mineral density of LTC patients, and may reduce fracture rates, but it is only effective if properly administered. In our study, proper administration of bisphosphonate therapy was less than optimal. In summary, although the education of health providers has improved since the mid-1990's, this area still requires further attention and the subject of future quality assurance research.</p
    corecore