37 research outputs found

    The composition of INFL

    Full text link

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Molecular evidence for arterial repair in atherosclerosis

    No full text
    Atherosclerosis is a chronic inflammatory process and progresses through characteristic morphologic stages. We have shown previously that chronically injecting bone-marrow-derived vascular progenitor cells can effect arterial repair. This repair capacity depends on the age of the injected marrow cells, suggesting a progressive decline in progenitor cell function. We hypothesized that the progression of atherosclerosis coincides with the deteriorating repair capacity of the bone marrow. Here, we ascribe patterns of gene expression that accurately and reproducibly identify specific disease states in murine atherosclerosis. We then use these expression patterns to determine the point in the disease process at which the repair of arteries by competent bone marrow cells ceases to be efficient. We show that the loss of the molecular signature for competent repair is concurrent with the initiation of atherosclerotic lesions. This work provides a previously unreported comprehensive molecular data set using broad-based analysis that links the loss of successful repair with the progression of a chronic illness
    corecore