359 research outputs found

    Fatigue Response of Solvent-Based Self-Healing Smart Materials

    Get PDF
    We investigated the healing of epoxy resins with embedded ethyl phenylacetate (EPA) solvent loaded capsules and shape memory alloy (SMA) wires under fatigue loading in tapered double cantilever beam (TDCB) mode. Under cyclic loading, the kinetics of solvent diffusion are in competition with the rate of damage propagation. We showed that the active mechanism of self-healing under continuous loading is different from that in quasi-static testing. Crack arrest was observed after some initial crack growth, resulting from the diffusion of EPA solvent into the crack tip, involving local plasticization of the epoxy. Finite element analysis confirmed that the lower modulus and higher elongation at break of the solvated epoxy reduced the stresses at the crack tip. This effect combined with the well-studied microcapsule toughening effect, tremendously increased the toughness of plain epoxy. For epoxy with embedded SMA wires, completely fractured samples, healed using SMA activation, showed similar fatigue resistance as virgin samples. Furthermore, SMA activation during a 10 min break also stabilized crack progression, compared to at least 2 h needed to reach the same effect without SMA wires

    In cis TP53 and RAD51C pathogenic variants may predispose to sebaceous gland carcinomas

    Get PDF
    Pathogenic variants in TP53 have been classically thought to cause Li-Fraumeni syndrome (LFS), a cancer predisposition with high risks for various childhood- and adult-onset malignancies. However, increased genetic testing has lately revealed, that pathogenic variant carriers exhibit a broader range of phenotypes and that penetrance may be dependent both on variant type and modifiers. Using next generation sequencing and short tandem repeat analysis, we identified germline pathogenic variants in TP53 and RAD51C located in cis on chromosome 17 in a 43-year-old male, who has developed a rare sebaceous gland carcinoma (SGC) but so far no tumors of the LFS spectrum. This course mirrors a Trp53-Rad51c-double-mutant cis mouse-model, which similarly develops SGC, while the characteristic Trp53-associated tumor spectrum occurs with significantly lower frequency. Therefore, we propose that co-occurent pathogenic variants in RAD51C and TP53 may predispose to SGC, reminiscent of Muir-Torre syndrome. Further, this report supports the diversity of clinical presentations associated with germline TP53 alterations, and thus, the proposed expansion of LFS to heritable TP53-related cancer syndrome

    Short term outcome after left atrial appendage occlusion with the AMPLATZER Amulet and WATCHMAN device: results from the ORIGINAL registry (saxOnian RegIstry analyzinG and followINg left atrial Appendage cLosure)

    Get PDF
    Background: Various randomized multicenter studies have shown that percutaneous left atrial appendage closure (LAAC) is not inferior in stroke prevention compared to vitamin K antagonists (VKA) and can be performed safely and effectively. Aims: The prospective multicenter ORIGINAL registry in the Free State of Saxony (saxOnian RegIstry analyzinG and followINg left atrial Appendage cLosure) investigated the efficiency and safety of LAAC with Watchman or Amulet device in a real word setting. A special focus was put on the influence of LAAC frequency on periprocedural efficiency and safety. Methods and results: The total of 482 consecutive patients (Abbott Amulet N = 93 and Boston Scientific Watchman N = 389) were included in the periinterventional analyses. After 6 weeks, 353 patients completed the first follow-up including transoesophageal echocardiography (TEE) (73.2%). Successful LAAC could be performed in more than 94%. The complication rate does not significantly differ between device types (p = 0.92) according to Fischer test and comprised 2.2% in the Amulet and 2.3% in the Watchman group. The kind of device and the frequency of LAAC per study center had no influence on the success and complication rates. Device related thrombus could be revealed more frequently in the Watchman group (4.5%) than in the Amulet group (1.4%) but this difference is still not significant in Fisher test (p = 0.14). Same conclusion can be made about residual leakage 1.1% versus 0% [not significant in Fisher test (p = 0.26)]. Dual antiplatelet therapy followed the intervention in 64% and 22% of patients were discharged under a combination of an anticoagulant (VKA/DOAC/Heparin) and one antiplatelet agent. Conclusions: The ORIGINAL registry supports the thesis from large, randomized trials that LAAC can be performed with a very high procedural success rate in the everyday clinical routine irrespective of the used LAA device (Watchman or Amulet). The postprocedural antithrombotic strategy differs widely among the participating centers

    High-throughput imaging of ATG9A distribution as a diagnostic functional assay for adaptor protein complex 4-associated hereditary spastic paraplegia

    Get PDF
    Adaptor protein complex 4-associated hereditary spastic paraplegia is caused by biallelic loss-of-function variants in AP4B1, AP4M1, AP4E1 or AP4S1, which constitute the four subunits of this obligate complex. While the diagnosis of adaptor protein complex 4-associated hereditary spastic paraplegia relies on molecular testing, the interpretation of novel missense variants remains challenging. Here, we address this diagnostic gap by using patient-derived fibroblasts to establish a functional assay that measures the subcellular localization of ATG9A, a transmembrane protein that is sorted by adaptor protein complex 4. Using automated high-throughput microscopy, we determine the ratio of the ATG9A fluorescence in the trans-Golgi-network versus cytoplasm and ascertain that this metric meets standards for screening assays (Z'-factor robust >0.3, strictly standardized mean difference >3). The `ATG9A ratio' is increased in fibroblasts of 18 well-characterized adaptor protein complex 4-associated hereditary spastic paraplegia patients [mean: 1.54 +/- 0.13 versus 1.21 +/- 0.05 (standard deviation) in controls] and receiver-operating characteristic analysis demonstrates robust diagnostic power (area under the curve: 0.85, 95% confidence interval: 0.849-0.852). Using fibroblasts from two individuals with atypical clinical features and novel biallelic missense variants of unknown significance in AP4B1, we show that our assay can reliably detect adaptor protein complex 4 function. Our findings establish the 'ATG9A ratio' as a diagnostic marker of adaptor protein complex 4-associated hereditary spastic paraplegia

    Intrinsic activity in the fly brain gates visual information during behavioral choices

    Get PDF
    The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa
    • 

    corecore