4,615 research outputs found

    Stability of general relativistic Miyamoto-Nagai galaxies

    Get PDF
    The stability of a recently proposed general relativistic model of galaxies is studied in some detail. This model is a general relativistic version of the well known Miyamoto-Nagai model that represents well a thick galactic disk. The stability of the disk is investigated under a general first order perturbation keeping the spacetime metric frozen (no gravitational radiation is taken into account). We find that the stability is associated with the thickness of the disk. We have that flat galaxies have more not-stable modes than the thick ones i.e., flat galaxies have a tendency to form more complex structures like rings, bars and spiral arms.Comment: 11 pages, 5 figures, accepted for publication in MNRA

    Non-existence of stationary two-black-hole configurations: The degenerate case

    Full text link
    In a preceding paper we examined the question whether the spin-spin repulsion and the gravitational attraction of two aligned sub-extremal black holes can balance each other. Based on the solution of a boundary value problem for two separate (Killing-) horizons and a novel black hole criterion we were able to prove the non-existence of the equilibrium configuration in question. In this paper we extend the non-existence proof to extremal black holes.Comment: 18 pages, 2 figure

    Relativistic Models of Galaxies

    Get PDF
    A special form of the isotropic metric in cylindrical coordinates is used to construct what may be interpreted as the General Relativistic versions of some wellknown potential-density pairs used in Newtonian gravity to model three-dimensional distributions of matter in galaxies. The components of the energy-momentum tensor are calculated for the first two Miyamoto-Nagai potentials and a particular potential due to Satoh. The three potentials yield distributions of matter in which all tensions are pressures and all energy conditions are satisfied for certain ranges of the free parameters. A few non-planar geodesic orbits are computed for one of the potentials and compared with the Newtonian case. Rotation is also incorporated to the models and the effects of the source rotation on the rotation profile are calculated as first order corrections by using an approximate form of the Kerr metric in isotropic coordinates.Comment: 18 pages, 23 eps figures, uses mn2e.cls style file, to be published in MNRA

    Analytical approximation of the exterior gravitational field of rotating neutron stars

    Full text link
    It is known that B\"acklund transformations can be used to generate stationary axisymmetric solutions of Einstein's vacuum field equations with any number of constants. We will use this class of exact solutions to describe the exterior vacuum region of numerically calculated neutron stars. Therefore we study how an Ernst potential given on the rotation axis and containing an arbitrary number of constants can be used to determine the metric everywhere. Then we review two methods to determine those constants from a numerically calculated solution. Finally, we compare the metric and physical properties of our analytic solution with the numerical data and find excellent agreement even for a small number of parameters.Comment: 9 pages, 10 figures, 3 table

    Macroscopic Elastic Properties of Textured ZrN--AlN Polycrystalline Aggregates: From Ab initio Calculations to Grain-Scale Interactions

    Full text link
    Despite the fast development of computational materials modelling, theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this communication we use a supercell-based approach to obtain the elastic properties of random solid solution cubic ZrAlN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasi-random structures are optimised not only with respect to short range order parameters, but also to make the three cubic directions [100][1\,0\,0], [010][0\,1\,0], and [001][0\,0\,1] as similar as possible. In this way, only a small spread of elastic constants tensor components is achieved and an optimum trade-off between modelling of chemical disorder and computational limits regarding the supercell size is achieved. The single crystal elastic constants are shown to vary smoothly with composition, yielding x0.4x\approx0.4-0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent on the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit, as well as with fibre textures with various orientations and sharpness. It turns out, that for low AlN mole fractions, the spread of the possible Young's moduli data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic ZrAlN contains also the evaluation of the texture typical for thin films.Comment: 10 pages, 6 figures, 3 table

    On the black hole limit of rotating discs and rings

    Full text link
    Solutions to Einstein's field equations describing rotating fluid bodies in equilibrium permit parametric (i.e. quasi-stationary) transitions to the extreme Kerr solution (outside the horizon). This has been shown analytically for discs of dust and numerically for ring solutions with various equations of state. From the exterior point of view, this transition can be interpreted as a (quasi) black hole limit. All gravitational multipole moments assume precisely the values of an extremal Kerr black hole in the limit. In the present paper, the way in which the black hole limit is approached is investigated in more detail by means of a parametric Taylor series expansion of the exact solution describing a rigidly rotating disc of dust. Combined with numerical calculations for ring solutions our results indicate an interesting universal behaviour of the multipole moments near the black hole limit.Comment: 18 pages, 4 figures; Dedicated to Gernot Neugebauer on the occasion of his 70th birthda

    Al(111)-(√3 x √3)R30: On-top versus substitutional adsorption for Rb and K

    Get PDF

    Infrared astronomical satellite (IRAS) catalogs and atlases. Volume 1: Explanatory supplement

    Get PDF
    The Infrared Astronomical Satellite (IRAS) was launched on January 26, 1983. During its 300-day mission, IRAS surveyed over 96 pct of the celestial sphere at four infrared wavelengths, centered approximately at 12, 25, 60, and 100 microns. Volume 1 describes the instrument, the mission, and data reduction

    Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory

    Full text link
    We have studied the electronic structure of InN and GaN employing G0W0 calculations based on exact-exchange density-functional theory. For InN our approach predicts a gap of 0.7 eV. Taking the Burnstein-Moss effect into account, the increase of the apparent quasiparticle gap with increasing electron concentration is in good agreement with the observed blue shift of the experimental optical absorption edge. Moreover, the concentration dependence of the effective mass, which results from the non-parabolicity of the conduction band, agrees well with recent experimental findings. Based on the quasiparticle band structure the parameter set for a 4x4 kp Hamiltonian has been derived.Comment: 3 pages including 3 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Ab initio vibrational free energies including anharmonicity for multicomponent alloys

    Full text link
    A density-functional-theory based approach to efficiently compute numerically exact vibrational free energies - including anharmonicity - for chemically complex multicomponent alloys is developed. It is based on a combination of thermodynamic integration and a machine-learning potential. We demonstrate the performance of the approach by computing the anharmonic free energy of the prototypical five-component VNbMoTaW refractory high entropy alloy
    corecore