352 research outputs found

    Prognostic Model Development with Missing Labels - A Condition-Based Maintenance Approach Using Machine Learning

    Get PDF
    Condition-based maintenance (CBM) has emerged as a proactive strategy for determining the best time for maintenance activities. In this paper, a case of a milling process with imperfect maintenance at a German automotive manufacturer is considered. Its major challenge is that only data with missing labels are available, which does not provide a sufficient basis for classical prognostic maintenance models. To overcome this shortcoming, a data science study is carried out that combines several analytical methods, especially from the field of machine learning (ML). These include time-domain and time–frequency domain techniques for feature extraction, agglomerative hierarchical clustering and time series clustering for unsupervised pattern detection, as well as a recurrent neural network for prognostic model training. With the approach developed, it is possible to replace decisions that were made based on subjective criteria with data-driven decisions to increase the tool life of the milling machines. The solution can be employed beyond the presented case to similar maintenance scenarios as the basis for decision support and prognostic model development. Moreover, it helps to further close the gap between ML research and the practical implementation of CBM

    Experimental grain growth of quartz aggregates under wet conditions and its application to deformation in nature

    Get PDF
    Source at https://doi.org/10.5194/se-10-621-2019. Grain growth of quartz was investigated using two quartz samples (powder and novaculite) with water under pressure and temperature conditions of 1.0–2.5 GPa and 800–1100 ∘C. The compacted powder preserved a substantial porosity, which caused a slower grain growth than in the novaculite. We assumed a grain growth law of dn−dn0=k0frH2Oexp(−Q/RT)t with grain size d (”m) at time t (seconds), initial grain size d0 (”m), growth exponent n, a constant k0 (”mn MPa−r s−1), water fugacity fH2O (MPa) with the exponent r, activation energy Q (kJ mol−1), gas constant R, and temperature T in Kelvin. The parameters we obtained were n=2.5±0.4, k0=10−8.8±1.4, r=2.3±0.3, and Q=48±34 for the powder and n=2.9±0.4, k0=10−5.8±2.0, r=1.9±0.3, and Q=60±49 for the novaculite. The grain growth parameters obtained for the powder may be of limited use because of the high porosity of the powder with respect to crystalline rocks (novaculite), even if the differences between powder and novaculite vanish when grain sizes reach ∌70 ”m. Extrapolation of the grain growth laws to natural conditions indicates that the contribution of grain growth to plastic deformation in the middle crust may be small. However, grain growth might become important for deformation in the lower crust when the strain rate is −12 s−1

    Evolution in H2O contents during deformation of polycrystalline quartz: An experimental study

    Get PDF
    Accepted manuscript version, licensed CC BY-NC-ND 4.0. Published version available at https://doi.org/10.1016/j.jsg.2018.05.021.Shear experiments were performed in a Griggs-type apparatus at 800 °C and 1.5 GPa, at a strain rate of 2.1 × 10−5s−1 using different starting materials: (i) Powder (grain size 6–10â€ŻÎŒm) of dry Brazil quartz with 0.15 wt% added H2O, (ii) “dry” Brazil quartz porphyroclasts (grain size ∌100–200â€ŻÎŒm), devoid of fluid inclusions embedded in the same fine grained powder, and (iii) “wet” porphyroclasts (grain size ∌100–200â€ŻÎŒm), containing initially a high density of ÎŒm-scale fluid inclusions embedded in the same powder. After hot pressing, samples were deformed to large shear strains (ÎłâˆŒ3 to 4.5), in order for the microstructures and H2O distribution to approach some state of “equilibrium”. The H2O content and speciation in quartz were analyzed by Fourier Transform Infra-Red (FTIR) spectroscopy before and after the experiments. Mechanical peak strength is generally lower in experiments with 100% hydrated matrix, intermediate in experiments incorporating wet porphyroclasts (with a proportion of 30 or 70%) and highest in those with dry porphyroclasts. All experiments with porphyroclasts show pronounced strain weakening, and the strengths of most samples converge to similar values at large strain. Wet porphyroclasts are pervasively recrystallized during deformation, while dry porphyroclasts recrystallize only at their rims and remain weakly deformed. Recrystallization of the initially fluid-inclusion-rich porphyroclasts results in a decrease in inclusion abundance and total H2O content, while H2O content of initially dry clasts increases during deformation. H2O contents of all high strain samples converge to similar values for matrix and recrystallized grains. In samples with wet porphyroclasts, shear bands with high porosity and fluid contents develop and they host the precipitation of euhedral quartz crystals surrounded by a free-fluid phase. These high porosity sites are sinks for collecting H2O in excess of the storage capacity of the grain boundary network of the recrystallized aggregate. The H2O storage capacity of the grain boundary network is determined as a H2O-boundary-film of ∌0.7 nm thickness
    • 

    corecore