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Abstract Condition-based maintenance (CBM) has

emerged as a proactive strategy for determining the best

time for maintenance activities. In this paper, a case of a

milling process with imperfect maintenance at a German

automotive manufacturer is considered. Its major challenge

is that only data with missing labels are available, which

does not provide a sufficient basis for classical prognostic

maintenance models. To overcome this shortcoming, a data

science study is carried out that combines several analytical

methods, especially from the field of machine learning

(ML). These include time-domain and time–frequency

domain techniques for feature extraction, agglomerative

hierarchical clustering and time series clustering for

unsupervised pattern detection, as well as a recurrent neural

network for prognostic model training. With the approach

developed, it is possible to replace decisions that were

made based on subjective criteria with data-driven deci-

sions to increase the tool life of the milling machines. The

solution can be employed beyond the presented case to

similar maintenance scenarios as the basis for decision

support and prognostic model development. Moreover, it

helps to further close the gap between ML research and the

practical implementation of CBM.

Keywords Condition-based maintenance � Predictive
maintenance � Prognostics � Big data analytics � Data
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1 Introduction

The maintenance function plays a central role in today’s

industrial value creation as it helps manufacturing com-

panies to remain productive and competitive. It aims at

ensuring a plant’s functionality and environmental safety

while keeping costs and resources at a low level to operate

profitably (Peng et al. 2010; Muchiri et al. 2011). To

adequately meet such superior objectives, a decision must

be made regarding when necessary maintenance actions

should be carried out. For this purpose, condition-based

maintenance (CBM) has emerged in recent years as a

proactive decision-making strategy, observing a system’s

health condition to determine the time and type of inter-

vention (Jardine et al. 2006). As such, it is possible to

reduce the uncertainty of maintenance actions and avoid

unnecessary work by taking actions only when there is

evidence of abnormal behavior (Peng et al. 2010).

The implementation of CBM is greatly promoted by the

ubiquitous use of advanced information and communica-

tion technologies (ICT) that simplify the collection of large

and multifaceted data, often referred to as ‘big data’

(Zschech 2018; Bumblauskas et al. 2017; Meeker and
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Hong 2014). According to Manyika et al. (2011), for

example, nearly two exabytes of newly generated data were

estimated in the manufacturing sector alone in 2010,

ranging from production status and equipment utilization

data to records of tool and machinery condition monitoring

(CM). CM data are of particular interest for maintenance

purposes because they provide a basis for system health

assessment using modern sensor technology with the

capability of measuring a multitude of parameters at high

frequencies. Thus, it is possible to continuously monitor

health indicators in real time to trigger rapid actions in the

case of undesirable changes and also to collect large his-

torical data to identify patterns for anticipatory prognostic

models that predict events before they occur (Meeker and

Hong 2014; Bousdekis et al. 2015; Jardine et al. 2006).

However, it cannot always be assumed that the big data

assets generated and stored within ICT-driven manufac-

turing settings provide all necessary input required for

adequate decision support. There are several reasons why

critical information might be lacking in real industrial

application scenarios. In the case of critical machines, for

example, the aim is to avoid failures and faults through

strictly short maintenance intervals. As a result, no

thresholds and tolerance limits are known or can be

observed that provide labels to mark necessary points of

intervention. In addition, sensors, which are able to

describe physical health conditions directly (e.g., crack

size, state of wear, etc.), are rarely used. Moreover, due to

the pressure to use plants efficiently, it is often not possible

to carry out test runs that go beyond the limits of safe

conditions. Consequently, possible data observations might

be truncated before the actual end of life, and thus, inter-

esting events to describe fault patterns are not recorded

(Susto et al. 2015; Leturiondo et al. 2017). Overall, such

circumstances can be characterized by the absence of a

prospective target variable on which to build the prognosis.

This problem, henceforth called missing labels, can be seen

as a major hurdle in the development of adequate prog-

nostic models (Gouriveau et al. 2013).

To address this problem and show how it is possible to

provide maintenance decision support in this unfortunate

situation, a solution approach is developed by conducting a

data science study based on a real-world case of a German

car manufacturer with an imperfect maintenance situation.

Multiple analytical methods are applied, especially from

the field of machine learning (ML). The challenge here was

to support the decision-making process of a wear-induced

replacement of a milling machine by predicting the

remaining useful life (RUL) when no labels are present in

the dataset due to individual risk preferences and poor

available information.

The major contributions of this paper can be summa-

rized as follows:

• A classification of prognostic CBM approaches and, in

particular, different label situations is provided and

serves as a systematization to structure the field and

position future research.

• To the best of our knowledge, this is one of the first

attempts to address the problem of missing labels in the

context of building prognostic decision models. There-

fore, the paper provides a novel solution for a known

and relevant problem within the interdisciplinary

domain of CBM-based prognostics and ML.

• For the studied real-world problem, a suitable combi-

nation of methods for feature extraction as well as

model building via unsupervised and supervised learn-

ing is identified by a comparison of several analytical

approaches.

• Finally, the data science study demonstrates how

implicit empirical knowledge of machine operators,

which is only latently available in recorded data assets,

can be made tangible for better decision support.

The rest of this paper is organized as follows. In Sect. 2,

the conceptual background of prognostic CBM approaches

is structured, narrowing the scope for which a new solution

is provided. For this purpose, a systematization of different

label situations is contributed, and existing RUL prediction

approaches from related work are identified. Section 3

provides the context of the maintenance case and describes

the proposed conceptual solution to overcome the chal-

lenges depicted. In Sect. 4, the structure of the applied data

science study is outlined, and the implementation consist-

ing of multiple steps is demonstrated. Finally, the results

are discussed, a conclusion is drawn, and an outlook for

further research is presented in Sect. 5.

2 Conceptual Background

2.1 Prognostic Approaches in Condition-Based

Maintenance

CBM approaches generally consist of two central compo-

nents: (i) diagnostics dealing with fault detection, isolation

and identification when any abnormity occurs and (ii)

prognostics dealing with RUL prediction of operating

machines using suitable indicators before malfunctions

occur. As such, prognostics (also known as ‘predictive

maintenance’) can be considered more efficient for

achieving zero downtime performance, while diagnostics

are still required when fault prediction fails and a fault

occurs (Jardine et al. 2006). Prognostic solutions in CBM

can be classified in different ways, depending on the type

of data and knowledge available and the methods applied

(Zschech 2018). For this reason, there are several review
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papers summarizing existing work in the field from slightly

different perspectives (e.g., Jardine et al. 2006; Dragomir

et al. 2009; Peng et al. 2010; Si et al. 2011; Veldman et al.

2011; Ahmad and Kamaruddin 2012; Bousdekis et al.

2015; Elattar et al. 2016; Vogl et al. 2016). Basically, it can

distinguish between (i) physical models, (ii) knowledge-

based models and (iii) data-driven models, comprising

statistics and ML, while the focus of this article is primarily

on ML.

Physical models are usually built on a thorough under-

standing of physical mechanisms (e.g., specific degradation

laws), whereas knowledge-based approaches, such as

expert systems or fuzzy logic, try to simulate human

thinking (Dragomir et al. 2009; Peng et al. 2010; Elattar

et al. 2016). Data-driven approaches, in contrast, use col-

lected data observations to identify and model relationships

that can be used for RUL predictions on new data obser-

vations. For this purpose, statistical approaches model the

conditional distribution of time lapses to failure given the

history of CM data using several approaches such as hid-

den Markov models (HMM) or estimation of stochastic

process parameters. While these approaches provide useful

estimations of RUL and risk quantification of the solutions,

they rely heavily on underlying assumptions of distribu-

tions or underlying processes from the Wiener or Gamma

family. In most cases, these assumptions cannot be verified

as fulfilled due to the bias introduced by truncated pro-

cesses (e.g., sometimes a tool is changed before RUL is

reached) in practice (Wang and Christer 2000; Si et al.

2011).

To overcome this issue, methods from the field of ML

can be applied (Breimann 2001). If abundant data are

available, ML methods have the advantage of learning

hidden relations about system behavior that are difficult to

directly measure with sensors due to internal processes

such as wear and tear, where the inferential process does

not require any, or only weak, assumptions due to the

validation mechanism of sample splitting embedded in

statistical learning theory (Vapnik 1999; Hansen 2000;

Rinaldo et al. 2016). In this case, comprehensive system

knowledge is not required because ML algorithms such as

artificial neural networks (ANN), support vector machines

and decision trees are able to determine complex, non-

linear relationships between high-dimensional CM data

and the RUL of a system (Peng et al. 2010; Elattar et al.

2016; Vogl et al. 2016). However, a key requirement is the

availability of representative training data that reflect all

symptomatic behavior of the system, from normal and

faulty operations to degradation patterns under certain

operating conditions (Dragomir et al. 2009; Tian et al.

2010; Elattar et al. 2016). Therefore, a further distinction

must be made between different levels of data availability

determining the solution approach to be applied.

2.2 Systematization of Different Label Situations

and Related Work

In general, two prerequisites must be given for the training

of prognostic ML models: (i) feature variables to describe

the input data and (ii) output data to label the target vari-

able to be predicted (Gouriveau et al. 2013). Focusing on

CBM-based models, the input is given by CM data, which,

in a broad sense, comprise any data having a connection

with the RUL prediction, such as monitored conditions,

degradation signals, operational data or performance

records. Possible sources include, for example, pressure,

temperature, vibration, moisture, humidity, loading, speed

or oil analysis data (Si et al. 2011). Considering the target

variable, different label situations can occur that can be

classified into (i) complete labels, (ii) partially missing

labels and (iii) missing labels (cf. Fig. 1).

A situation of complete labels occurs when all data

observations for each cycle reflect the actual end of useful

life. Clearly, the definition of ‘useful life’ depends on the

individual expectations of a machine owner (Si et al.

2011); thus, different labeling strategies are feasible. In the

case of run-to-failure (R2F) policies, for example, it seems

reasonable to consider failure events to label the end of

useful life (Susto et al. 2015). Another option is the

application of predefined tolerance limits or deterioration

thresholds of the CM variables, which can be specified, for

example, by equipment vendors, domain experts or simu-

lation and test runs. Beyond such equipment-based labels,

it is also possible to consider alternative labels from closely

related manufacturing functions, such as quality control or

yield management, to measure the quality of produced

items or other individually defined performance indicators

(e.g., material utilization, productivity) to determine the

definition of ‘useful life’ (e.g., Muchiri et al. 2011; Si et al.

2011; Cheng et al. 2018; Choudhary et al. 2009). Overall,

complete labels can be considered an ideal basis for

prognostic model development since ML algorithms can be

readily implemented in a supervised learning fashion. For

this reason, most existing work focuses on this area, as

demonstrated by recent contributions based on real-world

scenarios (e.g., Susto et al. 2015; Cline et al. 2017; Ullah

et al. 2017). In most cases, however, supervised approaches

are developed on the basis of synthetic data, such as the

C-MAPSS datasets as a frequently used example (Saxena

and Goebel 2008). These datasets were explicitly created

for data-driven model development based on an R2F sce-

nario, where Ramasso and Saxena (2014) identified more

than seventy contributions proposing different solutions.

The results also showed a high ratio of ML methods, with

different types of ANN being most commonly used, such

as multilayer perceptron (MLP) or recurrent neural net-

works (RNNs). This was also confirmed by other
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prognostic survey papers with broader review scopes (e.g.,

Peng et al. 2010; Jardine et al. 2006), where ANNs were

dominantly used for supervised learning.

The situation of partially missing labels, on the other

hand, is given when only a part of all observed cycles is

marked with relevant target information. This may be the

case, for example, if the product quality is used for label-

ing, but no quality measurements are available for all

manufactured products. In such situations, semi-supervised

learning methods can be applied, which use unlabelled data

together with labeled data for labeling purposes. Possible

solutions were proposed by Yuan and Liu (2013) and Zhao

et al. (2011). Another reason could be that in some cases,

maintenance actions are carried out well before the

occurrence of critical events such as failures; thus, the

observations do not only consist of full cycles, but also

include suspensions truncating the data records. In this

context, Tian et al. (2010) proposed a solution approach to

demonstrate how both failure histories and suspension

histories can be used in combination for model training.

However, the worst possible starting point for prog-

nostic model development occurs when no labeling infor-

mation is available at all. To achieve zero downtime,

critical assets are usually not allowed to fail, which results

in missing event data. Therefore, defining CM thresholds is

often a challenging task (Tian et al. 2010; Susto et al.

2015). Depending on the type of CM setting used, not all

types of CM data, such as vibration or pressure, are capable

of directly describing the underlying state of a system,

which in turn could create the necessity for obtaining

additional event data (Si et al. 2011). In addition, manual

labeling of CM data can be considered expensive due to the

efforts required to integrate field knowledge of experienced

human annotators (Zhao et al. 2011; Yuan and Liu 2013).

If, on the other hand, non-equipment-based measures such

as product quality are used for labeling, it is not always

guaranteed that this information can be directly assigned to

the corresponding machine operations. Furthermore, qual-

ity inspections often require considerable effort or are

difficult to integrate into existing manufacturing processes,

especially in complex, hierarchical settings. Overall, these

circumstances lead to a situation of missing labels without

appropriate prediction targets. This can only be addressed

with the help of unsupervised learning methods that seek to

identify hidden structures and patterns without any target

specifications (Susto et al. 2015). However, existing

approaches that apply such methods for labeling purposes

in the context of CBM-based prognostics are rather scarce.

Some solutions apply self-organizing feature maps

(SOFM), a specific type of unsupervised ANN to learn

structures from highly deviating, non-linear data for the

purpose of detecting malfunctions and degradation indi-

cators (e.g., Jämsä-Jounela et al. 2003; Huang et al. 2007).

Another approach was proposed by Baruah et al. (2006),

which combined principal component analysis (PCA) for

dimensionality reduction with an unsupervised clustering

technique to identify and prospectively predict different

operating modes of equipment behavior. However, these

approaches are not sufficient in situations where, due to a

lack of missing labeling information, it cannot be assessed

whether maintenance actions were performed too late or

too early, hindering the development of a prognostic model

for decision support. In addition, the missing label infor-

mation in the problem class described in this paper is

caused by the absence of missing links to direct or indirect

equipment wear indicators, as all maintenance actions to

Remaining Useful Life (RUL) 
Predic�on

Complete Labels Missing Labels

Equipment-
based

Non-equipment-
based

Par�ally Missing Labels

Supervised Semi-Supervised Unsupervised

Example:
Deteriora�on

Threshold

Example: 
Product
Quality

Example:
Failure Event

Fig. 1 Differentiation of label

situations and reference to ML

approaches for RUL prediction
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prevent wear and tear are based on the individual experi-

ences of the human machine operators. This is where the

current study contributes a new solution approach.

3 Description of the Case and Solution Development

3.1 Current Maintenance Situations and Challenges

The current case describes the production scenario of a

German car manufacturer facing an inefficient maintenance

strategy for a frequently used machine tool. Specifically,

the scenario concerns the production of a ball hub that is to

be installed in a drive shaft in subsequent assembly steps to

enable the power transmission from the gearbox to the

wheels within the vehicle. Due to the central location, the

importance for customer safety, tight specifications and a

highly complex manufacturing procedure, the company

made the strategic decision to keep the production of the

ball hub in-house instead of procuring it externally. For this

reason, it is of the utmost importance for the competi-

tiveness of the company that the production runs as effi-

ciently as possible.

The process for manufacturing the ball hub comprises

several sub-steps, such as forging, case hardening and

milling. The sub-step of milling is of particular importance

because it is carried out by a machine tool with replaceable

milling tools and is, therefore, subject to permanent

maintenance actions that are performed by human opera-

tors. The milling machine is responsible for providing the

ball hub with six ball raceways. This procedure involves

various components, such as the main spindle, a milling

spindle, a tilting table and several machine axes, which are

all equipped with sensors to collect comprehensive data

about the executed machine operations. Due to material

processing, the tools of the milling machine are subject to

natural wear and tear over their entire lifetime, which

results in increasing wear marks on the cutting edge of the

milling tools. This effect also has a considerable impact on

the quality of the manufactured product, since at a certain

level, the tools show such a high extent of wear that they

are considered to be damaged and thus adversely affect the

milling result. Therefore, maintenance actions in the sense

of various smaller corrections have to be carried out to

reduce wear and tear until the milling tool finally needs to

be replaced. This type of maintenance is also known as

imperfect maintenance, where the health of a system is not

always restored to its ‘‘as good as new’’ conditions (Cheng

et al. 2018).

In the past, such maintenance actions were initiated on

the basis of subjective decisions of the machine operators

by taking a milled product from the production process and

measuring it in a checking fixture. The measured deviations

from the nominal properties of the product are then used to

determine the extent of wear. At the same time, the

checking fixture specifies necessary parameter corrections

required to reduce the wear effect. However, the crucial

decision as to whether a worn milling tool must be replaced

by a new tool due to increased damage symptoms, or

whether imperfect corrections are sufficient, must be made

by the machine operator at his or her discretion based on

visual tool inspections. In general, the principle applies that

the longer a milling tool is in use, the higher the extent of

wear, and thus, the risk of rejects for a manufactured ball

hub increases. At the same time, however, the longer tools

remain in use, the lower the tooling costs are due to fewer

replacements for the same number of produced parts. This

results in a trade-off between tooling costs and impaired

product quality. Simultaneously, the damage of tools is not

only subject to natural wear processes, since it is assumed

that other accompanying factors, such as externally caused

vibrations, faulty tool installations or even dirt particles,

additionally influence the course of wear and tear and thus

accelerate the occurrence of damage.

In a situation of complete information, this decision

problem could be solved, for example, by considering all

necessary constraints (i.e., tooling costs, tool condition,

level of product quality) and determining the best time for

tool replacements (e.g., Cheng et al. 2018). In the current

setting, however, such information is not available. Despite

extensive data records on machine behavior, no thresholds

of adequate condition indicators are known or have been

specified. Similarly, the influential factors that are assumed

to affect the occurrence of accelerated tool damage are

either not explicitly confirmed or they cannot be captured

adequately in order to use them for an improved mainte-

nance policy. Moreover, appropriate indicators are missing

to assess the quality of milled products. This is due to the

fact that the quality of a processed ball hub can only be

determined at a very late stage in the entire manufacturing

process, which is why it is not directly traceable to a par-

ticular milling tool. Thus, the machine operators’ replace-

ment decisions are exclusively based on their perception

during the visual tool inspections, their empirical knowl-

edge and their individual risk preferences. Consequently,

less experienced machine operators with a more risk-averse

attitude tend to replace tools well before the actual end of

useful life, while risk-affine machine operators tend to

carry out late replacements risking impaired product

quality. Overall, this leads to inefficient use of resources,

which is why a solution approach for better decision sup-

port is required.
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3.2 Conceptualization of the Solution Approach

To overcome the problem of subjective decisions, a solu-

tion is proposed that aims to provide machine operators

with a model that reflects the course of wear and tear and is

therefore suitable for predicting the tools’ RUL. This

makes it possible to check whether a critical limit has been

reached or whether a tool can still be used. The develop-

ment of such a prognostic model takes advantage of the

available data assets recorded during machine operations to

extract useful information by means of ML methods. In

particular, the idea was to extract the implicit knowledge of

those operators who made correct decisions in the past

leading to longer tool life. This should allow the entire

workforce to benefit from the empirical knowledge of more

experienced machine operators, using the prognostic model

as a tool for communication and a reference point for

avoiding individual risk preferences.

However, since no direct labels were provided due to

missing CM thresholds and non-traceable results from

quality control, such required information to assess the

quality of an operator’s decision first had to be extracted

from the available data records to ensure adequate model

training. In other words, it was first necessary to separate

‘‘good decisions’’ from ‘‘bad decisions’’ based on latently

available information hidden in historical observations

about executed tool replacements. Therefore, the problem

space was conceptualized using two orthogonally related

dimensions. The first dimension refers to the time when a

tool replacement was carried out and is therefore closely

related to the expression of a tool’s useful life. Here, it can

be determined whether a replacement was performed at an

early or a late stage by considering all information that

reflects the utilization of a particular tool over time, such as

produced quantities or the amount of executed corrections.

However, to determine whether an early or a late

replacement is justified, it was also necessary to consider

the state of the tool. Therefore, the second dimension refers

to the condition, distinguishing between damaged and

undamaged milling tools. Even if this information is not

directly available in the data, it is reasonable to assume that

a critical damage pattern must also be reflected within the

recorded CM values of one of the milling machine’s

components. By separating the two levels in both dimen-

sions, a 4-field matrix can be set up as illustrated in

Table 1. Based on this matrix, it is possible to differentiate

between the following four types of tool replacements due

to subjective decisions:

• Type 1 represents undamaged tools that have been

replaced correctly at a late time, implying an efficient

use of resources.

• Type 2 represents damaged tools that have not been

replaced in time, leading to impaired product quality.

• Type 3 represents undamaged tools that have been

replaced too early, resulting in high tool costs and

truncated data for model training.

• Type 4 represents damaged tools that have been

replaced correctly at an early time, also corresponding

to an efficient use of resources.

To provide machine operators with better support for

future decisions and to ensure more resource-efficient tool

replacements of types 1 and 4, two analytical models are

required: A diagnostic model continuously checks on the

basis of condition indicators whether a milling tool shows

any signs of impending damage. If this is the case, it will

be replaced. If this is not the case, a prognostic model

trained on ‘‘type 1’’ observations is used to estimate the

RUL of the tool since ‘‘type 1’’ observations represent tools

that were correctly replaced at a late time, implying that

these replacements are close to the actual end of useful life

based on empirical knowledge of more experienced

machine operators.

In the following, the scope is primarily limited to the

differentiation of the recorded tool observations into the

four types presented above and the development of a

prognostic model. For the first task, methods from the field

of unsupervised ML were used to detect structures that can

be used for labeling purposes, while for the latter task the

results were applied in combination with supervised ML to

develop a prognostic model that can predict the RUL of the

milling tools in productive use. The development of a

diagnostic model, on the other hand, is only partially

addressed in this article. The identification of hidden

Table 1 4-field matrix for the distinction of different tool replacements

Condition

Tool undamaged Tool damaged

Time

Replacement late Type 1 – GOOD (efficient tool usage, type 3 prevented) Type 2 – AVOID (impaired product quality)

Replacement early Type 3 – AVOID (high tool costs) Type 4 – GOOD (efficient tool usage, type 2 prevented)

123

332 P. Zschech et al.: Prognostic Model Development…, Bus Inf Syst Eng 61(3):327–343 (2019)



structures based on unsupervised learning can be used to

detect, isolate and describe faults. However, for the

establishment of a comprehensive diagnostic model, deeper

system knowledge and a more profound consideration are

required, such as differentiating between different failure

modes (e.g., continuous deterioration vs. intermittent

effects). For this reason, it was not explicitly considered at

this stage and is subject to further research.

4 Data Science Study

For the implementation of the conceptually derived solu-

tion, a data science study was carried out consisting of

multiple analytical methods. While all the programming

was performed with the statistical software R, the

methodical procedure was based on a systematic process

model from the field of ‘knowledge discovery and data

mining’ (KDDM). In particular, a six-step approach served

as a guideline consisting of the following phases: (i) do-

main understanding, (ii) data understanding, (iii) data

preparation, (iv) modeling, (v) evaluation, and (vi)

deployment. These steps can be considered a common

foundation of multiple existing KDDM process models as

identified by Kurgan and Musilek (2006) and thus serve as

a basis to guide the implementation of data science projects

in research and practice. While the first phase of estab-

lishing an understanding of the domain problem has

already been described thoroughly in the previous section,

the remaining five steps are presented below. Figure 2

illustrates the overall approach and refers to the charac-

teristics of the case and the analytical methods applied.

Further details are described in each corresponding step.

4.1 Data Understanding

The case study partner provided a representative dataset

reflecting the process behavior and the operations of the

milling machine at execution time. Data records were made

available in the form of distributed, structured text files

with a total size of 9 gigabytes. Those text files contained

the following information:

• Comprehensive machine messages on executed opera-

tions, including event data for logging the number of

produced ball hubs, as well as the time of maintenance

interventions in terms of tool replacements and smaller

parameter corrections.

• Control data for tracing the extent of executed param-

eter corrections.

Subjec�ve expert 
decisions on the 

milling process and 
tool replacement

Domain 
Understanding

Data 
Understanding

Data 
Prepara�on

ModelingEvalua�onDeployment

TDF TFDF

( )

• Events (e.g., produced units) (E) 
• Parameter correc�ons (P) 
• Condi�on monitoring (C) 
• Exclusion of unnecessary variables

• Extrac�on of features for �me 
dimension (t) 

• Extrac�on of features for condi�on 
dimension (CON) using TDF and TFDF

Unsupervised Learning
• Time series clustering (for CON) 
• Hierarchical clustering (for t)
• 4-field matrix
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Fig. 2 Overall solution approach with reference to case characteristics and applied methods

123

P. Zschech et al.: Prognostic Model Development…, Bus Inf Syst Eng 61(3):327–343 (2019) 333



• Fine-granular sensor data of the different components

involved in the milling machine.

The above-mentioned entries were recorded with a

uniform timestamp to ensure correct mapping between

different data entities. In the following, the most important

variables regarding event data, control data and sensor data

are briefly described to provide a better data understanding.

Screening the event data, the provided dataset contained

information on an output volume of 88,125 produced ball

hubs. During the processing of these parts, a total of 67 tool

replacements and 2551 parameter corrections were recor-

ded. Thus, on average, 1315.3 units per tool were pro-

duced, and 38.07 parameter corrections per tool were

carried out. In addition, an average of 34.55 units were

produced between two parameter corrections. The distri-

bution of those properties, especially the observed variance

measured in produced units as depicted in Fig. 3a, indi-

cated the potential for further improvement (cf. Fig. 3a–c).

Considering the parameter corrections, it was possible to

distinguish between different control variables, such as

milling speed, feed rate, roll radius, angle of attack, system

level and diameter corrections. However, with the excep-

tion of the system level and the diameter corrections, the

remaining control variables could be neglected for further

analysis, as they remained constant over time except for a

few outliers. After conducting a deeper exploratory anal-

ysis, it was also necessary to exclude the system level

corrections as an influencing variable due to their low

variance. This could also be confirmed by the experience of

the domain experts. Thus, the focus for further analysis was

exclusively on the diameter corrections. This variable

usually followed a typical pattern over the course of a tool

lifecycle, as depicted in Fig. 4. After a new tool setup, a

large correction of the diameter is carried out because the

material of the new tool has not yet worn out. During the

course of the milling process, the diameter is increasingly

adjusted into the negative range to correct the distance to

the workpiece due to the impact of wear and tear.

In addition to the event and control data, extensive

sensor data of the milling machine were recorded in terms

of condition indicators, such as various workload variables

for machine axes and spindles. Of particular importance

was the variable ‘‘load.axis.c’’, which describes the load of

the milling spindle. Figure 5 shows exemplary courses of

the variable for five units, all produced with the same

milling tool but at different points in time. The six recur-

ring sections are due to the ball raceways of the ball hub,

and the negative peak at the beginning of the process is

caused by a routine removal of milled chips. Since this is a

highly standardized procedure, each milling cycle has the

same duration. However, when comparing the five milling

cycles depicted, different levels can be observed due to the

impact of wear and tear. Hence, this variable reflects an

increasing change within the machine condition over time

and thus could be used as an indicator of the RUL pre-

diction of the milling tools.

4.2 Data Preparation

In the next phase, the data basis was pre-processed so that

it could be used for the subsequent modeling task. Fol-

lowing the 4-field matrix derived from the domain

(a) Produced units per tool (b) Corrections per tool (c) Produced units per correction

Fig. 3 Distributions of the event data
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understanding, representative data variables for the two

dimensions time and condition had to be selected and

prepared accordingly.

For the time dimension, two types of variables were used

to represent early or late tool replacements. The first

variable was the number of produced ball hubs for each

individual milling tool. This variable, called ‘‘pro-

duced.quantity’’, could directly be derived from the

recorded event data. The second variable was an addi-

tionally derived feature, called ‘‘cumulated.corrections’’.

This feature was created based on the parameter

corrections by calculating the cumulative, maximal possi-

ble diameter corrections per tool. Thus, it was possible to

reflect the residual material capacity of the milling tools,

which is increasingly reduced by wear and tear during the

milling process.

For the condition dimension, the given sensor data were

used, focusing on the previously described variable ‘‘loa-

d.axis.c’’. Since this variable contained time series data for

each milling cycle in terms of 155 measuring points (cf.

Fig. 5), further pre-processing was required to use it for

subsequent modeling tasks. For this purpose, several

Fig. 5 Exemplary courses for the load of the milling spindle during the milling process

Fig. 4 Course of the diameter corrections over tool lifecycles
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techniques for feature extraction were applied. Thus, it was

possible to reduce dimensionality, remove noise and

extract informative properties from the time series. In

particular, this included the extraction of time-domain

features (TDF) and time–frequency domain features

(TFDF) (Goyal and Pabla 2015). Moreover, the time series

were previously tested for stationarity by a Dickey-Fuller

test (Dickey and Fuller 1979) since TDFs can only be used

for stationary signals. Eventually, the following eight TDFs

were extracted: peak value, root mean square, standard

deviation, kurtosis value, crest factor, clearance factor,

impulse factor and shape factor (Galar et al. 2012). For the

extraction of the TFDFs, a short-time Fourier transform

was used, which can also be applied to non-stationary

signals (Aghabozorgi et al. 2015). The features generated

in this way can be understood as partial frequency bands.

These are less intuitively interpretable than the TDFs, but

they represent alternative latent information that may

deliver valuable inputs for later predictive modeling pur-

poses. In a final pre-processing step, the dimensionality of

all extracted features was reduced. This was done by

maintaining only those features with high explanatory

power. In the case of the TDFs, the peak value, kurtosis

value and crest factor were selected using pairwise corre-

lation analysis, while in the case of TFDFs, only those

frequency bands were kept that followed a clearly recog-

nizable trend over the entire lifetime of the milling tools.

4.3 Modeling

After data preparation, the actual modeling step was car-

ried out. Due to the conceptualized solution approach

above, this step included two subsequent tasks: (i) appli-

cation of unsupervised ML to detect structural patterns

within the data observations and to assign them into the

previously described 4-field matrix, and (ii) application of

supervised ML to train a prognostic model based on those

observations that led to the ‘‘right decisions’’ (i.e., longer

tool lifetimes) in the past. For the first task, individual

clustering techniques (Everitt et al. 2011) were applied for

both the time dimension and the condition dimension, and

the second task was implemented using RNNs (Williams

1995).

4.3.1 Unsupervised Learning: Application of Clustering

Techniques

For clustering the time dimension based on the two vari-

ables ‘‘cumulated.corrections’’ and ‘‘produced.quantity’’,

an agglomerative hierarchical method was applied using a

WPGMC approach (weighted pair-group method using

centroid) (Sneath and Sokal 1973). With this approach,

clusters are merged together in the order in which the

fusion leads to the smallest increase in variance, while the

centroids of the clusters are evaluated equally to prevent

the dominance of larger clusters. The choice of a hierar-

chical method is motivated by the need for an exploratory

application where it is possible to generate different par-

titions based on hierarchical structures. The use of the

WPGMC method is supported by its ability to create

homogeneous groups, which facilitates the interpretation of

the clusters. In addition to the hierarchical method, two

more cluster methods were applied for comparison pur-

poses: k-means and partitioning around medoids (PAM) as

an implementation of the k-medoid algorithm (Van der

Laan et al. 2003). For the evaluation, the three different

algorithm classes and their implementations were com-

pared by employing the common metrics: connectivity as a

measure of cluster connectedness as well as Dunn index

and silhouette width as combined measures of cluster

compactness and cluster separation (Brock et al. 2008).

The comparison results are displayed in Table 2. The

results confirm that the WPGMC implementation of hier-

archical clustering yields the best results in terms of all

three cluster properties, as reflected by the minimum con-

nectivity and maximum Dunn and silhouette values. It is

also confirmed that k = 2 is the optimal number of clusters

in that case.

Figure 6a, b depict the cluster results after applying the

hierarchical clustering. In summary, partitioning with two

larger clusters can be identified, where their fusion leads to

the greatest increase in variance as demonstrated within the

dendrogram in Fig. 6a at a distance level of 600–1000.

Cluster 1 represents tool replacements at a late time. It also

includes observations just below the average tool lifetime

of 1315.3 units. Cluster 2, however, can be interpreted as a

cluster of early replacements and comprises observations

with a rather short tool life, as depicted in Fig. 6b.

Table 2 Cluster algorithm evaluation for different numbers of clus-

ters k

Cluster algorithm Metric Number of clusters (k)

2 3 4

Hierarchical (WPGMC) Connectivity 3.0290 7.7238 11.8857

Dunn 0.2157 0.1360 0.1360

Silhouette 0.6286 0.5835 0.5201

k-means Connectivity 4.6313 12.6583 15.3857

Dunn 0.0115 0.0365 0.0297

Silhouette 0.4414 0.6239 0.5773

k-medoid (PAM) Connectivity 7.8619 11.7758 12.9710

Dunn 0.0138 0.0580 0.0290

Silhouette 0.5990 0.6053 0.5544
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When clustering the condition dimension, the aim was

to distinguish between observations in which a flawless

course over a tool’s lifetime could be observed and

observations in which a tool was subject to damage due to a

critical level of wear and tear. For the latter case, it can

further be assumed that any tool damage also shows a

noticeable reflection within the recorded CM data of the

milling machine in the form of remarkable changes or

fault-specific signatures. For this purpose, the broad spec-

trum of extracted features of the variable ‘‘load.axis.c’’ was

used to examine their temporal progression over the entire

lifetime of each tool to detect patterns that could be useful

for distinguishing temporal sequences of damaged tools

from undamaged tools. While in this step the majority of

features could immediately be excluded because the cor-

responding sequences were either too homogeneous or too

heterogeneous to each other, the remaining features were

examined in more detail. This was done by visually com-

paring individual sections across the entirety of all

sequences as well as by applying the ultimately used

cluster methods described below. In addition, experienced

machine operators were consulted to integrate their domain

knowledge and to collectively discuss observed particu-

larities. As a result, the feature ‘‘peak value’’ (pv) was

selected as the most relevant feature for clustering the

condition dimension because it was suitable to reflect

remarkable changes during the temporal progression of the

machine conditions, while simultaneously it could be used

to identify two characteristic groups of sequences.

For the computational determination of the different

clusters, the following two approaches were used. In the

first iteration, dynamic time warping (DTW) was applied

since this algorithm is able to reveal similarities between

temporal sequences that may vary in speed (Aghabozorgi

et al. 2015). This appeared to be useful because the

sequences had different lengths due to varying tool life-

times. However, no valid clusters could be detected with

this approach because DTW suffers from the principle that

simple geometric shapes are similar to all forms. In other

words, sequences with strong oscillations but different

occurrence times were assigned to more constant sequen-

ces instead of sorting all oscillating sequences into a

common cluster. Therefore, the intensity of the oscillations

was used for clustering in a second iteration. Thus, the

sequences were first transferred into stationary series

without a trend component by subtracting the median

across all sequences. Subsequently, the median absolute

deviation (MAD) served as a suitable indicator for mea-

suring the intensity of the oscillations. Sequences with a

lower MAD were assigned to cluster 1, and all other

sequences were grouped into cluster 2. Therefore, after

testing different values, the final MAD threshold was set to

0.2, where the overall variance within both clusters was

minimized while keeping the number of items in each

cluster in balance to avoid dominant clusters. The resulting

(a) Cluster dendrogram (b) Cluster membership

Fig. 6 Cluster analysis results of the time dimension
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clusters are shown in Fig. 7, where characteristic progres-

sions are recognizable for both groups of sequences.

4.3.2 Assignment to the 4-Field Matrix

In the next step, the cluster results of both dimensions were

used to relate them orthogonally to each other and assign

the resulting four subsets to the respective quadrants of the

4-field matrix. Thus, by applying the clusters from the time

dimension, tool replacements at a late time were assigned

to types 1 and 2, while earlier replacements were assigned

to types 3 and 4. Likewise, the two clusters from the

condition dimension were used to assign sequences with

lower oscillations to types 1 and 3 in the sense of

undamaged tools, while sequences with stronger oscilla-

tions were assigned to types 2 and 4 in the sense of dam-

aged tools. Figure 8 displays the distribution of all

observations among each field, with 30 tool replacements

of type 1, 12 of type 2, 18 of type 3, and 7 of type 4.

After assigning the 67 tool replacements, the sequences

of all observations were further examined with respect to

their temporal progression using the broad variety of

extracted features. Therefore, it was possible to identify

systematic peculiarities from different perspectives.

Specifically, in the sequences of the feature ‘‘standard

deviation’’ (sd), noticeable turning points were observed

within the fields of types 2 and 4 (cf. Fig. 8, right side). In

the case of type 4, the turning points occurred shortly

before the tool replacements, implying that these replace-

ments were correctly carried out at an early stage due to

remarkable signs of impending damage. In the case of type

2, however, the turning points were observed well before

the end of the tool life, indicating that an intervention was

performed too late despite the occurrence of damage signs.

Considering these results, the ‘‘type 1’’ observations were

particularly interesting for the next modeling step because

they reflected ‘‘right decisions’’ of the machine operators,

which led to longer lifetimes for undamaged milling tools.

4.3.3 Supervised Learning: Development of a Prognostic

Model

In the final stage of the modeling phase, a prognostic model

had to be developed. For this purpose, all observations of

the 30 ‘‘type 1’’ sequences, each consisting of about

1250–1750 points, were selected and used in the form of

training and test data to learn a model and assess its pre-

dictive accuracy (Shmueli and Koppius 2011). Based on

Fig. 7 Cluster analysis results of the condition dimension

123

338 P. Zschech et al.: Prognostic Model Development…, Bus Inf Syst Eng 61(3):327–343 (2019)



these observations, appropriate training vectors with a

suitable target variable had to be built. Since a single-step

prediction is usually not sufficient to apply the model for

operational use and to initiate maintenance measures at an

early stage (Khawaja et al. 2005), a multi-level target

variable with multiple forecasting horizons was created. In

particular, the target variable comprised RUL values (ex-

pressed in produced quantities) for three forecasting hori-

zons, anticipating the remaining lifetime in 35, 175 and 350

milling cycles. The initial size of 35 was chosen because

the first diameter corrections were carried out after 34.55

units on average in the past (cf. Sect. 4.1). The other time

horizons were motivated by the necessary preparation time

for possible maintenance actions according to the domain

experts. For the construction of the training vectors, ran-

dom sections of the 30 sequences were extracted to con-

sider different prediction times for the operational use of

the model. Each section included input data from 150

previously conducted milling cycles as well as the

corresponding values of the target variable. Furthermore,

the training vectors were divided into training and test data

in a ratio of 80:20 to avoid overfitting and to ensure

comparability of the models (Cartella et al. 2015). Since

two different sets of input data were available due to the

different feature extraction approaches (TDF and TFDF),

two separate models were trained. For the model training,

RNNs were applied. Such neural networks use internal

memories and are capable of mapping complex, non-linear

relationships of multivariate time series, whereby it is also

possible to learn hidden states within the data structures

(Williams 1995). This is relevant since a large number of

hidden conditions can be assumed in the course of con-

tinuous wear and tear due to the milling procedure.

Another advantage of RNNs is that the internal memory of

such networks is able to retain the time-related dependen-

cies of previously performed process executions (Heimes

2008). Specifically, the networks were trained in 350

epochs by using a learning rate of 0.02 and a network

architecture with 20 hidden layers. The optimization

algorithm was based on stochastic gradient descent with a

batch size of 1, no pre-training, no added bias and a

learning weight decay set at 1, which results in equal

weighting over the epoch optimization process.

4.4 Evaluation

For the evaluation and comparison of both prognostic

models, two performance metrics were applied for each

individual forecasting horizon: the mean absolute error

(MAE) and the root mean squared error (RMSE) (Pan et al.

2014). Both metrics are generic and commonly used

measures for numerical outcomes to assess the predictive

performance of an empirical model based on the out-of-

sample data (Shmueli and Koppius 2011). The results are

summarized in Table 3, where it can be seen that the TDF

model performs best across both metrics since MAE and

RMSE are smaller for all forecasting horizons.

Considering the interpretation for practical assessments,

the MAE usually has the advantage that it can be intu-

itively interpreted since it uses the same scale as the data

being measured. It must be noted, however, that the target

variable has been scaled to an interval between 0 and 1,

Table 3 Assessment of the model performance

Model MAE RMSE

t ? 35 t ? 175 t ? 350 t ? 35 t ? 175 t ? 350

TDF 0.0468 0.0457 0.0441 0.0635 0.0627 0.0608

TFDF 0.0539 0.0572 0.0566 0.0720 0.0739 0.0712

Fig. 8 Assignment of the empirical observations to the 4-field matrix
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which results in low levels as shown in Table 3. Therefore,

the MAE needs to be reconverted to the original scale of

the RUL values by multiplying the MAE by the maximum

tool lifetime of 1747 produced units for ‘‘type 1’’ obser-

vations. Thus, the best performing model TDF underesti-

mates or overestimates the tool lifetime by an average of

82, 80 and 77 units for the prediction horizons t ? 35,

t ? 175 and t ? 350. Considering an average lifetime of

1315.3 units (cf. Sect. 4.1), the overall prediction error can

be regarded as relatively small.

4.5 Deployment

In addition to evaluating the model’s predictive perfor-

mance, it was further examined which advantage the model

would provide if it was deployed for operational use within

the production process. This could be achieved by using the

prognostic model to predict the RUL for ‘‘type 3’’ obser-

vations in which tool replacements were carried out too

early. By comparing the actual tool lifetime with predicted

RUL values estimated by the prognostic model, it was

possible to quantify the unused service life (measured in

produced units) of early changed milling tools. As illus-

trated in Fig. 9, considerably higher predicted tool life-

times could be observed for several milling tools (marked

by frames). In approximately one-third of all ‘‘type 3’’

observations, a decision about the parameter ‘‘tool

replacement yes/no’’ based on the derived prognostic

model would have led to an extension of the tool lifetimes.

Thus, in terms of the available data, it would have been

possible to produce 6340 additional ball hubs within the

period under consideration, which corresponds to savings

of approximately 4–5 milling tools for a total number of 67

tools. That would be 6–7% of the cost savings expected

Fig. 9 Comparison of the actual tool life (dotted line) with the RUL estimated by the trained prognostic model (continuous line)
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from the usage of the prognostic model, and this assess-

ment does not even include the potential savings from

preventing ‘‘type 2’’ replacements, which were carried out

too late. However, such an additional consideration would

also require an adequate diagnostic model, which was

explicitly excluded from the scope of this research, as well

as further information about costs caused by produced

rejects due to damaged milling tools, which could not be

provided by the case study partner for reasons of

confidentiality.

5 Conclusion and Outlook

The contribution of this paper is the development of a

solution approach to overcome the situation of missing

labels in the context of CBM-based prognostics and ML.

Therefore, it offers a novel solution for a known and rel-

evant problem within an established application domain

and can be positioned in the improvement quadrant within

the knowledge contribution framework proposed by Gregor

and Hevner (2013). To draw from a solid understanding of

the problem context, prior research was considered by

providing a systematization to characterize different label

situations while referring to the existing body of knowl-

edge. The systematization can further be used to structure

the field and position future work.

Subsequently, for the solution development, a data sci-

ence study on a real-world scenario of a German automo-

tive manufacturer was carried out facing the challenge of

improving an imperfect maintenance situation that was so

far based on subjective decisions due to missing replace-

ment criteria. Based on the study results, it was demon-

strated how techniques from the field of ML could be used

to retrieve information that was only latently available in

vast amounts of maintenance-related data. In particular,

hidden threshold values were revealed, which usually

require profound knowledge about the internal physical

processes of a system. Moreover, it was then possible to

extract the information whether past maintenance actions

were carried out in a risk-averse or risk-affine manner, even

though those maintenance actions were not explicitly

audited and assessed retrospectively. As a result, a prog-

nostic decision support model was developed that is cap-

able of replacing decisions that have previously been made

on the basis of individual risk preferences of the human

machine operators. As discussed before, the proposed

approach addresses the worst possible problem constella-

tion in a non-synthetic, real-world application where no

discernible clues towards a wear-induced replacement were

available, and the replacement was solely based on rules

from empirical knowledge with no comprehensible foun-

dation. The benefits are potential savings that result from

both the reduction in impaired product quality by pre-

venting tool replacements at a late time and the reduction

in tool costs by preventing early replacements.

The proposed approach is sufficiently generic to be

applied in other cases where machine tools are subject to

continuous wear and tear, such as those involved in cutting,

grinding, drilling, polishing or similar operations, since

only data types were used that are expected to be recorded

by default in industry. This includes (i) event data such as

produced quantities, cycle times and tool lifetimes, (ii)

control data and machine configurations in terms of applied

parameter corrections, and (iii) CM data in terms of mea-

surable variables that reflect the observable machine

behavior at a certain point in time. The extraction of useful

knowledge despite a poor information situation (i.e.,

missing CM thresholds, truncated data, missing connection

to product quality), which is commonly encountered in

industrial practice, illustrates the potential of the developed

solution approach. Manufacturing companies not only save

expensive investments in additional sensor technology and/

or inspection systems but also avoid the redesign of their

existing production processes, which would be necessary to

make the required latent information explicitly measurable.

Nevertheless, the present contributions also have some

limitations, especially with regard to evaluation. In the

literature, prognostic models are often developed under

experimental laboratory conditions with synthetically

generated datasets, where an assessment of the model

quality can readily be carried out (Dragomir et al. 2009). In

the studied real-world setting of missing labels, however,

where no ground truth is accessible, an evaluation approach

to ensure reliability and validity can only be fully achieved

by involving coherence of expert knowledge on the

extracted label thresholds and by testing the feasibility in

real process executions. Although the results were dis-

cussed with responsible machine operators in each indi-

vidual development step, the overall approach has not yet

been applied under proper conditions. Therefore, it is

crucial to carry out a comprehensive evaluation design in a

future research project, where the prognostic model is

implemented in operational use to see whether it indeed

leads to longer tool lifetimes. Current barriers in this

context include, for example, multi-layered approval pro-

cesses of the car manufacturer due to organizational poli-

cies that hinder such an application in real operations. The

risks of the approach involve the accuracy of the prognostic

model and also the overall scope of the decision support

system, as it must provide solid statements in all possible

constellations and exceptions during runtime that do not

endanger the stability of the process. For this purpose, a

prototype assistance system is planned for development in

which the machine operators should continue to make

decisions primarily based on their subjective experiences
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but can now indicate whether their decision could be

influenced positively by the RUL prediction in terms of

longer tool life and, if not, what the reason there would be

for a deviation. A similar approach is sought with the

extracted thresholds for diagnostic purposes, where the

operators can use the model results to assess whether the

visually perceived signs of wear and tear correspond to the

thresholds identified by the model and vice versa.

However, before introducing a prototype system in

operational processes, several more investigations are

planned. First and foremost, this includes the use of a larger

sample size for model development. Although a represen-

tative and rich dataset with more than 88,000 produced

units was provided, only 67 tool replacements must be

considered relatively small. Therefore, the aim is to collect

a broader dataset to evaluate the current results and extend

them with further insights. Moreover, the focus of this

contribution was to demonstrate the feasibility of the

overall solution approach within an industrial setting and

thus present a sequence of analytical method combinations.

In further research, it is worthwhile to consider each step

individually in more detail and apply different alternative

approaches for more comprehensive benchmarking pur-

poses. As such, the current approaches can serve as base-

line models to examine which variations in terms of

modified algorithms and parameter fine-tuning can

improve the quality of the results.
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