161 research outputs found

    Electrochemically-controlled metasurfaces with high-contrast switching at visible frequencies

    Full text link
    Recently in nanophotonics, a rigorous evolution from passive to active metasurfaces has been witnessed. This advancement not only brings forward interesting physical phenomena but also elicits opportunities for practical applications. However, active metasurfaces operating at visible frequencies often exhibit low performance due to design and fabrication restrictions at the nanoscale. In this work, we demonstrate electrochemically controlled metasurfaces with high intensity contrast, fast switching rate, and excellent reversibility at visible frequencies. We use a conducting polymer, polyaniline (PANI), that can be locally conjugated on preselected gold nanorods to actively control the phase profiles of the metasurfaces. The optical responses of the metasurfaces can be in situ monitored and optimized by controlling the PANI growth of subwavelength dimension during the electrochemical process. We showcase electrochemically controlled anomalous transmission and holography with good switching performance. Such electrochemically powered optical metasurfaces lay a solid basis to develop metasurface devices for real-world optical applications

    Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods

    No full text
    International audienceWe report on the observation of second-order infrared (IR) plasmon resonances in lithographically prepared gold nanorods investigated by means of far-field microscopic IR spectroscopy. In addition to the fundamental antennalike mode, even and odd higher order resonances are observed under normal incidence of light. The activation of even-order modes under normal incidence is surprising since even orders are dipole-forbidden because of their centrosymmetric charge density oscillation. Performing atomic force microscopy and calculations with the boundary element method, we determine that excitation of even modes is enabled by symmetry breaking by structural deviations of the rods from an ideal, straight shape. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3437093

    Strong magnetic response of submicron Silicon particles in the infrared

    Get PDF
    High-permittivity dielectric particles with resonant magnetic properties are being explored as constitutive elements of new metamaterials and devices in the microwave regime. Magnetic properties of low-loss dielectric nanoparticles in the visible or infrared are not expected due to intrinsic low refractive index of optical materials in these regimes. Here we analyze the dipolar electric and magnetic response of loss-less dielectric spheres made of moderate permittivity materials. For low material refractive index there are no sharp resonances due to strong overlapping between different multipole contributions. However, we find that Silicon particles with refractive index 3.5 and radius approx. 200nm present a dipolar and strong magnetic resonant response in telecom and near-infrared frequencies, (i.e. at wavelengths approx. 1.2-2 micrometer). Moreover, the light scattered by these Si particles can be perfectly described by dipolar electric and magnetic fields, quadrupolar and higher order contributions being negligible.Comment: 10 pages, 5 figure

    Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    Get PDF
    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering

    Ultrasensitive Molecule Detection Based on Infrared Metamaterial Absorber with Vertical Nanogap

    Get PDF
    Surface-enhanced infrared absorption (SEIRA) spectroscopy is a powerful methodology for sensing and identifying small quantities of analyte molecules via coupling between molecular vibrations and an enhanced near-field induced in engineered structures. A metamaterial absorber (MA) is proposed as an efficient SEIRA platform; however, its efficiency is limited because it requires the appropriate insulator thickness and has a limited accessible area for sensing. SEIRA spectroscopy is proposed using an MA with a 10 nm thick vertical nanogap, and a record-high reflection difference SEIRA signal of 36% is experimentally achieved using a 1-octadecanethiol monolayer target molecule. Theoretical and experimental comparative studies are conducted using MAs with three different vertical nanogaps. The MAs with a vertical nanogap are processed using nanoimprint lithography and isotropic dry etching, which allow cost-effective large-area patterning and mass production. The proposed structure may provide promising routes for ultrasensitive sensing and detection applications

    Angle-Tunable Enhanced Infrared Reflection Absorption Spectroscopy via Grating-Coupled Surface Plasmon Resonance

    Get PDF
    Surface enhanced infrared absorption (SEIRA) spectroscopy is an attractive method for increasing the prominence of vibrational modes in infrared spectroscopy. To date, the majority of reports associated with SEIRA utilize localized surface plasmon resonance from metal nanoparticles to enhance electromagnetic fields in the region of analytes. Limited work has been performed using propagating surface plasmons as a method for SEIRA excitation. In this report, we demonstrate angle-tunable enhancement of vibrational stretching modes associated with a thin poly(methyl methacrylate) (PMMA) film that is coupled to a silver-coated diffraction grating. Gratings are fabricated using laser interference lithography to achieve precise surface periodicities, which can be used to generate surface plasmons that overlap with specific vibrational modes in the polymer film. Infrared reflection absorption spectra are presented for both bare silver and PMMA-coated silver gratings at a range of angles and polarization states. In addition, spectra were obtained with the grating direction oriented perpendicular and parallel to the infrared source in order to isolate plasmon enhancement effects. Optical simulations using the rigorous coupled-wave analysis method were used to identify the origin of the plasmon-induced enhancement. Angle-dependent absorption measurements achieved signal enhancements of more than 10-times the signal in the absence of the plasmon.This article is from Analytical Chemistry86 (2014): 2610-2617, doi:10.1021/ac4038398. Posted with permission.</p

    Plasmonic Enhancement of Vibrational Excitations in the Infrared

    No full text
    corecore