170 research outputs found

    Studies of dynamic processes related to active experiments in space plasmas

    Get PDF
    This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed

    Particle simulations of relativistic electron beam injection from spacecraft

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94852/1/jgra16416.pd

    New aspects of whistler waves driven by an electron beam studied by a 3‐D electromagnetic code

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95469/1/grl7510.pd

    Radio Occultation Bending Angle Anomalies During Tropical Cyclones

    Get PDF
    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload on the International Space Station

    Passive remote sensing of artificial relativistic electron beams in the middle atmosphere

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76955/1/AIAA-1999-4532-160.pd

    Streamer propagation in the atmosphere of Titan and other N2:CH4 mixtures compared to N2:O2 mixtures

    Get PDF
    Streamers, thin, ionized plasma channels, form the early stages of lightning discharges. Here we approach the study of extraterrestrial lightning by studying the formation and propagation of streamer discharges in various nitrogen-methane and nitrogen-oxygen mixtures with levels of nitrogen from 20% to 98.4%. We present the friction force and breakdown fields Ek in various N2:O2 (Earth-like) and N2:CH4 (Titan-like) mixtures. The strength of the friction force is larger in N2:CH4 mixtures whereas the breakdown field in mixtures with methane is half as large as in mixtures with oxygen. We use a 2.5 dimensional Monte Carlo particle-in-cell code with cylindrical symmetry to simulate the development of electron avalanches from an initial electron-ion patch in ambient electric fields between 1.5Ek and 3Ek. We compare the electron density, the electric field, the front velocities as well as the occurrence of avalanche-to-streamer transition between mixtures with methane and with oxygen. Whereas we observe the formation of streamers in oxygen in all considered cases, we observe streamer inceptions in methane for small percentages of nitrogen or for large electric fields only. For large percentages of nitrogen or for small fields, ionization is not efficient enough to form a streamer channel within the length of the simulation domain. In oxygen, positive and negative streamers move faster for small percentages of nitrogen. In mixtures with methane, electron or streamer fronts move 10-100 times slower than in mixtures with oxygen; the higher the percentage of methane, the faster the fronts move.Comment: 34 pages, 11 figures, 1 tabl
    • 

    corecore