1,416 research outputs found

    Pedagogical Freedom through Hope: How Communication Centers Can Instill Actionable Hope through a K-12 Citizenship Education Model

    Get PDF
    This paper argues Communication Centers as a core space for revitalizing citizenship education through dialogic interaction and the encouragement of outside civic engagement. Developing informed and sustainable hope requires education (Lake, et al., 2012). Learning how to develop habits of hope can lead to students becoming more informed and civil citizens because it attunes students to their civic potential and enables them to cultivate visions for future democracies

    An Ethical Revelation of the American Revolution: An Analysis of Communication Ethics and Hypertextuality in the Musical Hamilton

    Get PDF
    Since debuting in 2016, Hamilton has generated much scholarship on such topics as race relations and public memory. However, this article uses concepts of communication ethics and hypertextuality to situate the retelling of America’s past for America’s present. Connecting Hamilton to communication ethics proves paramount because it helps to situate the moral ground under which the characters stand, thereby serving as the epicenter for the show’s ultimate message. Viewers are brought into a hypertextual world of two historical moments, America ‘then’ and America ‘now,’ and consider the juxtaposition of past and current ideas, tradition, culture and narrative commitments that all result in an ethical climax as the main character, Alexander Hamilton champion’s an ethic of, “I am my brother’s keeper.

    Tropical transport and the seasonal variability of the subtropical "edges" in the stratosphere

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, February 2001.Includes bibliographical references (p. 214-223).The chemistry of the stratosphere, in particular the balance between ozone production and loss, is very sensitive to transport into and out of the tropical stratosphere. There is a great deal of evidence that tropical air remains relatively isolated from extratropical air over timescales that are long compared to typical midlatitude mixing timescales. However, there are significant questions regarding the extent to which the tropics may be considered isolated, the mechanisms and variability of this isolation, and the implications of tropical isolation for global-scale transport. We address some of these issues using three very different tools: a simple model of stratospheric transport, which allows us to investigate the role of tropical transport in determining global transport timescales, satellite observations of long-lived tracers, which allow us to diagnose the seasonal variability of the tracer gradients that mark the transition between tropical and extratropical air, and a shallow water model, which allows us to investigate the mechanisms of tropical isolation in the simplest relevant dynamical framework. We first discuss the characteristics of analytical solutions for the mean age of air, a measure of the mean timescale for transport by large-scale processes in the stratosphere, in a simple, one-dimensional conceptual model of stratospheric transport. In this "leaky pipe" model, the stratosphere is divided into three regions: the tropics and the Northern and Southern extratropics. We examine the dependence of the mean age on advection, diffusive mixing, and quasi-horizontal transport between the tropics and the extratropics. This work provides insight into the role of the tropics in global chemical transport under the assumption of at least some degree of tropical isolation. We next examine the seasonal variability of the subtropical tracer gradients which mark the transition between tropical and extratropical air from both a diagnostic and a mechanistic standpoint. We use probability distribution functions of satellite measurements of long-lived tracers to define the transition regions, which are commonly called the subtropical "edges". We examine six and a half years of measurements and identify the central latitude, and in some cases the area, of these edges at eight pressure levels on quasi-monthly timescales. We compare the seasonal variability of the subtropical edges to the variability in several transport parameters and thus increase our understanding of the mechanisms of tropical isolation from a diagnostic standpoint. We then use a shallow water model, which represents many of the properties of the flow between two isentropic surfaces, to examine the mechanisms of the formation of the subtropical edges during each season. We include the effects of diabatic heating and cooling as well as planetary-scale wave propagation and examine the role of these processes in the formation of potential vorticity gradients that behave in much the same way as the observed subtropical tracer gradients. Our results indicate that the winter subtropical edge marks a mixing barrier. The rapid stirring in the winter hemisphere that results from planetary-scale wave breaking is generally confined to the midlatitudes, and the strong tracer and potential vorticity gradients in the winter subtropics likely result from "stripping" processes, as filaments of material are occasionally pulled out of the tropics by this mid-latitude stirring. The summer subtropical edge, however, does not mark a mixing barrier in the middle and upper stratosphere. Rather, it is likely that the strong subtropical tracer and potential vorticity gradients in the summer hemisphere result purely from the action of the residual circulation, which tends to increase potential vorticity and tracer values in the tropics and decrease them at high latitudes (for tracers with tropospheric sources and photochemical sinks) over the course of the summer. We show that the seasonal variability of the edges can, in some cases, contribute significantly to the mass budgets in simple "leaky pipe"-type models, but find that it is difficult to assess the role of this seasonal variability in tracer transport.by Jessica L. Neu.Ph.D

    An atmospheric chemist in search of the tropopause

    Get PDF
    Delineating the boundary between troposphere and stratosphere in a chemistry transport model requires a state variable for each air mass that maps out the ever shifting, overlapping three-dimensional (3-D) boundary at each time step. Using an artificial tracer, e90, with surface sources and 90 day decay time, the model e90 tropopause matches the 1-D temperature lapse rate definition of the tropopause as well as the seasonal variation of ozone at this boundary. This approach works from equator to pole, over all seasons, unlike methods based on potential vorticity or ozone. By focusing on the time scales that separate stratosphere from troposphere, we examine the cause of ozone seasonality at the midlatitude tropopause, the oldest air in the troposphere (winter descent in the subtropics), and a north-south bias in the age of air of the lowermost stratosphere as evaluated using a northern tracer. The tracer e90 is invaluable in 3-D modeling, readily separating stratosphere from troposphere and a giving quantitative measure of the effective distance from the tropopause
    corecore