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Text S1. Supplementary information for fire emission estimate and plume-rise 22 

treatment 23 

In this study, the carbon density used in fire emission estimate was derived from Olson et al. [2000] 24 

and Houghton et al. [2001] for the year 2000. To investigate the vegetation change from 2000 to 25 

2017 and the potential impact on fire emission estimate, we examine the trend in NDVI (normalized 26 

difference vegetation index) which roughly indicates vegetation density. We obtain NDVI data from 27 

the MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V006 product. We focus on 28 

the monthly averaged NDVI in November, which represents the carbon density just before the 29 

outburst of the Thomas fire in December. As shown in Table S1, the differences between 30 

NDVINov,2000 and NDVINov,2017 are less than 10% either over a small region where the Thomas fire 31 

took place (34.25–34.55 N, 119.05–119.65 W), or over a larger surrounding region (33.2–35.2 N, 32 

118.2–120.6 W). Therefore, we didn’t update the 2000 carbon density to 2017 in this study. 33 

To examine whether all fire pixels are effectively detected by VIIRS during the initial period of the 34 

fire (before December 9), we have compared the VIIRS-detected active fire pixels (used to estimate 35 

fire emissions in the V_VIIRS scenario) with the fire perimeter from Inciweb 36 

(https://inciweb.nwcg.gov/incident/maps/5670/). Figure S4 shows the comparison results on 37 

December 6 and December 9. On December 6, the spatial ranges of the Thomas fire given by the 38 

two sources agree very well with each other. On December 9, the spatial ranges still match generally, 39 

but VIIRS did not detect active fires in some areas where fires were identified by Inciweb, probably 40 

because these areas had transitioned to the smoldering phase by December 9 and no flames existed 41 

any more. The undetected fire pixels may lead to an underestimate of fire-induced PM2.5 42 

concentrations. However, since the largest underestimate occurs around December 6 when VIIRS 43 

and Inciweb match very well, the undetected fires may not be the main cause of the large 44 

underestimate at the beginning stage of the fire. 45 

To test whether the plume-rise treatment is reasonable, we compare simulated vertical distribution 46 

of primary aerosol emissions from the December 2017 fire event (V_VIIRS scenario) with that 47 

retrieved by MISR [Martin et al., 2018], as shown in Fig. S1. Since the MISR plume height product 48 

is not available in December 2017 (the available time range is 2008-2010 or 2008-2011, depending 49 

https://inciweb.nwcg.gov/incident/maps/5670/


on product version), we estimate a typical plume vertical distribution in the Thomas fire area and 50 

use it to evaluate simulation results. No active fires were detected by MISR in December of 2008-51 

2011 near the Thomas fire location (33.2–35.2 N, 118.2-120.6 W). Hence the typical plume vertical 52 

distribution in this area is estimated by averaging all fire plumes in North America in winter (DJF) 53 

for shrubland, the vegetation type at the scene of the Thomas fire. Fig. S1 shows that the plume 54 

vertical distributions from the model and MISR agree fairly well (correlation coefficient = 0.943), 55 

except that the model predicts more fire emissions at 250-500 m and less emissions at 0-250 m 56 

compared with MISR. Therefore, the plume rise estimate in this study appears to be reasonable 57 

overall. Archer-Nicholls et al. [2015] found that WRF-Chem predicted layers of elevated aerosol 58 

loadings at high altitude (4–8 km) over tropical forest regions, while flight measurements showed a 59 

sharp decrease above 2–4 km altitude. This problem is not observed in our simulation over southern 60 

California. 61 

Text S2. Impact of aerosol radiative effect on meteorology and chemistry 62 

simulation 63 

We have done an additional simulation (V_VIIRS_noFd) which is the same as the V_VIIRS 64 

scenario except that the aerosol direct effect is removed. The differences between the V_VIIRS and 65 

V_VIIRS_noFd scenarios represent the impact of the aerosol direct effect, as illustrated in Fig. S9. 66 

We have not examined the aerosol indirect feedback effect because nearly all clouds during the 67 

simulation period are located above 7 km (Fig. S8) which are not likely to be significantly affected 68 

by fire emissions that are injected below 3 km (Fig. S1). Fig. S9 shows that the inclusion of aerosol 69 

direct effect attenuates surface shortwave radiation, especially over the nearby and downwind region 70 

of the wildfire, and over the Central Valley which is mainly polluted by anthropogenic emissions. 71 

The subsequent feedback on meteorology and aerosol pollution is distinctly different in the above 72 

two regions. In the Central Valley, the attenuated shortwave radiation leads to a reduction in surface 73 

temperature (T), planetary boundary layer (PBL) height, which in turn increases surface PM2.5 74 

concentrations. Such a positive feedback loop has been demonstrated by many previous studies 75 

[Wang et al., 2014; Zhou et al., 2019]. In the nearby and downwind region of the fire, however, little 76 

changes in T and PBL height are observed, and the changes in PM2.5 concentrations are positive in 77 

most areas but can be negative in some areas. The small and uneven response in this region is likely 78 



induced by the strong Santa Ana wind and complicated meteorological conditions, which warrants 79 

further in-depth study in the future.  80 



Table S1. The monthly averaged NDVI in November, 2000 and 2017 over a small region where the 81 

Thomas fire takes place (34.25–34.55 N, 119.05–119.65 W), and over a larger surrounding region 82 

(33.2–35.2 N, 118.2–120.6 W). 83 

 34.25–34.55 N, 119.05–119.65 W 33.2–35.2 N, 118.2–120.6 W 

NDVINov,2000 0.49425 0.26719 

NDVINov,2017 0.44653 0.25363 

 84 

Table S2. Model performance of meteorological parameters in the V_VIIRS_nudging scenario as 85 

compared to observational data from the National Climatic Data Center (NCDC). 86 

Variable Index Value Ref1 Variable Index Value Ref 

Wind 

Speed 

(m/s) 

Mean 

Observation 
4.17  

Temperature 

(K) 

Mean 

Observation 
276.53  

Mean 

Prediction 
3.54  

Mean 

Prediction 
276.04  

Bias -0.64 ≤±0.5 Bias -0.49 ≤±0.5 

Gross Error 1.57 ≤2 Gross Error 2.78 ≤2 

IOA2 0.75 ≥0.6 IOA 0.93 ≥0.8 

Wind 

Direction 

(deg) 

Mean 

Observation 
286.45  

Humidity 

(g/kg) 

Mean 

Observation 
2.98  

Mean 

Prediction 
276.10  

Mean 

Prediction 
2.84  

Bias 2.86 ≤±10 Bias -0.14 ≤±1 

Gross Error 43.35 ≤30 Gross Error 0.68 ≤2 

   IOA 0.81 ≥0.6 

1The reference values are taken from Emery et al. [2001]. 87 
2IOA: Index of Agreement 88 



 89 

Figure S1. Percentages of modeled fire smoke injection heights for the December 2017 fire event 90 

(V_VIIRS scenario, 33.2–35.2 N, 118.2–120.6 W) and MISR-based fire smoke injection heights for 91 

shrubland in North America in winter (DJF), 2008, 2009 and 2010. 92 

 93 

 94 

Figure S2. Time series of daily average PM2.5 concentrations at 9 sites around wildfires from four 95 

scenarios during December 1 to 23, 2017. 96 
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 98 
Figure S3. Time series of PM2.5 concentrations at 9 sites around wildfires during December 1 to 23, 99 

2017. The black line is observed hourly PM2.5 concentration. The red, green, and blue lines are 100 

simulation results assuming different splits between flaming and smoldering phases. 101 

 102 
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Figure S4. VIIRS-detected active fire pixels used to estimate emissions in the V_VIIRS scenario 103 

(top) and fire perimeter from Inciweb (bottom) on December 6 (left) and December 9 (right). 104 



 105 

Figure S5. Comparison between surface observed wind fields from NCDC and WRF-Chem 106 

simulations in the V_VIIRS_100 and V_VIIRS_nudging scenarios at 4 sites near the fires. 107 

 108 

 109 

Figure S6. Spatial distributions of surface PM2.5 concentrations from the simulations with (a-c) 23 110 

levels and (d-f) 46 levels during three stages of the fire event: (a, d) the pre-Santa Ana wind stage, 111 

(b, e) the Santa Ana wind stage, and (c, f) the post-Santa-Ana wind stage. 112 



 113 

 114 

Figure S7. Spatial distributions of AOD from the simulations with (a-c) 23 levels and (d-f) 46 levels 115 

during three stages of the fire event: (a, d) the pre-Santa Ana wind stage, (b, e) the Santa Ana wind 116 

stage, and (c, f) the post-Santa-Ana wind stage. 117 

 118 

 119 

Figure S8. Vertical distributions of (a-c) PM2.5 concentrations and (d-f) cloud fraction from the 120 

simulations with 23 and 46 levels during three stages of the fire event: (a, d) the pre-Santa Ana wind 121 

stage, (b, e) the Santa Ana wind stage, and (c, f) the post-Santa-Ana wind stage. The data are 122 

horizontally averaged over a region near the fire (33.2-35.2 N, 120.6-118.2 W). 123 



 124 

Figure S9. Difference between the V_VIIRS and V_VIIRS_noFd (V_VIIRS without aerosol direct 125 

feedback) scenarios during the fire period (Dec 5 to Dec 18): (a) surface shortwave irradiance (SW), 126 

(b) surface temperature (T), (c) planetary boundary layer (PBL) height, and (d) surface PM2.5 127 

concentrations. 128 
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