6 research outputs found

    Searching for the Role of Mergers in Fast and Early SMBH Growth: Morphological Decomposition of Quasars and Their Hosts at z∼4.8z \sim 4.8

    Full text link
    We present rest-frame ultraviolet (UV) images of six luminous quasars at z∼4.8z \sim 4.8 obtained with the Hubble Space Telescope (HST). These quasars exhibit a wide range of star formation rates (SFRs) and lie in a wide range of environments. We carefully model and subtract the point-like quasar emission and investigate the morphology of the underlying host galaxies at kpc scales. The residual images allowed identification of potential companion sources, which enabled us to explore the role of galaxy merger scenarios in the co-evolution of the quasars and their hosts. We also search for the mechanism driving extreme SFRs in three of the quasars. We find that the rate of detection of potential companions to the host galaxies does not follow trends between high- and low-SFR sources; i.e., the HST imaging suggests that both high- and low-SFR sources are found in both dense and sparse galactic environments. The suggested role of major mergers driving extreme SFRs cannot be supported by the multiwavelength data in hand. Three of four companion sources, previously revealed by sub-millimeter observations, are not detected in the HST images of three of our quasars. An adapted high-resolution imaging strategy focused on high-SFR sources and extended to a larger quasar sample is required to determine the role of mergers in the processes of star formation and supermassive black hole growth at high redshift.Comment: 22 pages, 10 figures; accepted for publication in Ap

    CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules

    Get PDF
    The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor κB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments

    Searching for the Role of Mergers in Fast and Early SMBH Growth: Morphological Decomposition of Quasars and Their Hosts at z ∼ 4.8

    No full text
    We present rest-frame ultraviolet images of six luminous quasars at z ∼ 4.8 obtained with the Hubble Space Telescope (HST). These quasars exhibit a wide range of star formation rates (SFRs) and lie in a wide range of environments. We carefully model and subtract the point-like quasar emission and investigate the morphology of the underlying host galaxies at kpc scales. The residual images allowed identification of potential companion sources, which enabled us to explore the role of galaxy merger scenarios in the coevolution of the quasars and their hosts. We also search for the mechanism driving extreme SFRs in three of the six quasars. We find that the rate of detection of potential companions to the host galaxies does not follow trends between high- and low-SFR sources; i.e., the HST imaging suggests that both high- and low-SFR sources are found in both dense and sparse galactic environments. The suggested role of major mergers driving extreme SFRs cannot be supported by the multiwavelength data in hand. Three of four companion sources, previously revealed by submillimeter observations, are not detected in the HST images of three of our quasars. An adapted high-resolution imaging strategy focused on high-SFR sources and extended to a larger quasar sample is required in order to determine the role of mergers in the processes of star formation and supermassive black hole growth at high redshift

    Carotenoid Biosynthesis and Regulation in Plants

    No full text
    Carotenoids are important in photosynthesis, photo protection, and the production of a range of hormones and signaling molecules. This chapter focuses on regulatory aspects of carotenogenesis relating to: cross-talk between and within the carotenoid and MEP pathways, environmental and developmental control, epigenetic and posttranscriptional regulatory mechanisms, plastid differentiation and communication, enzyme localization and metabolon compartmentalization, and carotenoid degradation and apocarotenoid signaling metabolites. Non-enzymatic photooxidation and enzymatic cleavage of carotenoids are two well-studied processes that can degrade carotenoids to apocarotenoid signaling molecules. Carotenoid biosynthetic pathway in plants is complex and tightly regulated. The carotenoid biosynthetic pathway bifurcates after lycopene to produce lutein or ß-carotenes, and their derivatives. By enhancing our knowledge of the regulation of biosynthetic processes and flux through the pathway, undoubtedly new possibilities will emerge to enhance plant biofortification as a convenient resource to produce valuable micronutrient compounds
    corecore