188 research outputs found
Ultraviolet‐laser induced dissociation and desorption of water adsorbed on Pd(111)
Ultraviolet‐laser irradiation (6.4 eV and 5.0 eV) of the first layer of water adsorbed on a Pd(111) surface at 90 K leads to desorption of H2O and to conversion of the adsorbed state as manifested in the thermal desorption spectra. The latter effect is attributed to photodissociation of water on the surface. Time‐of‐flight measurements show that water molecules desorb with the same translational energy of about 600 K for both photon energies. While desorption is suppressed with adsorbed multilayers, conversion within the first layer still proceeds
Cross sections and NO product state distributions resulting from substrate mediated photodissociation of NO<sub>2</sub> adsorbed on Pd(111)
Ultraviolet irradiation of NO2 adsorbed on top of a NO saturated Pd(111) surface causes the photodissociation of NO2/N2O4 and results in the desorption of NO molecules. This process has been studied using excitation energies between 3.5 and 6.4 eV. At a photon energy of 6.4 eV, a cross section of 3×10−18 cm2 is found. Using laser‐induced fluorescence to detect the desorbed NO molecules, fully state‐resolved data detailing the energy channeling into different degrees of freedom has been obtained. Two desorption channels are found, one characterized by nonthermal state populations, and one showing accommodation to the surface. The yield of the fast channel shows a marked increase above 4 eV photon energy. The slow channel is interpreted as being due to NO molecules which, after formation, undergo a trapping–desorption process. A polarization experiment indicates that the photodissociation is initiated by excitation of metal electrons rather than direct absorption by the adsorbate
Vorticity Banding During the Lamellar-to-Onion Transition in a Lyotropic Surfactant Solution in Shear Flow
We report on the rheology of a lamellar lyotropic surfactant solution
(SDS/dodecane/pentanol/water), and identify a discontinuous transition between
two shear thinning regimes which correspond to the low stress lamellar phase
and the more viscous shear induced multi-lamellar vesicle, or ``onion'' phase.
We study in detail the flow curve, stress as a function of shear rate, during
the transition region, and present evidence that the region consists of a shear
banded phase where the material has macroscopically separated into bands of
lamellae and onions stacked in the vorticity direction. We infer very slow and
irregular transformations from lamellae to onions as the stress is increased
through the two phase region, and identify distinct events consistent with the
nucleation of small fractions of onions that coexist with sheared lamellae.Comment: 10 pages, 10 figure
Statistics and Nos\'e formalism for Ehrenfest dynamics
Quantum dynamics (i.e., the Schr\"odinger equation) and classical dynamics
(i.e., Hamilton equations) can both be formulated in equal geometric terms: a
Poisson bracket defined on a manifold. In this paper we first show that the
hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can
also be formulated within this general framework, what has been used in the
literature to construct propagation schemes for Ehrenfest dynamics. Then, the
existence of a well defined Poisson bracket allows to arrive to a Liouville
equation for a statistical ensemble of Ehrenfest systems. The study of a
generic toy model shows that the evolution produced by Ehrenfest dynamics is
ergodic and therefore the only constants of motion are functions of the
Hamiltonian. The emergence of the canonical ensemble characterized by the
Boltzmann distribution follows after an appropriate application of the
principle of equal a priori probabilities to this case. Once we know the
canonical distribution of a Ehrenfest system, it is straightforward to extend
the formalism of Nos\'e (invented to do constant temperature Molecular Dynamics
by a non-stochastic method) to our Ehrenfest formalism. This work also provides
the basis for extending stochastic methods to Ehrenfest dynamics.Comment: 28 pages, 1 figure. Published version. arXiv admin note: substantial
text overlap with arXiv:1010.149
Electron and Proton Transfers Modulate DNA Binding by the Transcription Regulator RsrR
The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer
Vitamin A and Retinoid Derivatives for Lung Cancer: A Systematic Review and Meta Analysis
Despite reported antiproliferative activity of vitamin A and its common use for cancer, there is no comprehensive synthesis of its safety and efficacy in lung cancers. To address this issue we conducted a systematic review of the safety and efficacy of vitamin A for the treatment and prevention of lung cancers.Two independent reviewers searched six electronic databases from inception to July 2009 for clinical, observational, and preclinical evidence pertaining to the safety and efficacy of vitamin A and related retinoids for lung cancers. 248 studies were included for full review and analysis. Five RCTs assessed treatment of lung cancers, three assessed primary prevention, and three looked at secondary prevention of lung cancers. Five surrogate studies, 26 phase I/II, 32 observational, and 67 preclinical studies were also included. 107 studies were included for interactions between vitamin A and chemo- or radiation-therapy. Although some studies demonstrated benefits, there was insufficient evidence overall to support the use of vitamin A or related retinoids for the treatment or prevention of lung cancers. Retinyl palmitate combined with beta carotene increased risk of lung cancer in smokers in the large CARET trial. Pooling of three studies pertaining to treatment and three studies on secondary prevention revealed no significant effects on response rate, second primary tumor, recurrence, 5-year survival, and mortality. There was a small improvement in event free survival associated with vitamin A compared to controls, RR 1.24 (95% CI 1.13-1.35). The synthetic rexinoid bexarotene increased survival significantly among a subset of patients in two RCTs (p<0.014, <0.087).There is a lack of evidence to support the use of naturally occurring retinoids for the treatment and prevention of lung cancers. The rexinoid bexarotene may hold promise for use among a subset of patients, and deserves further study
- …