128 research outputs found

    Vorticity Banding During the Lamellar-to-Onion Transition in a Lyotropic Surfactant Solution in Shear Flow

    Full text link
    We report on the rheology of a lamellar lyotropic surfactant solution (SDS/dodecane/pentanol/water), and identify a discontinuous transition between two shear thinning regimes which correspond to the low stress lamellar phase and the more viscous shear induced multi-lamellar vesicle, or ``onion'' phase. We study in detail the flow curve, stress as a function of shear rate, during the transition region, and present evidence that the region consists of a shear banded phase where the material has macroscopically separated into bands of lamellae and onions stacked in the vorticity direction. We infer very slow and irregular transformations from lamellae to onions as the stress is increased through the two phase region, and identify distinct events consistent with the nucleation of small fractions of onions that coexist with sheared lamellae.Comment: 10 pages, 10 figure

    Statistics and Nos\'e formalism for Ehrenfest dynamics

    Get PDF
    Quantum dynamics (i.e., the Schr\"odinger equation) and classical dynamics (i.e., Hamilton equations) can both be formulated in equal geometric terms: a Poisson bracket defined on a manifold. In this paper we first show that the hybrid quantum-classical dynamics prescribed by the Ehrenfest equations can also be formulated within this general framework, what has been used in the literature to construct propagation schemes for Ehrenfest dynamics. Then, the existence of a well defined Poisson bracket allows to arrive to a Liouville equation for a statistical ensemble of Ehrenfest systems. The study of a generic toy model shows that the evolution produced by Ehrenfest dynamics is ergodic and therefore the only constants of motion are functions of the Hamiltonian. The emergence of the canonical ensemble characterized by the Boltzmann distribution follows after an appropriate application of the principle of equal a priori probabilities to this case. Once we know the canonical distribution of a Ehrenfest system, it is straightforward to extend the formalism of Nos\'e (invented to do constant temperature Molecular Dynamics by a non-stochastic method) to our Ehrenfest formalism. This work also provides the basis for extending stochastic methods to Ehrenfest dynamics.Comment: 28 pages, 1 figure. Published version. arXiv admin note: substantial text overlap with arXiv:1010.149

    Electron and Proton Transfers Modulate DNA Binding by the Transcription Regulator RsrR

    Get PDF
    The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer

    Vitamin A and Retinoid Derivatives for Lung Cancer: A Systematic Review and Meta Analysis

    Get PDF
    Despite reported antiproliferative activity of vitamin A and its common use for cancer, there is no comprehensive synthesis of its safety and efficacy in lung cancers. To address this issue we conducted a systematic review of the safety and efficacy of vitamin A for the treatment and prevention of lung cancers.Two independent reviewers searched six electronic databases from inception to July 2009 for clinical, observational, and preclinical evidence pertaining to the safety and efficacy of vitamin A and related retinoids for lung cancers. 248 studies were included for full review and analysis. Five RCTs assessed treatment of lung cancers, three assessed primary prevention, and three looked at secondary prevention of lung cancers. Five surrogate studies, 26 phase I/II, 32 observational, and 67 preclinical studies were also included. 107 studies were included for interactions between vitamin A and chemo- or radiation-therapy. Although some studies demonstrated benefits, there was insufficient evidence overall to support the use of vitamin A or related retinoids for the treatment or prevention of lung cancers. Retinyl palmitate combined with beta carotene increased risk of lung cancer in smokers in the large CARET trial. Pooling of three studies pertaining to treatment and three studies on secondary prevention revealed no significant effects on response rate, second primary tumor, recurrence, 5-year survival, and mortality. There was a small improvement in event free survival associated with vitamin A compared to controls, RR 1.24 (95% CI 1.13-1.35). The synthetic rexinoid bexarotene increased survival significantly among a subset of patients in two RCTs (p<0.014, <0.087).There is a lack of evidence to support the use of naturally occurring retinoids for the treatment and prevention of lung cancers. The rexinoid bexarotene may hold promise for use among a subset of patients, and deserves further study

    Modern NMR spectroscopy of proteins and peptides in solution and its relevance to drug design

    Full text link
    The knowledge of the three-dimensional (3D) structures and conformational dynamics of proteins and peptides is important for the understanding of biochemical and genetic data derived for these molecules. This understanding can ultimately be of help in drug design. We describe here the role of Nuclear Magnetic Resonance (NMR) spectroscopy in this process for three distinct situations: for small proteins, where relatively simple NMR methods can be used for full 3D structure determination; for larger proteins that require multinuclear multidimensional NMR but for which full 3D structures can still be obtained; and for small peptides that are studied in interaction with macromolecules (receptors) using specialized NMR techniques. A fourth situation, pertaining to large systems where only partial structural information can be obtained from NMR data, is briefly discussed. Molecules of interest to the biomedical field (C5a and stromelysin) are discussed as examples.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43356/1/11091_2005_Article_BF02174537.pd
    • …
    corecore