83 research outputs found
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Planck 2015 results: XV. gravitational lensing
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8 Ω 0.25 m =0.591±0.021 . We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model
The Exoplanet Climate Infrared TElescope (EXCITE)
Although there are a large number of known exoplanets, there is little data on their global atmospheric properties. Phase-resolved spectroscopy of transiting planets – continuous spectroscopic observation of planets during their full orbits – probes varied depths and longitudes in the atmospheres thus measuring their three-dimensional thermal and chemical structure and contributing to our understanding of their global circulation. Planets with characteristics suitable for atmospheric characterization have orbits of several days, so phase curve observations are highly resource intensive, especially for shared use facilities. The Exoplanet Climate Infrared TElescope (EXCITE) is a balloon-borne near-infrared spectrometer designed to observe from 1 to 5 μm to perform phaseresolved spectroscopy of hot Jupiters. Flying from a long duration balloon (LDB) platform, EXCITE will have the stability to continuously stare at targets for days at a time and the sensitivity to produce data of the quality and quantity needed to significantly advance our understanding of exoplanet atmospheres. We describe the EXCITE design and show results of analytic and numerical calculations of the instrument sensitivity. We show that an instrument like EXCITE will produce a wealth of quality data, both complementing and serving as a critical bridge between current and future space-based near infrared spectroscopic instruments
Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight.
Reproduced with permission, © ESO, 201
Recommended from our members
Antenna-coupled TES bolometers for the SPIDER experiment
SPIDER is a proposed balloon-borne experiment designed to search for the imprints of gravity waves on the polarization of the cosmic microwave background radiation. The required wide frequency coverage, large number of sensitive detectors, and the stringent power constraints on a balloon are made possible by antenna-coupled TES bolometers. Several prototype devices have been fabricated and optically characterized. Their spectral and angular responses agree well with the theoretical expectations
An update on Archeops: flights and data products
Archeops is a balloon-borne instrument dedicated to measuring CMB temperature
anisotropies at high resolution over a large fraction of sky. We present the
Archeops flights and data products, Archeops results, and the future use of
Archeops data for multi-experiment data analysis
The EXoplanet Climate Infrared TElescope (EXCITE): Gondola Pointing & Stabilization Qualification
High precision sub-arcsecond pointing stability has become a capability widely utilized in the balloon-borne community, in particular for high resolution optical systems. However, many of these applications are also pushing the state-of-the-art with regards to detector technology, many forms of which require some level of cryogenic cooling and active dissipative cooling systems to achieve target performance specifications. Built on the success of the Super-pressure Balloon-borne Imaging Telescope (SuperBIT) experiment, we present the results of improved technologies and design methodologies applied to the EXoplanet Infrared TElescope (EXCITE), which uses active cryogenic systems to achieve detector performance while requiring pointing stability at the 100 milliarcsecond level. Results from EXCITE's recent balloon-borne campaign are presented within the context of Super-pressure Balloon (SPB) and Long Duration Balloon (LDB) applications
Design and testing of a low-resolution NIR spectrograph for the EXoplanet Climate Infrared TElescope
The EXoplanet Climate Infrared TElescope (EXCITE) is a near-infrared spectrograph (0.8-3.5 µm, R∼50) designed for measuring spectroscopic phase curves of transiting hot Jupiter-type exoplanets that operates off a high-altitude balloon platform. Phase curves produce a combination of phase curve and transit/eclipse spectroscopy, providing a wealth of information for characterizing exoplanet atmospheres. EXCITE will be a first-of-kind dedicated telescope uniquely able to observe a target nearly uninterrupted for tens of hours, enabling phase curve measurements, and complementing JWST. The spectrometer has two channels, a 0.8-2.5 µm band and a 2.5-3.5 µm band, providing a spectrum with a spectral resolution of R≥50. Two Off-Axis Parabolic (OAP) mirrors reimage the telescope focal plane to provide on-axis, diffraction-limited performance, wth a CaF2 prism providing dispersion. The spectrum is imaged with a single JWST flight spare Teledyne H2RG detector, providing Nyquist sampling of each channel. Here, we discuss the spectrograph's mechanical design, acceptance testing, assembly, and cryostat integration
A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument
We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight
- …
